Search Results
University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
Search for other papers by Mojca Zerjav Tansek in
Google Scholar
PubMed
Search for other papers by Ana Bertoncel in
Google Scholar
PubMed
Search for other papers by Brina Sebez in
Google Scholar
PubMed
Search for other papers by Janez Zibert in
Google Scholar
PubMed
University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
Search for other papers by Urh Groselj in
Google Scholar
PubMed
University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
Search for other papers by Tadej Battelino in
Google Scholar
PubMed
University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
Search for other papers by Magdalena Avbelj Stefanija in
Google Scholar
PubMed
Despite recent improvements in the composition of the diet, lower mineral bone density and overweight tendencies are incoherently described in patients with phenylketonuria (PKU). The impact of dietary factors and plasma phenylalanine levels on growth, BMI, body composition, and bone mineral density was investigated in our cohort of patients with hyperphenylalaninemia (HPA) with or without dietary treatment. The anthropometric, metabolic, BMI and other nutritional indicators and bone mineral density were compared between the group of 96 treated patients with PKU (58 classic PKU (cPKU) and 38 patients with moderate-mild PKU defined as non-classic PKU (non-cPKU)) and the untreated group of 62 patients with benign HPA. Having compared the treated and untreated groups, there were normal outcomes and no statistically significant differences in BMI, body composition, and bone mineral density. Lower body height standard deviation scores were observed in the treated as compared to the untreated group (P < 0.001), but the difference was not significant when analyzing patients older than 18 years; however, cPKU adults were shorter compared to non-cPKU treated adults (P = 0.012). Interestingly, the whole-body fat was statistically higher in non-cPKU as compared to cPKU patients. In conclusion, the dietary treatment ensured adequate nutrition without significant consequences in BMI, body composition, and bone mineral density. A low protein diet may have delayed the growth in childhood, but the treated patients gained a normal final height. Mild untreated hyperphenylalaninemia characteristic for benign HPA had no negative physiological effect on bone mineral density.
Department of Endocrinology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Search for other papers by Lizhi Zhang in
Google Scholar
PubMed
Search for other papers by Jinwei He in
Google Scholar
PubMed
Search for other papers by Xiang Sun in
Google Scholar
PubMed
Search for other papers by Dongyue Pang in
Google Scholar
PubMed
Search for other papers by Jingjing Hu in
Google Scholar
PubMed
Search for other papers by Bo Feng in
Google Scholar
PubMed
We demonstrated previously that there is a correlation between glucagon-like peptide-1 (GLP-1) single-nucleotide polymorphism (SNP) and bone mineral density in postmenopausal women. Both GLP-1 and glucose-dependent insulinotropic peptide are incretins. The glucose-dependent insulinotropic peptide receptor (GIPR) SNP rs10423928 has been extensively studied. However, it is not clear whether GIPR gene mutations affect bone metabolism. The aim of this study was to investigate the association between rs10423928 and bone mineral density in postmenopausal women in Shanghai. rs10423928 was detected in 884 postmenopausal women in Shanghai, and the correlation between the GIPR SNP and bone mineral density was assessed. The dominant T/T genotype of rs10423928 was found to be related to the bone mineral density of the femoral neck (P = 0.035). Overall, our findings indicate that the dominant T/T genotype of rs10423928 in postmenopausal women is significantly associated with a higher bone mineral density and that the T/T genotype exerts a bone-protective effect.
Search for other papers by Martine Cohen-Solal in
Google Scholar
PubMed
Search for other papers by Thomas Funck-Brentano in
Google Scholar
PubMed
Department of Renal Physiology, Necker Hospital, Université de Paris, Paris, France
Search for other papers by Pablo Ureña Torres in
Google Scholar
PubMed
Mineral and bone diseases (MBD) are predominant in patients with chronic kidney disease (CKD) and lead to several bone manifestations, from pain to skeletal fractures. Cumulative traditional clinical risk factors, such as age and gender, in addition to those related to CKD, enhance the risk of comorbidity and mortality related to fractures. Despite great advances in understanding MBD in CKD, clinical and biological targets are lacking, which leads to under-management of fractures. Optimal PTH control results in a net improvement in defining the levels of bone remodeling. In addition, circulating biomarkers such as bone-specific alkaline phosphatase and cross-linked collagen type I peptide will also provide additional information about remodeling rate, bone mineralization and the evaluation of fracture risk. Imaging techniques identify patients at risk by measurement of bone mineral density by DEXA or by high peripheral QCT, which allow the discrimination of trabecular and cortical bone. Here, we have reviewed the literature related to epidemiology and the pathophysiological role of mineral and biochemical factors involved in CKD-MBD with a special focus on fracture risk. We also provide an algorithm that could be used for the management of bone diseases and to guide treatment decisions. Finally, the combined expertise of clinicians from various disciplines is crucial for the best prevention of fractures.
Department of Clinical Science, Department of Medicine, Department of Medicine, Pediatric Department, University of Bergen, Bergen, Norway
Search for other papers by Marianne C Astor in
Google Scholar
PubMed
Department of Clinical Science, Department of Medicine, Department of Medicine, Pediatric Department, University of Bergen, Bergen, Norway
Search for other papers by Kristian Løvås in
Google Scholar
PubMed
Search for other papers by Anette S B Wolff in
Google Scholar
PubMed
Search for other papers by Bjørn Nedrebø in
Google Scholar
PubMed
Search for other papers by Eirik Bratland in
Google Scholar
PubMed
Search for other papers by Jon Steen-Johnsen in
Google Scholar
PubMed
Department of Clinical Science, Department of Medicine, Department of Medicine, Pediatric Department, University of Bergen, Bergen, Norway
Search for other papers by Eystein S Husebye in
Google Scholar
PubMed
Primary hypomagnesemia with secondary hypocalcemia (HSH) is an autosomal recessive disorder characterized by neuromuscular symptoms in infancy due to extremely low levels of serum magnesium and moderate to severe hypocalcemia. Homozygous mutations in the magnesium transporter gene transient receptor potential cation channel member 6 (TRPM6) cause the disease. HSH can be misdiagnosed as primary hypoparathyroidism. The aim of this study was to describe the genetic, clinical and biochemical features of patients clinically diagnosed with HSH in a Norwegian cohort. Five patients in four families with clinical features of HSH were identified, including one during a national survey of hypoparathyroidism. The clinical history of the patients and their families were reviewed and gene analyses of TRPM6 performed. Four of five patients presented with generalized seizures in infancy and extremely low levels of serum magnesium accompanied by moderate hypocalcemia. Two of the patients had an older sibling who died in infancy. Four novel mutations and one large deletion in TRPM6 were identified. In one patient two linked homozygous mutations were located in exon 22 (p.F978L) and exon 23 (p.G1042V). Two families had an identical mutation in exon 25 (p.E1155X). The fourth patient had a missense mutation in exon 4 (p.H61N) combined with a large deletion in the C-terminal end of the gene. HSH is a potentially lethal condition that can be misdiagnosed as primary hypoparathyroidism. The diagnosis is easily made if serum magnesium is measured. When treated appropriately with high doses of oral magnesium supplementation, severe hypomagnesemia is uncommon and the long-term prognosis seems to be good.
Search for other papers by E M Winter in
Google Scholar
PubMed
Search for other papers by A Ireland in
Google Scholar
PubMed
Search for other papers by N C Butterfield in
Google Scholar
PubMed
Search for other papers by M Haffner-Luntzer in
Google Scholar
PubMed
Search for other papers by M-N Horcajada in
Google Scholar
PubMed
Jan van Goyen Medical Center, Department of Internal Medicine, Amsterdam, the Netherlands
Search for other papers by A G Veldhuis-Vlug in
Google Scholar
PubMed
Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
Search for other papers by L Oei in
Google Scholar
PubMed
Search for other papers by G Colaianni in
Google Scholar
PubMed
Search for other papers by N Bonnet in
Google Scholar
PubMed
In this review we discuss skeletal adaptations to the demanding situation of pregnancy and lactation. Calcium demands are increased during pregnancy and lactation, and this is effectuated by a complex series of hormonal changes. The changes in bone structure at the tissue and whole bone level observed during pregnancy and lactation appear to largely recover over time. The magnitude of the changes observed during lactation may relate to the volume and duration of breastfeeding and return to regular menses. Studies examining long-term consequences of pregnancy and lactation suggest that there are small, site-specific benefits to bone density and that bone geometry may also be affected. Pregnancy- and lactation-induced osteoporosis (PLO) is a rare disease for which the pathophysiological mechanism is as yet incompletely known; here, we discuss and speculate on the possible roles of genetics, oxytocin, sympathetic tone and bone marrow fat. Finally, we discuss fracture healing during pregnancy and lactation and the effects of estrogen on this process.
Department of Nutrition, Institute of Life Sciences, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, Brazil
Department of Nutrition, Faculty of Health and Medical Sciences, University of Surrey, University of Surrey, Guildford, UK
Search for other papers by Marcela Moraes Mendes in
Google Scholar
PubMed
Search for other papers by Patricia Borges Botelho in
Google Scholar
PubMed
Search for other papers by Helena Ribeiro in
Google Scholar
PubMed
Vitamin D enhances calcium absorption and bone mineralisation, promotes maintenance of muscle function, and is crucial for musculoskeletal health. Low vitamin D status triggers secondary hyperparathyroidism, increases bone loss, and leads to muscle weakness. The primary physiologic function of vitamin D and its metabolites is maintaining calcium homeostasis for metabolic functioning, signal transduction, and neuromuscular activity. A considerable amount of human evidence supports the well-recognised contribution of adequate serum 25-hydroxyvitamin D concentrations for bone homeostasis maintenance and prevention and treatment strategies for osteoporosis when combined with adequate calcium intake. This paper aimed to review the literature published, mainly in the last 20 years, on the effect of vitamin D and its supplementation for musculoskeletal health in order to identify the aspects that remain unclear or controversial and therefore require further investigation and debate. There is a clear need for consistent data to establish realistic and meaningful recommendations of vitamin D status that consider different population groups and locations. Moreover, there is still a lack of consensus on thresholds for vitamin D deficiency and optimal status as well as toxicity, optimal intake of vitamin D, vitamin D supplement alone as a strategy to prevent fractures and falls, recommended sun exposure at different latitudes and for different skin pigmentations, and the extra skeletal effects of vitamin D.
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Rong Xu in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Difei Lian in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Yan Xie in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Lin Mu in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Yali Wu in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Zhilei Chen in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Baoyu Zhang in
Google Scholar
PubMed
Osteoporosis (OP) is a systemic bone disease in which bone density and quality decrease and bone fragility increases due to a variety of causes, making it prone to fractures. The development of OP is closely related to oxidative stress. Uric acid (UA) is the end product of purine metabolism in the human body. Extracellular UA has antioxidant properties and is thought to have a protective effect on bone metabolism. However, the process of UA degradation can lead to intracellular oxidative stress, which together with UA-induced inflammatory factors, leads to increased bone destruction. In addition, UA can inhibit vitamin D production, resulting in secondary hyperparathyroidism and further exacerbating UA-associated bone loss. This review summarizes the relationship between serum UA levels and bone mineral density, bone turnover markers, and so on, in the hope of providing new insights into the pathogenesis and treatment of OP.
Laboratory for Anthropology and Skeletal Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
Search for other papers by Petar Milovanovic in
Google Scholar
PubMed
Search for other papers by Björn Busse in
Google Scholar
PubMed
An increasing number of patients worldwide suffer from bone fractures that occur after low intensity trauma. Such fragility fractures are usually associated with advanced age and osteoporosis but also with long-term immobilization, corticosteroid therapy, diabetes mellitus, and other endocrine disorders. It is important to understand the skeletal origins of increased bone fragility in these conditions for preventive and therapeutic strategies to combat one of the most common health problems of the aged population. This review summarizes current knowledge pertaining to the phenomenon of micropetrosis (osteocyte lacunar mineralization). As an indicator of former osteocyte death, micropetrosis is more common in aged bone and osteoporotic bone. Considering that the number of mineralized osteocyte lacunae per bone area can distinguish healthy, untreated osteoporotic and bisphosphonate-treated osteoporotic patients, it could be regarded as a novel structural marker of impaired bone quality. Further research is needed to clarify the mechanism of lacunar mineralization and to explore whether it could be an additional target for preventing or treating bone fragility related to aging and various endocrine diseases.
F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Florence, Italy
Search for other papers by Francesca Marini in
Google Scholar
PubMed
Search for other papers by Francesca Giusti in
Google Scholar
PubMed
Search for other papers by Teresa Iantomasi in
Google Scholar
PubMed
Search for other papers by Federica Cioppi in
Google Scholar
PubMed
Search for other papers by Maria Luisa Brandi in
Google Scholar
PubMed
Multiple endocrine neoplasia type 1 (MEN1) is a rare, inherited cancer syndrome characterized by the development of multiple endocrine and non-endocrine tumors. MEN1 patients show a reduction of bone mass and a higher prevalence of early onset osteoporosis, compared to healthy population of the same age, gender, and ethnicity. During the monitoring and follow-up of MEN1 patients, the attention of clinicians is primarily focused on the diagnosis and therapy of tumors, while the assessment of bone health and mineral metabolism is, in many cases, marginally considered. In this study, we retrospectively analyzed bone and mineral metabolism features in a series of MEN1 patients from the MEN1 Florentine database. Biochemical markers of bone and mineral metabolism and densitometric parameters of bone mass were retrieved from the database and were analyzed based on age ranges and genders of patients and presence/absence of the three main MEN1-related endocrine tumor types. Our evaluation confirmed that patients with a MEN1 diagnosis have a high prevalence of earlyonset osteopenia and osteoporosis, in association with levels of serum and urinary markers of bone turnover higher than the normal reference values, regardless of their different MEN1 tumors. Fifty percent of patients younger than 26 years manifested osteopenia and 8.3% had osteoporosis, in at least one of the measured bone sites. These data suggest the importance of including biochemical and instrumental monitoring of bone metabolism and bone mass in the routine medical evaluation and follow-up of MEN1 patients and MEN1 carriers as important clinical aspects in the management of the syndrome.
Search for other papers by Anna Gorbacheva in
Google Scholar
PubMed
Search for other papers by Anna Eremkina in
Google Scholar
PubMed
Search for other papers by Daria Goliusova in
Google Scholar
PubMed
Search for other papers by Julia Krupinova in
Google Scholar
PubMed
Search for other papers by Natalia Mokrysheva in
Google Scholar
PubMed
Multiple endocrine neoplasia type 1 (MEN1) is the most common cause of hereditary primary hyperparathyroidism (PHPT). Bone disorders are considered one of the key symptoms in PHPT present with the significant reduction in bone mineral density and low-energy fractures. Previously, these bone disorders were believed to be caused solely by the increase in the level of parathyroid hormone and its subsequent effect on bone resorption. The current paradigm, however, states that the mutations in the menin gene, which cause the development of MEN1, can also affect the metabolism of the cells of the osteoid lineage. This review analyzes both the proven and the potential intracellular mechanisms through which menin can affect bone metabolism.