Search Results

You are looking at 1 - 4 of 4 items for :

  • Abstract: Arteries x
  • Abstract: Atherosclerosis x
  • Abstract: Carotid x
  • Abstract: Ghrelin x
  • Abstract: Stroke x
  • Abstract: Heart x
  • Abstract: cardiac* x
  • Abstract: Myocardial x
Clear All Modify Search
Agnieszka Adamska Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Bialystok, Poland

Search for other papers by Agnieszka Adamska in
Google Scholar
PubMed
Close
,
Vitalii Ulychnyi Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Bialystok, Poland

Search for other papers by Vitalii Ulychnyi in
Google Scholar
PubMed
Close
,
Katarzyna Siewko Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Bialystok, Poland

Search for other papers by Katarzyna Siewko in
Google Scholar
PubMed
Close
,
Anna Popławska-Kita Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Bialystok, Poland

Search for other papers by Anna Popławska-Kita in
Google Scholar
PubMed
Close
,
Małgorzata Szelachowska Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Bialystok, Poland

Search for other papers by Małgorzata Szelachowska in
Google Scholar
PubMed
Close
,
Marcin Adamski Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland

Search for other papers by Marcin Adamski in
Google Scholar
PubMed
Close
,
Angelika Buczyńska Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland

Search for other papers by Angelika Buczyńska in
Google Scholar
PubMed
Close
, and
Adam Jacek Krętowski Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Bialystok, Poland
Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland

Search for other papers by Adam Jacek Krętowski in
Google Scholar
PubMed
Close

Cardiovascular risk factors could be present in mild adrenal autonomous cortisol secretion (MACS). However, the most frequent cardiovascular risk factors in MACS have not been established. The aim of the presseent study was to analyse the difference in cardiovascular risk factors in patients with MACS in comparison to those with non-functioning adrenal tumour (NFAT). A total of 295 patients with adrenal incidentaloma were included in this retrospective study. We divided our group into those who showed suppression in 1 mg overnight dexamethasone suppression test (DST) (NFAT) (serum cortisol level ≤1.8 μg/dL) and those who did not show suppression in the DST (MACS) (serum concentration of cortisol > 1.8 μg/dL and ≤5 μg/dL). In the studied groups, we analysed the presence of cardiovascular risk factors, such as obesity, prediabetes, type 2 diabetes mellitus (T2DM), hypertension, hyperlipidaemia, chronic kidney disease and cardiovascular events. In our study, 18.9% of patients were defined as MACS. Importantly, T2DM was diagnosed in 41% of MACS vs 23% of NFAT (P < 0.01) and higher frequency of occurrence of hyperlipidaemia in NFAT (72.4%) vs MACS (53.6%) (P = 0.01) was observed. We did not observed differences in the frequency of obesity, hypertension, chronic kidney disease, prediabetes, atrial fibrillation, stroke, ST and non-ST elevation myocardial infarction and coronary angioplasty between patients with MACS and NFAT (all P > 0.05; respectively). In MACS, T2DM is more prevalent than in NFAT; hyperlipidaemia is more prevalent in NFAT. Accordingly, no differences were found in the incidence of obesity, hypertension, prediabetes, chronic kidney disease between studied groups as well as cardiovascular events.

Open access
Randi Ugleholdt Department of Endocrinology, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Randi Ugleholdt in
Google Scholar
PubMed
Close
,
Åse Krogh Rasmussen Department of Endocrinology and Metabolism, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark

Search for other papers by Åse Krogh Rasmussen in
Google Scholar
PubMed
Close
,
Pernille A H Haderslev Department of Anaesthesiology, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark

Search for other papers by Pernille A H Haderslev in
Google Scholar
PubMed
Close
,
Bjarne Kromann-Andersen Department of Urology, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark

Search for other papers by Bjarne Kromann-Andersen in
Google Scholar
PubMed
Close
, and
Claus Larsen Feltoft Department of Endocrinology, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark

Search for other papers by Claus Larsen Feltoft in
Google Scholar
PubMed
Close

Patients with pheochromocytoma and paraganglioma (PPGL) are treated with α-adrenoceptor antagonists to improve peroperative hemodynamics. However, preoperative blood pressure targets differ between institutions. We retrospectively compared per- and postoperative hemodynamics in 30 patients with PPGL that were pretreated with phenoxybenzamine aiming at different blood pressure targets at two separate endocrine departments. All patients were subsequently undergoing laparoscopic surgery at Department of Urology, Herlev University hospital. Fourteen patients were treated targeting to symptomatic and significant orthostatic hypotension and 16 patients to a seated blood pressure below 130/80 mmHg. As a control group, we included 34 patients undergoing laparoscopic adrenalectomy for other reasons. The group titrated to orthostatic hypotension required a higher dose of phenoxybenzamine to achieve the blood pressure target. This group had less intraoperative systolic and diastolic blood pressure fluctuation (Mann–Whitney U test; P  < 0.05) and less periods with heart rate above 100 b.p.m. (Mann–Whitney U test; P = 0.04) as compared to the group with a preoperative blood pressure target below 130/80 mmHg. Peroperative use of intravenous fluids were similar between the two groups, but postoperatively more intravenous fluids were administered in the group with a target of ortostatism. Overall, the control group was more hemodynamic stable as compared to either group treated for PPGL. We conclude that phenoxybenzamine pretreatment targeting ortostatic hypotension may improve peroperative hemodynamic stability but causes a higher postoperative requirement for intravenous fluids. Overall, PPGL surgery is related to greater hemodynamic instability compared to adrenalectomy for other reasons.

Open access
Sharmin Jahan Department of Medicine, Monash University, Melbourne, Victoria, Australia
Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Victoria, Australia
Department of Endocrinology and Metabolism, BSMMU, Dhaka, Bangladesh

Search for other papers by Sharmin Jahan in
Google Scholar
PubMed
Close
,
Jun Yang Department of Medicine, Monash University, Melbourne, Victoria, Australia
Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Victoria, Australia

Search for other papers by Jun Yang in
Google Scholar
PubMed
Close
,
Jinbo Hu Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Search for other papers by Jinbo Hu in
Google Scholar
PubMed
Close
,
Qifu Li Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Search for other papers by Qifu Li in
Google Scholar
PubMed
Close
, and
Peter J Fuller Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Victoria, Australia

Search for other papers by Peter J Fuller in
Google Scholar
PubMed
Close

Primary aldosteronism (PA) is the most common cause of endocrine hypertension and is often underdiagnosed. This condition is associated with increased cardiovascular morbidity and mortality in comparison to age and blood pressure matched individuals with essential hypertension (EH). The diagnostic pathway for PA consists of three phases: screening, confirmatory testing, and subtyping. The lack of specificity in the screening step, which relies on the aldosterone to renin ratio, necessitates confirmatory testing. The Endocrine Society’s clinical practice guideline suggests four confirmatory tests, including the fludrocortisone suppression test (FST), saline suppression test (SST), captopril challenge test (CCT), and oral sodium loading test (SLT). There is no universally accepted choice of confirmatory test, with practices varying among centers. The SST and FST are commonly used, but they can be resource-intensive, carry risks such as volume overload or hypokalemia, and are contraindicated in severe/uncontrolled HTN as well as in cardiac and renal impairment. In contrast, CCT is a safe and inexpensive alternative that can be performed in an outpatient setting and can be applied when other tests are contraindicated. Despite its simplicity and convenience, the variability in captopril dose, testing posture, and diagnostic threshold limit its widespread use. This narrative review evaluates the diagnostic accuracy of the CCT across different populations, addresses controversies in its usage, and proposes recommendations for its use in the diagnosis of PA. Furthermore, suggestions for future research aimed at promoting the wider utilization of the CCT as a simpler, safer, and more cost-effective diagnostic test are discussed.

Open access
Arno Téblick Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Arno Téblick in
Google Scholar
PubMed
Close
,
Ilse Vanhorebeek Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Ilse Vanhorebeek in
Google Scholar
PubMed
Close
,
Inge Derese Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Inge Derese in
Google Scholar
PubMed
Close
,
An Jacobs Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by An Jacobs in
Google Scholar
PubMed
Close
,
Renata Haghedooren Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Renata Haghedooren in
Google Scholar
PubMed
Close
,
Sofie Maebe Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Sofie Maebe in
Google Scholar
PubMed
Close
,
Gerdien A Zeilmaker-Roest Department of Neonatal & Pediatric Intensive Care, Division of Pediatric Intensive Care, Erasmus MC – Sophia Children’s Hospital, Rotterdam, the Netherlands

Search for other papers by Gerdien A Zeilmaker-Roest in
Google Scholar
PubMed
Close
,
Enno D Wildschut Department of Neonatal & Pediatric Intensive Care, Division of Pediatric Intensive Care, Erasmus MC – Sophia Children’s Hospital, Rotterdam, the Netherlands

Search for other papers by Enno D Wildschut in
Google Scholar
PubMed
Close
,
Lies Langouche Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Lies Langouche in
Google Scholar
PubMed
Close
, and
Greet Van den Berghe Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Greet Van den Berghe in
Google Scholar
PubMed
Close

In critically ill adults, high plasma cortisol in the face of low ACTH coincides with high pro-opiomelanocortin (POMC) levels. Glucocorticoids further lower ACTH without affecting POMC. We hypothesized that in pediatric cardiac surgery-induced critical illness, plasma POMC is elevated, plasma ACTH transiently rises intraoperatively but becomes suppressed post-operatively, and glucocorticoid administration amplifies this phenotype. From 53 patients (0–36 months), plasma was obtained pre-operatively, intraoperatively, and on post-operative days 1 and 2. Plasma was also collected from 24 healthy children. In patients, POMC was supra-normal pre-operatively (P < 0.0001) but no longer thereafter (P > 0.05). ACTH was never high in patients. While in glucocorticoid-naive patients ACTH became suppressed by post-operative day 1 (P < 0.0001), glucocorticoid-treated patients had already suppressed ACTH intraoperatively (P ≤ 0.0001). Pre-operatively high POMC, not accompanied by increased plasma ACTH, suggests a centrally activated HPA axis with reduced pituitary processing of POMC into ACTH. Increasing systemic glucocorticoid availability with glucocorticoid treatment accelerated the suppression of plasma ACTH.

Significance statement

Glucocorticoids are often administered during pediatric cardiac surgery. In critically ill children, endogenous systemic glucocorticoid availability is elevated already upon ICU admission while ACTH levels are normal. This hormonal constellation suggests the presence of active feedback inhibition of ACTH. In this study, we have documented that intraoperative administration of glucocorticoids accelerates the suppression of ACTH, resulting in low plasma ACTH already upon ICU admission. Pre-operative plasma POMC, the ACTH precursor, but not ACTH, was increased. This is compatible with a centrally activated HPA axis prior to surgery in young children but reduced processing of POMC into ACTH within the pituitary. These findings suggest that glucocorticoid treatment in the context of pediatric cardiac surgery may amplify pre-existing impaired pituitary processing of the prohormone POMC.

Open access