Search Results
Search for other papers by Vito Francic in
Google Scholar
PubMed
Search for other papers by Martin Keppel in
Google Scholar
PubMed
Search for other papers by Verena Schwetz in
Google Scholar
PubMed
Search for other papers by Christian Trummer in
Google Scholar
PubMed
Search for other papers by Marlene Pandis in
Google Scholar
PubMed
Search for other papers by Valentin Borzan in
Google Scholar
PubMed
Search for other papers by Martin R Grübler in
Google Scholar
PubMed
Search for other papers by Nicolas D Verheyen in
Google Scholar
PubMed
Search for other papers by Marcus E Kleber in
Google Scholar
PubMed
Search for other papers by Graciela Delgado in
Google Scholar
PubMed
Search for other papers by Angela P Moissl in
Google Scholar
PubMed
Search for other papers by Benjamin Dieplinger in
Google Scholar
PubMed
Synlab Academy, Synlab Holding Germany GmbH, Heidelberg, Germany
Search for other papers by Winfried März in
Google Scholar
PubMed
Search for other papers by Andreas Tomaschitz in
Google Scholar
PubMed
Search for other papers by Stefan Pilz in
Google Scholar
PubMed
Search for other papers by Barbara Obermayer-Pietsch in
Google Scholar
PubMed
Objective
Cardiovascular disease manifestation and several associated surrogate markers, such as vitamin D, have shown substantial seasonal variation. A promising cardiovascular biomarker, soluble ST2 (sST2), has not been investigated in this regard – we therefore determined if systemic levels of sST2 are affected by seasonality and/or vitamin D in order to investigate their clinical interrelation and usability.
Design
sST2 levels were measured in two cohorts involving hypertensive patients at cardiovascular risk, the Styrian Vitamin D Hypertension Trial (study A; RCT design, 8 weeks 2800 IU cholecalciferol daily) and the Ludwigshafen Risk and Cardiovascular Health Study (LURIC; study B; cross-sectional design).
Methods
The effects of a vitamin D intervention on sST2 levels were determined in study A using ANCOVA, while seasonality of sST2 levels was determined in study B using ANOVA.
Results
The concentrations of sST2 remained unchanged by a vitamin D intervention in study A, with a mean treatment effect (95% confidence interval) of 0.1 (−0.6 to 0.8) ng/mL; P = 0.761), despite a rise in 25(OH)D (11.3 (9.2–13.5) ng/mL; P < 0.001) compared to placebo. In study B, seasonal variations were present in 25(OH)D levels in men and women with or without heart failure (P < 0.001 for all subgroups), while sST2 levels remained unaffected by the seasons in all subgroups.
Conclusions
Our study provides the first evidence that systemic sST2 levels are not interrelated with vitamin D levels or influenced by the seasons in subjects at cardiovascular risk.
Search for other papers by Ying-Lien Cheng in
Google Scholar
PubMed
Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
Search for other papers by Ting-I Lee in
Google Scholar
PubMed
Search for other papers by Yu-Mei Chien in
Google Scholar
PubMed
Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
Search for other papers by Ting-Wei Lee in
Google Scholar
PubMed
Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
Search for other papers by Yi-Jen Chen in
Google Scholar
PubMed
Vitamin D deficiency is associated with hyperlipidemia, but it remains unclear whether vitamin D supplementation reduces serum lipid levels. The aims of this study were to investigate the associations between increased serum 25-hydroxyvitamin D (25(OH)D) concentrations and lipid levels and identify the characteristics of people with or without lipid reduction associated with increased 25(OH)D levels. The medical records of 118 individuals (53 men; mean age, 54.4 ± 10.6 years) whose serum 25(OH)D levels increased between 2 consecutive measurements were retrospectively reviewed. People with increased 25(OH)D levels (from 22.7 (17.6–29.2) to 32.1 (25.6–36.8) mg/dL; P < 0.01) had a significant reduction in serum levels of triglycerides (TGs) (from 111.0 (80–164) to 104.5 (73–142) mg/dL; P < 0.01) and total cholesterol (TC) (from 187.5 (155–213) to 181.0 (150–210) mg/dL; P < 0.05). The individuals who responded to vitamin D (≥10% reduction in TG or TC levels) exhibited significantly higher baseline TG and TC levels than those who did not. Only patients with hyperlipidemia (not those without hyperlipidemia) at baseline exhibited significantly reduced TG and TC levels at follow-up. However, increasing serum 25(OH)D concentrations were significantly correlated with decreasing lipid levels in individuals with baseline 25(OH)D levels less than 30 ng/mL and in individuals aged 50–65 years (not in patients younger than 50 years or older than 65 years). In conclusion, increasing serum 25(OH)D concentrations may be potentially helpful for the treatment of hyperlipidemia in people with vitamin D deficiency.
Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
Search for other papers by Laura P B Elbers in
Google Scholar
PubMed
Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam, the Netherlands
Search for other papers by Marije Wijnberge in
Google Scholar
PubMed
Department of Plasma Proteins, Sanquin Research, Amsterdam, the Netherlands
Search for other papers by Joost C M Meijers in
Google Scholar
PubMed
Search for other papers by Dennis C W Poland in
Google Scholar
PubMed
Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
Search for other papers by Dees P M Brandjes in
Google Scholar
PubMed
Search for other papers by Eric Fliers in
Google Scholar
PubMed
Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
Search for other papers by Victor E A Gerdes in
Google Scholar
PubMed
Introduction
Abnormal coagulation tests have been observed in patients with primary hyperparathyroidism (HPT) suggesting a prothrombotic effect of parathyroid hormone (PTH). Vitamin D deficiency (VIDD) is the most frequent cause of secondary HPT. Aim of our study was to investigate the influence of HPT secondary to moderate-to-severe VIDD and vitamin D replacement on the coagulation and fibrinolysis system.
Subjects and methods
Prospective cohort study of patients with vitamin D <25 nmol/L with and without HPT, and a control group of patients on vitamin D suppletion. At baseline and after 2 months of vitamin D suppletion (900,000 IU in 2 months), endocrine and coagulation markers were measured.
Results
59 patients with VIDD of which 34 had secondary HPT and 36 controls were included. After 2 months of suppletion, vitamin D increased by 399% (VIDD with HPT), 442% (all patients with VIDD) and 6% (controls). PTH decreased by 34% (VIDD with HPT, P < 0.01 for decrease), 32% (all VIDD, P < 0.01) and increased by 8% in the controls (P-values: <0.01 for relative changes between VIDD with HPT or all VIDD patients vs controls). Relative changes in PT, aPTT, fibrinogen, Von Willebrand factor, factors VII, VIII and X, thrombin generation, TAFI, clot-lysis time and d-dimer were not different between patients with VIDD with HPT or all VIDD vs controls.
Discussion
Secondary HPT due to VIDD does not have a prothrombotic effect. In contrast with previous reports, PTH does not seem to influence coagulation or fibrinolysis, which is relevant because of the high prevalence of VIDD.
Search for other papers by Zhen-yu Song in
Google Scholar
PubMed
Search for other papers by Qiuming Yao in
Google Scholar
PubMed
Search for other papers by Zhiyuan Zhuo in
Google Scholar
PubMed
Search for other papers by Zhe Ma in
Google Scholar
PubMed
Search for other papers by Gang Chen in
Google Scholar
PubMed
Previous studies investigating the association of circulating 25-hydroxyvitamin D level with prognosis of prostate cancer yielded controversial results. We conducted a dose–response meta-analysis to elucidate the relationship. PubMed and EMBASE were searched for eligible studies up to July 15, 2018. We performed a dose–response meta-analysis using random-effect model to calculate the summary hazard ratio (HR) and 95% CI of mortality in patients with prostate cancer. Seven eligible cohort studies with 7808 participants were included. The results indicated that higher vitamin D level could reduce the risk of death among prostate cancer patients. The summary HR of prostate cancer-specific mortality correlated with an increment of every 20 nmol/L in circulating vitamin D level was 0.91, with 95% CI 0.87–0.97, P = 0.002. The HR for all-cause mortality with the increase of 20 nmol/L vitamin D was 0.91 (95% CI: 0.84–0.98, P = 0.01). Sensitivity analysis suggested the pooled HRs were stable and not obviously changed by any single study. No evidence of publications bias was observed. This meta-analysis suggested that higher 25-hydroxyvitamin D level was associated with a reduction of mortality in prostate cancer patients and vitamin D is an important protective factor in the progression and prognosis of prostate cancer.
Fondazione Italiana Ricerca sulle Malattie dell’Osso (FIRMO Onlus), Florence, Italy
Search for other papers by Maria Luisa Brandi in
Google Scholar
PubMed
Search for other papers by Stefania Bandinelli in
Google Scholar
PubMed
Search for other papers by Teresa Iantomasi in
Google Scholar
PubMed
Search for other papers by Francesca Giusti in
Google Scholar
PubMed
Search for other papers by Eleonora Talluri in
Google Scholar
PubMed
Search for other papers by Giovanna Sini in
Google Scholar
PubMed
Search for other papers by Fabrizio Nannipieri in
Google Scholar
PubMed
Search for other papers by Santina Battaglia in
Google Scholar
PubMed
Search for other papers by Riccardo Giusti in
Google Scholar
PubMed
Search for other papers by Colin Gerard Egan in
Google Scholar
PubMed
Search for other papers by Luigi Ferrucci in
Google Scholar
PubMed
Objective
This study aimed to evaluate the association between the endocrine-disrupting chemical, bisphenol A (BPA) on circulating levels of 25-hydroxy vitamin D (25(OD)D) and other vitamin D metabolites in an elderly population in Italy.
Methods
This was a retrospective analysis of the InCHIANTI Biobank in Italy. The association between vitamin D metabolites namely 1,25(OH)D, 25(OH)D, parathyroid hormone (PTH) and BPA levels were evaluated. Multiple regression models were used to examine the association between predictor variables with 1,25(OH)D or 25(OH)D levels.
Results
Samples from 299 individuals aged 72.8 ± 15.7 years were examined. Mean levels of BPA, 1,25(OH)D and 25(OH)D were 351.2 ± 511.6 ng/dL, 43.7 ± 16.9 pg/mL and 20.2 ± 12.1 ng/mL, respectively. One hundred eighty individuals (60.2%) were deficient (<20 ng/mL) in 25(OH)D and this population also presented higher BPA levels (527.9 ± 1289.5 ng/dL vs 86.9 ± 116.8 ng/dL, P < 0.0001). Univariate analysis revealed that BPA levels were negatively correlated with both 1,25(OH)D (r= −0.67, P < 0.0001) and 25(OH)D (r= −0.69, P < 0.0001). Multivariate regression revealed that PTH (β: −0.23, 95% CI: −0.34, −0.13, P < 0.0001) and BPA (β: −0.25, 95% CI: −0.3, −0.19, P < 0.0001) remained significantly associated with 25(OH)D levels while BPA was also associated with 1,25(OH)D levels (β: −0.19, 95% CI: −0.22, −0.15, P < 0.0001). Receiver operating characteristic curve analysis showed that a BPA concentration of >113 ng/dL was the best cut-off to predict individuals deficient in 25(OH)D (area under the curve: 0.87, 95% CI: 0.82–0.90, P < 0.0001).
Conclusion
The strong negative association between BPA and vitamin D in this elderly population warrants further investigation, particularly since this population is already at greatest risk of hypovitaminosis and fracture.
Search for other papers by Eliana Piantanida in
Google Scholar
PubMed
Search for other papers by Daniela Gallo in
Google Scholar
PubMed
Research Center in Epidemiology and Preventive Medicine (EPIMED), University of Insubria, Varese, Italy
Search for other papers by Giovanni Veronesi in
Google Scholar
PubMed
Search for other papers by Eugenia Dozio in
Google Scholar
PubMed
Search for other papers by Eugenia Trotti in
Google Scholar
PubMed
Search for other papers by Adriana Lai in
Google Scholar
PubMed
Search for other papers by Silvia Ippolito in
Google Scholar
PubMed
Search for other papers by Jessica Sabatino in
Google Scholar
PubMed
Search for other papers by Maria Laura Tanda in
Google Scholar
PubMed
Search for other papers by Antonio Toniolo in
Google Scholar
PubMed
Research Center in Epidemiology and Preventive Medicine (EPIMED), University of Insubria, Varese, Italy
Search for other papers by Marco Ferrario in
Google Scholar
PubMed
Search for other papers by Luigi Bartalena in
Google Scholar
PubMed
Objective
The aim of this observational study was to clarify the link between vitamin D status and metabolic syndrome (MetS) in people with visceral obesity.
Design and methods
One hundred ninety-six consecutive patients (152 women; mean age 51 ± 13 years) with visceral obesity (mean body weight 103 ± 20 kg, mean waist circumference (WC) 119 ± 13 cm) were enrolled at the Obesity Outpatient Clinic of the University of Insubria in Varese. Anthropometric measurements were recorded. Laboratory tests, including vitamin D (25(OH)D)), fasting blood glucose (FBG), lipid profile, liver and kidney function tests were assessed. Vitamin D status was defined according to the European Society of Endocrinology guidelines, MetS to the 2009 harmonized definition.
Results
An inverse association emerged among 25(OH)D, body mass index (BMI) (P = 0.001) and WC (all P = 0.003). Serum 25(OH)D levels were inversely related to FBG and systolic blood pressure (SBP) (respectively, P = 0.01 and 0.02). Median serum 25(OH)D levels were 13.3 ng/mL (CI 95% 12; 15) in MetS and 16 ng/mL (CI 95% 14; 18) (P = 0.01) in non-MetS patients. Among patients with MetS, lower 25(OH)D concentrations were related to higher risk of hypertension (HT) (odds ratio (OR) 1.7, CI 95%, 0.7;4) and hyperglycemia (IFG)/type 2 diabetes (OR 5.5, CI 95% 2; 14).
Conclusion
Vitamin D status and MetS are inversely correlated in visceral obesity, particularly with regard to glucose homeostasis and BP. More extensive studies are required to investigate the potential for causality.
Search for other papers by Rasmus Reinke in
Google Scholar
PubMed
Search for other papers by Stefano Christian Londero in
Google Scholar
PubMed
Search for other papers by Martin Almquist in
Google Scholar
PubMed
Search for other papers by Lars Rejnmark in
Google Scholar
PubMed
Search for other papers by Lars Rolighed in
Google Scholar
PubMed
Objective
Total thyroidectomy is associated with a high risk of postoperative hypoparathyroidism, mainly due to the unintended surgical damage to the parathyroid glands or their blood supply. It is possible that surgeons who also perform parathyroid surgery see lower rates of postoperative hypoparathyroidism. In a single institution, we investigated the effects of restricting total thyroidectomy operations for Graves’ disease to two surgeons who performed both thyroid and parathyroid surgeries. We aimed to evaluate the rates of postoperative hypoparathyroidism in a 10-year period with primary attention toward patients with Graves’ disease.
Design
Retrospective cohort study from a single institution.
Methods
We defined the rate of permanent hypoparathyroidism after total thyroidectomy as the need for active vitamin D 6 months postoperatively. Between 2012 and 2016, seven surgeons performed all thyroidectomies. From January 2017, only surgeons also performing parathyroid surgery carried out thyroidectomies for Graves’ disease.
Results
We performed total thyroidectomy in 543 patients. The rate of permanent hypoparathyroidism decreased from 28% in 2012–2014 to 6% in 2020–2021. For patients with Graves’ disease, the rate of permanent hypoparathyroidism decreased from 36% (13 out of 36) in 2015–2016 to 2% (1 out of 56) in 2020–2021. In cancer patients, the rate of permanent hypoparathyroidism decreased from 30% (14 out of 46) in 2012–2014 to 10% (10 out of 51) in 2020–2021.
Conclusion
Restricting thyroidectomy to surgeons who also performed parathyroid operations reduced postoperative hypoparathyroidism markedly. Accordingly, we recommend centralisation of the most difficult thyroid operations to centres and surgeons with extensive experience in parathyroid surgery.
Significance statement
Thyroid surgery is performed by many different surgeons with marked differences in outcome. Indeed, the risk of postoperative permanent hypoparathyroidism may be very high in low-volume centres. This serious condition affects the quality of life and increases long-term morbidity and the patients develop a life-long dependency of medical treatments. We encountered a high risk of hypoparathyroidism after the operation for Graves’ disease and restricted the number of surgeons to two for these operations. Further, these surgeons were experienced in both thyroid and parathyroid surgeries. We show a dramatic reduction in postoperative hypoparathyroidism after this change. Accordingly, we recommend centralisation of total thyroidectomy to surgeons with experience in both thyroid and parathyroid procedures.
Search for other papers by Marc Blondon in
Google Scholar
PubMed
Search for other papers by Emmanuel Biver in
Google Scholar
PubMed
Search for other papers by Olivia Braillard in
Google Scholar
PubMed
Search for other papers by Marc Righini in
Google Scholar
PubMed
Search for other papers by Pierre Fontana in
Google Scholar
PubMed
Search for other papers by Alessandro Casini in
Google Scholar
PubMed
Objective
Vitamin D deficiency is associated with increased risks of arterial and venous cardiovascular events. Hypothetically, supplementation with vitamin D may lead to a less prothrombotic phenotype, as measured by global coagulation assays and fibrin clot structure.
Methods
In this prospective cohort study, we enrolled adult outpatients attending the Primary Care Division of the Geneva University Hospitals with a severe vitamin D deficiency (25-hydroxyvitamin-D3 (25-OHD) <25 nmol/L), excluding obese patients or with a recent acute medical event. We evaluated changes in coagulation times, thrombin generation assay, clot formation and clot lysis time, 25-OHD and parathormone before and 1–3 months after cholecalciferol oral supplementation with one-time 300,000 IU then 800 IU daily. Paired t-tests with a two-sided alpha of 0.05 compared absolute mean differences.
Results
The 48 participants had a mean age of 43.8 ± 13.8 years. After supplementation, 25-OHD levels increased from 17.9 ± 4.6 nmol/L to 62.5 ± 20.7 nmol/L 6.4 ± 3.0 weeks after inclusion. Endogenous thrombin potential and thrombin generation peak values both decreased significantly (−95.4 nM × min (95%CI −127.9 to −62.8), P < 0.001; −15.1 nM (−23.3 to −6.8), P < 0.001). The maximum absorbance by turbidimetry decreased significantly (P = 0.001) after supplementation. There was no change in clot lysis time, coagulation times or plasminogen activator inhibitor-1 and homocysteine levels.
Conclusions
In severe vitamin D deficiency, a high-dose cholecalciferol supplementation was associated with a reduction in thrombin generation and an average decreased number of fibrin protofibrils per fibers and fibrin fiber size measured by turbidimetry. This suggests that severe vitamin D deficiency may be associated with a potentially reversible prothrombotic profile.
Search for other papers by R Perchard in
Google Scholar
PubMed
Search for other papers by L Magee in
Google Scholar
PubMed
Search for other papers by A Whatmore in
Google Scholar
PubMed
Search for other papers by F Ivison in
Google Scholar
PubMed
Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester, UK
Search for other papers by P Murray in
Google Scholar
PubMed
Search for other papers by A Stevens in
Google Scholar
PubMed
Search for other papers by M Z Mughal in
Google Scholar
PubMed
Search for other papers by S Ehtisham in
Google Scholar
PubMed
Search for other papers by J Campbell in
Google Scholar
PubMed
Search for other papers by S Ainsworth in
Google Scholar
PubMed
Search for other papers by M Marshall in
Google Scholar
PubMed
Search for other papers by M Bone in
Google Scholar
PubMed
Search for other papers by I Doughty in
Google Scholar
PubMed
Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester, UK
Search for other papers by P E Clayton in
Google Scholar
PubMed
Background
Higher 25(OH)D3 levels are associated with lower HbA1c, but there are limited UK interventional trials assessing the effect of cholecalciferol on HbA1c.
Aims
(1) To assess the baseline 25(OH)D3 status in a Manchester cohort of children with type 1 diabetes (T1D). (2) To determine the effect of cholecalciferol administration on HbA1c.
Methods
Children with T1D attending routine clinic appointments over three months in late winter/early spring had blood samples taken with consent. Participants with a 25(OH)D3 level <50 nmol/L were treated with a one-off cholecalciferol dose of 100,000 (2–10 years) or 160,000 (>10 years) units. HbA1c levels before and after treatment were recorded.
Results
Vitamin D levels were obtained from 51 children. 35 were Caucasian, 11 South Asian and 5 from other ethnic groups. 42 were vitamin D deficient, but 2 were excluded from the analysis. All South Asian children were vitamin D deficient, with mean 25(OH)D3 of 28 nmol/L. In Caucasians, there was a negative relationship between baseline 25(OH)D3 level and HbA1c (r = −0.484, P < 0.01). In treated participants, there was no significant difference in mean HbA1c at 3 months (t = 1.010, P = 0.328) or at 1 year (t = −1.173, P = 0.248) before and after treatment. One-way ANCOVA, controlling for age, gender, ethnicity, BMI and diabetes duration showed no difference in Δ HbA1c level.
Conclusion
We report important findings at baseline, but in children treated with a stat dose of cholecalciferol, there was no effect on HbA1c. Further studies with larger sample sizes and using maintenance therapy are required.
Search for other papers by Sarah Bakhamis in
Google Scholar
PubMed
Search for other papers by Faiqa Imtiaz in
Google Scholar
PubMed
Search for other papers by Khushnooda Ramzan in
Google Scholar
PubMed
Search for other papers by Edward De Vol in
Google Scholar
PubMed
Search for other papers by Osamah Al-Sagheir in
Google Scholar
PubMed
Search for other papers by Abdulrahman Al-Rajhi in
Google Scholar
PubMed
Search for other papers by Abdullah Alashwal in
Google Scholar
PubMed
Search for other papers by Bassam Bin Abbas in
Google Scholar
PubMed
Search for other papers by Nadia Sakati in
Google Scholar
PubMed
Search for other papers by Afaf Al-Sagheir in
Google Scholar
PubMed
Vitamin D deficiency remains a major cause of rickets worldwide. Nutritional factors are the major cause and less commonly, inheritance causes. Recently, CYP2R1 has been reported as a major factor for 25-hydroxylation contributing to the inherited forms of vitamin D deficiency. We conducted a prospective cohort study at King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia, to review cases with 25-hydroxylase deficiency and describe their clinical, biochemical, and molecular genetic features. We analyzed 27 patients from nine different families who presented with low 25-OH vitamin D and not responding to usual treatment. Genetic testing identified two mutations: c.367+1G>A (12/27 patients) and c.768dupT (15/27 patients), where 18 patients were homozygous for their identified mutation and 9 patients were heterozygous. Both groups had similar clinical manifestations ranging in severity, but none of the patients with the heterozygous mutation had hypocalcemic manifestations. Thirteen out of 18 homozygous patients and all the heterozygous patients responded to high doses of vitamin D treatment, but they regressed after decreasing the dose, requiring lifelong therapy. Five out of 18 homozygous patients required calcitriol to improve their biochemical data, whereas none of the heterozygous patients and patients who carried the c.367+1G>A mutation required calcitriol treatment. To date, this is the largest cohort series analyzing CYP2R1-related 25-hydroxylase deficiency worldwide, supporting its major role in 25-hydroxylation of vitamin D. It is suggested that a higher percentage of CYP2R1 mutations might be found in the Saudi population. We believe that our study will help in the diagnosis, treatment, and prevention of similar cases in the future.