Search Results

You are looking at 11 - 20 of 95 items for

  • Abstract: Arteries x
  • Abstract: Atherosclerosis x
  • Abstract: Carotid x
  • Abstract: Circulation x
  • Abstract: Stroke x
  • Abstract: Veins x
  • Abstract: Heart x
  • Abstract: Myocardial x
Clear All Modify Search
Chaiho Jeong Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Search for other papers by Chaiho Jeong in
Google Scholar
PubMed
Close
,
Bongseong Kim Department of Medical Statistics, Soongsil University of Korea, Seoul, Republic of Korea

Search for other papers by Bongseong Kim in
Google Scholar
PubMed
Close
,
Jinyoung Kim Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Search for other papers by Jinyoung Kim in
Google Scholar
PubMed
Close
,
Hansang Baek Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Search for other papers by Hansang Baek in
Google Scholar
PubMed
Close
,
Mee Kyoung Kim Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Search for other papers by Mee Kyoung Kim in
Google Scholar
PubMed
Close
,
Tae-Seo Sohn Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Search for other papers by Tae-Seo Sohn in
Google Scholar
PubMed
Close
,
Ki-Hyun Baek Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Search for other papers by Ki-Hyun Baek in
Google Scholar
PubMed
Close
,
Ki-Ho Song Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Search for other papers by Ki-Ho Song in
Google Scholar
PubMed
Close
,
Hyun-Shik Son Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Search for other papers by Hyun-Shik Son in
Google Scholar
PubMed
Close
,
Kyungdo Han Department of Medical Statistics, Soongsil University of Korea, Seoul, Republic of Korea

Search for other papers by Kyungdo Han in
Google Scholar
PubMed
Close
, and
Hyuk-Sang Kwon Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Search for other papers by Hyuk-Sang Kwon in
Google Scholar
PubMed
Close

Objective

Real-world-based population data about the optimal low-density lipoprotein cholesterol (LDL-C) level for preventing cardiovascular disease in very high-risk populations is scarce.

Methods

From 2009 to 2012, 26,922 people aged ≥ 40 years with type 2 diabetes mellitus (T2DM) who had a history of percutaneous coronary intervention (PCI) were analyzed. Data from the Korean National Health Insurance System were used. They were followed up to the date of a cardiovascular event or the time to death, or until December 31, 2018. Endpoints were recurrent PCI, newly stroke or heart failure, cardiovascular death, and all-cause death. Participants were divided into the following categories according to LDL-C level: <55 mg/dL, 55–69 mg/dL, 70–99 mg/dL, 100–129 mg/dL, 130–159 mg/dL, and ≥ 160 mg/dL.

Results

Compared to LDL-C < 55 mg/dL, the hazard ratios (HR) for re-PCI and stroke increased linearly with increasing LDL-C level in the population < 65 years. However, in ≥ 65 years old, HRs for re-PCI and stroke in LDL-C = 55–69 mg/dL were 0.97 (95% CI: 0.85–1.11) and 0.96 (95% CI: 0.79–2.23), respectively. The optimal range with the lowest HR for heart failure and all-cause mortality were LDL-C = 70–99 mg/dL and LDL-C = 55–69 mg/dL, respectively, in all age groups (HR: 0.99, 95% CI: 0.91–1.08 and HR: 0.91, 95% CI: 0.81–1.01).

Conclusion

LDL-C level below 55 mg/dL appears to be optimal in T2DM patients with established cardiovascular disease aged < 65 years, while an LDL-C level of 55–69 mg/dL may be optimal for preventing recurrent PCI and stroke in patients over 65 years old.

Open access
Marianne Aa Grytaas Department of Clinical Science, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway

Search for other papers by Marianne Aa Grytaas in
Google Scholar
PubMed
Close
,
Kjersti Sellevåg Department of Heart Disease, Haukeland University Hospital, Bergen, Norway

Search for other papers by Kjersti Sellevåg in
Google Scholar
PubMed
Close
,
Hrafnkell B Thordarson Department of Clinical Science, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway

Search for other papers by Hrafnkell B Thordarson in
Google Scholar
PubMed
Close
,
Eystein S Husebye Department of Clinical Science, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway

Search for other papers by Eystein S Husebye in
Google Scholar
PubMed
Close
,
Kristian Løvås Department of Clinical Science, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway

Search for other papers by Kristian Løvås in
Google Scholar
PubMed
Close
, and
Terje H Larsen Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
Department of Biomedicine, University of Bergen, Bergen, Norway

Search for other papers by Terje H Larsen in
Google Scholar
PubMed
Close

Background

Primary aldosteronism (PA) is associated with increased cardiovascular morbidity, presumably due to left ventricular (LV) hypertrophy and fibrosis. However, the degree of fibrosis has not been extensively studied. Cardiac magnetic resonance imaging (CMR) contrast enhancement and novel sensitive T1 mapping to estimate increased extracellular volume (ECV) are available to measure the extent of fibrosis.

Objectives

To assess LV mass and fibrosis before and after treatment of PA using CMR with contrast enhancement and T1 mapping.

Methods

Fifteen patients with newly diagnosed PA (PA1) and 24 age- and sex-matched healthy subjects (HS) were studied by CMR with contrast enhancement. Repeated imaging with a new scanner with T1 mapping was performed in 14 of the PA1 and 20 of the HS median 18 months after specific PA treatment and in additional 16 newly diagnosed PA patients (PA2).

Results

PA1 had higher baseline LV mass index than HS (69 (53–91) vs 51 (40–72) g/m2; P < 0.001), which decreased significantly after treatment (58 (40–86) g/m2; P < 0.001 vs baseline), more with adrenalectomy (n = 8; −9 g/m2; P = 0.003) than with medical treatment (n = 6; −5 g/m2; P = 0.075). No baseline difference was found in contrast enhancement between PA1 and HS. T1 mapping showed no increase in ECV as a myocardial fibrosis marker in PA. Moreover, ECV was lower in the untreated PA2 than HS 10 min post-contrast, and in both PA groups compared with HS 20 min post-contrast.

Conclusion

Specific treatment rapidly reduced LV mass in PA. Increased myocardial fibrosis was not found and may not represent a common clinical problem.

Open access
Ulrik Ø Andersen Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
Institute of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Ulrik Ø Andersen in
Google Scholar
PubMed
Close
,
Dijana Terzic Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
Institute of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Dijana Terzic in
Google Scholar
PubMed
Close
,
Nicolai Jacob Wewer Albrechtsen Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
Institute of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Nicolai Jacob Wewer Albrechtsen in
Google Scholar
PubMed
Close
,
Peter Dall Mark Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
Institute of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Peter Dall Mark in
Google Scholar
PubMed
Close
,
Peter Plomgaard Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Peter Plomgaard in
Google Scholar
PubMed
Close
,
Jens F Rehfeld Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark

Search for other papers by Jens F Rehfeld in
Google Scholar
PubMed
Close
,
Finn Gustafsson Department of Cardiology, Rigshospitalet, Copenhagen, Denmark

Search for other papers by Finn Gustafsson in
Google Scholar
PubMed
Close
, and
Jens P Goetze Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
Institute of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Jens P Goetze in
Google Scholar
PubMed
Close

Aims

Neprilysin degrades natriuretic peptides in circulation and is also suggested to degrade the gut hormones gastrin and cholecystokinin. Neprilysin inhibition has become a therapeutic strategy and thus a regimen in need of further testing in terms of other hormonal axes besides natriuretic peptides. The aim of this study was to examine whether acute inhibition of neprilysin affects meal-induced responses in gastrin and cholecystokinin concentrations in healthy individuals.

Methods and results

Nine healthy young men were included in an open-labelled, randomized cross-over clinical trial. The participants received a standardized meal (25 g fat, 26 g protein, 42 g carbohydrate) on two separate days with or without a one-time dosage of sacubitril ((194 mg)/valsartan (206 mg)). Blood pressure, heart rate and blood samples were measured and collected during the experiment. Statistical differences between groups were assessed using area under the curve together with an ANOVA with a Bonferroni post hoc test. Sacubitril/valsartan increased the postprandial plasma concentrations of both gastrin and cholecystokinin (80% (AUC0-270 min, P = 0.004) and 60% (AUC0-270 min, P = 0.003), respectively) compared with the control meal. No significant hemodynamic effects were noted (blood pressure, AUC0-270 min, P = 0.86, heart rate, AUC0-270 min, P = 0.96).

Conclusion

Our study demonstrates that sacubitril/valsartan increases the postprandial plasma concentrations of gastrin and cholecystokinin in healthy individuals. The results thus suggest that neprilysin-mediated degradation of gastrin and cholecystokinin is physiologically relevant and may have a role in heart failure patients treated with sacubitril/valsartan.

Open access
Tsuneo Ogawa Cardiovascular Endocrinology Laboratory, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7

Search for other papers by Tsuneo Ogawa in
Google Scholar
PubMed
Close
and
Adolfo J de Bold Cardiovascular Endocrinology Laboratory, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7

Search for other papers by Adolfo J de Bold in
Google Scholar
PubMed
Close

The concept of the heart as an endocrine organ arises from the observation that the atrial cardiomyocytes in the mammalian heart display a phenotype that is partly that of endocrine cells. Investigations carried out between 1971 and 1983 characterised, by virtue of its natriuretic properties, a polypeptide referred to atrial natriuretic factor (ANF). Another polypeptide isolated from brain in 1988, brain natriuretic peptide (BNP), was subsequently characterised as a second hormone produced by the mammalian heart atria. These peptides were associated with the maintenance of extracellular fluid volume and blood pressure. Later work demonstrated a plethora of other properties for ANF and BNP, now designated cardiac natriuretic peptides (cNPs). In addition to the cNPs, other polypeptide hormones are expressed in the heart that likely act upon the myocardium in a paracrine or autocrine fashion. These include the C-type natriuretic peptide, adrenomedullin, proadrenomedullin N-terminal peptide and endothelin-1. Expression and secretion of ANF and BNP are increased in various cardiovascular pathologies and their levels in blood are used in the diagnosis and prognosis of cardiovascular disease. In addition, therapeutic uses for these peptides or related substances have been found. In all, the discovery of the endocrine heart provided a shift from the classical functional paradigm of the heart that regarded this organ solely as a blood pump to one that regards this organ as self-regulating its workload humorally and that also influences the function of several other organs that control cardiovascular function.

Open access
Ling Sun Department of Cardiology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China

Search for other papers by Ling Sun in
Google Scholar
PubMed
Close
,
Wenwu Zhu Department of Cardiology, Xuzhou Central Hospital, Xuzhou Clinical School of Nanjing Medical University, Xuzhou, Jiangsu, China

Search for other papers by Wenwu Zhu in
Google Scholar
PubMed
Close
,
Yuan Ji Department of Cardiology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China

Search for other papers by Yuan Ji in
Google Scholar
PubMed
Close
,
Ailin Zou Department of Cardiology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China

Search for other papers by Ailin Zou in
Google Scholar
PubMed
Close
,
Lipeng Mao Department of Cardiology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
Dalian Medical University, Dalian, Liaoning, China

Search for other papers by Lipeng Mao in
Google Scholar
PubMed
Close
,
Boyu Chi Department of Cardiology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
Dalian Medical University, Dalian, Liaoning, China

Search for other papers by Boyu Chi in
Google Scholar
PubMed
Close
,
Jianguang Jiang Department of Cardiology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China

Search for other papers by Jianguang Jiang in
Google Scholar
PubMed
Close
,
Xuejun Zhou Department of Cardiology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China

Search for other papers by Xuejun Zhou in
Google Scholar
PubMed
Close
,
Qingjie Wang Department of Cardiology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China

Search for other papers by Qingjie Wang in
Google Scholar
PubMed
Close
, and
Fengxiang Zhang Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China

Search for other papers by Fengxiang Zhang in
Google Scholar
PubMed
Close

Objective

Post-treatment contrast-induced acute kidney injury (CI-AKI) is associated with poor outcomes in patients with acute myocardial infarction (AMI). A lower free triiodothyronine (FT3) level predicts a poor prognosis of AMI patients. This study evaluated the effect of plasma FT3 level in predicting CI-AKI and short-term survival among AMI patients.

Methods

Coronary arteriography or percutaneous coronary intervention was performed in patients with AMI. A 1:3 propensity score (PS) was used to match patients in the CI-AKI group and the non-CI-AKI group.

Results

Of 1480 patients enrolled in the study, 224 (15.1%) patients developed CI-AKI. The FT3 level was lower in CI-AKI patients than in non-CI-AKI patients (3.72 ± 0.88 pmol/L vs 4.01 ± 0.80 pmol/L, P < 0.001). Compared with those at the lowest quartile of FT3, the patients at quartiles 2–4 had a higher risk of CI-AKI respectively (P for trend = 0.005). The risk of CI-AKI increased by 17.7% as FT3 level decreased by one unit after PS-matching analysis (odds ratio: 0.823; 95% CI: 0.685–0.988, P = 0.036). After a median of 31 days of follow-up (interquartile range: 30–35 days), 78 patients died, including 72 cardiogenic deaths and 6 non-cardiogenic deaths, with more deaths in the CI-AKI group than in the non-CI-AKI group (53 vs 25, P < 0.001). Kaplan–Meier survival analysis showed that patients at a lower FT3 quartile achieved a worse survival before and after matching.

Conclusion

Lower FT3 may increase the risk of CI-AKI and 1-month mortality in AMI patients.

Open access
Jing Hong Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Search for other papers by Jing Hong in
Google Scholar
PubMed
Close
,
Wen-Yue Liu Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Search for other papers by Wen-Yue Liu in
Google Scholar
PubMed
Close
,
Xiang Hu Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Search for other papers by Xiang Hu in
Google Scholar
PubMed
Close
,
Fei-Fei Jiang Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Search for other papers by Fei-Fei Jiang in
Google Scholar
PubMed
Close
,
Ze-Ru Xu Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Search for other papers by Ze-Ru Xu in
Google Scholar
PubMed
Close
,
Fang Li Department of Endocrinology, Ruian Traditional Chinese Medicine Hospital, Wenzhou, China

Search for other papers by Fang Li in
Google Scholar
PubMed
Close
,
Fei-Xia Shen Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Search for other papers by Fei-Xia Shen in
Google Scholar
PubMed
Close
, and
Hong Zhu Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Search for other papers by Hong Zhu in
Google Scholar
PubMed
Close

Background

A prolonged heart rate-corrected QT interval (QTc) has been associated with peripheral artery disease (PAD) in the general population. However, no study to date has identified a link between prolonged QTc and the severity of PAD in patients with diabetes mellitus and foot ulcers (DFUs). This study aimed to investigate this relationship.

Methods

This multicenter study enrolled 281 patients with DFUs. The severity of PAD was classified into no severe PAD group (without stenosis or occlusion) and severe PAD group (with stenosis or occlusion) based on duplex ultrasonography. The association of prolonged QTc with severe PAD was evaluated in a multivariable mixed-effect logistic regression model, with the hospital as a random effect. Directed acyclic graphs were used to drive the selection of variables to fit the regression model.

Results

Patients with severe PAD had longer QTc than those without. Based on the multivariable mixed-effect logistic regression model, a prolonged QTc was positively associated with severe PAD (odds ratio (OR) = 2.61; 95% CI: 1.07–6.35) and severe DFUs (Wagner grade score ≥ 3) (OR = 2.87; 95% CI: 1.42–5.81).

Conclusions

A prolonged QTc was associated with severe PAD in patients with DFUs. Further research is required to ascertain whether the association is causal.

Open access
Wang Chengji College of Physical Education, Chaohu University, Anhui Province, China

Search for other papers by Wang Chengji in
Google Scholar
PubMed
Close
and
Fan Xianjin College of Physical Education, Chaohu University, Anhui Province, China

Search for other papers by Fan Xianjin in
Google Scholar
PubMed
Close

Objective

To investigate the biological mechanism of the effect of different intensity exercises on diabetic cardiomyopathy.

Methods

87 raise specific pathogen SPF healthy 6-week-old male Sprague–Dawley rats, fed 6 weeks with high-fat diet for rats were used, and a diabetic model was established by intraperitoneal injection of streptozotocin – randomly selected 43 rats were divided into Diabetic control group (DCG, n = 10), Diabetic exercise group 1 (DEG1, n = 11), Diabetic exercise group 2 (DEG2, n = 11) and Diabetic exercise group 3 (DEG3, n = 11). The rats in DEG1 were forced to run on a motorized treadmill, the exercise load consisted of running at a speed of 10 m/min, the exercise load of the rats in DEG2 were running at a speed of 15 m/min, the exercise load of the rats in DEG3 were running at a speed of 20 m/min, for one hour once a day for 6 weeks. After 6 weeks of exercise intervention, glucose metabolism-related indexes in rats such as blood glucose (FBG), glycosylated serum protein (GSP) and insulin (FINS); cardiac fibrinolytic system parameters such as PAI-1 (plasminogen activator inhibitor 1), Von Willebrand factor (vWF), protein kinase C (PKC) and diacylglycerol (DAG); and serum level of NO, eNOS and T-NOS were measured.

Result

Compared with DCG, fasting blood glucose and GSP were decreased, while insulin sensitivity index and insulin level were increased in all rats of the three exercise groups. FBG decrease was statistically significant (P < 0.01), only GSP decrease was statistically significant (P < 0.05) in DEG1 and DEG2, PAI-1 in three exercise groups were significantly reduced (P < 0.05), plasma vWF levels in the three exercise groups were significantly lower than those in the DCG group (P < 0.01); PKC levels decreased dramatically in the three exercise groups and DAG levels decrease slightly (P < 0.05), but with no significant difference. Compared with DCG, the serum level of NO was significantly higher (P < 0.05), and eNOS level was significantly elevated (P < 0.05). T-NOS elevation was statistically significant in DEG1 (P < 0.05).

Conclusions

Low- and moderate-intensity exercise can better control blood glucose level in diabetic rats; myocardial PAI-1 in DEG1, DEG2 and DEG3 rats decreased significantly (P < 0.05), serum NO increased (P < 0.05) and eNOS increased (P < 0.05) significantly. Therefore, it is inferred that exercise improves the biological mechanism of diabetic cardiomyopathy by affecting the levels of PAI-1 and eNOS, and there is a dependence on intensity.

Open access
Hugo R Ramos Department of Internal Medicine, Section of Metabolic Vascular Medicine, Division of Diabetes and Nutritional Sciences, Cardiovascular Endocrinology Laboratory, Faculty of Medicine, Hospital de Urgencias, National University of Córdoba, X5000 Córdoba, Argentina

Search for other papers by Hugo R Ramos in
Google Scholar
PubMed
Close
,
Andreas L Birkenfeld Department of Internal Medicine, Section of Metabolic Vascular Medicine, Division of Diabetes and Nutritional Sciences, Cardiovascular Endocrinology Laboratory, Faculty of Medicine, Hospital de Urgencias, National University of Córdoba, X5000 Córdoba, Argentina
Department of Internal Medicine, Section of Metabolic Vascular Medicine, Division of Diabetes and Nutritional Sciences, Cardiovascular Endocrinology Laboratory, Faculty of Medicine, Hospital de Urgencias, National University of Córdoba, X5000 Córdoba, Argentina

Search for other papers by Andreas L Birkenfeld in
Google Scholar
PubMed
Close
, and
Adolfo J de Bold Department of Internal Medicine, Section of Metabolic Vascular Medicine, Division of Diabetes and Nutritional Sciences, Cardiovascular Endocrinology Laboratory, Faculty of Medicine, Hospital de Urgencias, National University of Córdoba, X5000 Córdoba, Argentina

Search for other papers by Adolfo J de Bold in
Google Scholar
PubMed
Close

Since their discovery in 1981, the cardiac natriuretic peptides (cNP) atrial natriuretic peptide (also referred to as atrial natriuretic factor) and brain natriuretic peptide have been well characterised in terms of their renal and cardiovascular actions. In addition, it has been shown that cNP plasma levels are strong predictors of cardiovascular events and mortality in populations with no apparent heart disease as well as in patients with established cardiac pathology. cNP secretion from the heart is increased by humoral and mechanical stimuli. The clinical significance of cNP plasma levels has been shown to differ in obese and non-obese subjects. Recent lines of evidence suggest important metabolic effects of the cNP system, which has been shown to activate lipolysis, enhance lipid oxidation and mitochondrial respiration. Clinically, these properties lead to browning of white adipose tissue and to increased muscular oxidative capacity. In human association studies in patients without heart disease higher cNP concentrations were observed in lean, insulin-sensitive subjects. Highly elevated cNP levels are generally observed in patients with systolic heart failure or high blood pressure, while obese and type-2 diabetics display reduced cNP levels. Together, these observations suggest that the cNP system plays a role in the pathophysiology of metabolic vascular disease. Understanding this role should help define novel principles in the treatment of cardiometabolic disease.

Open access
Thera P Links Division of Endocrinology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands

Search for other papers by Thera P Links in
Google Scholar
PubMed
Close
,
Trynke van der Boom Division of Endocrinology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands

Search for other papers by Trynke van der Boom in
Google Scholar
PubMed
Close
,
Wouter T Zandee Division of Endocrinology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands

Search for other papers by Wouter T Zandee in
Google Scholar
PubMed
Close
, and
Joop D Lefrandt Division of Vascular Medicine, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands

Search for other papers by Joop D Lefrandt in
Google Scholar
PubMed
Close

Thyroid hormone stimulates cardiac inotropy and chronotropy via direct genomic and non-genomic mechanisms. Hyperthyroidism magnifies these effects, resulting in an increase in heart rate, ejection fraction and blood volume. Hyperthyroidism also affects thrombogenesis and this may be linked to a probable tendency toward thrombosis in patients with hyperthyroidism. Patients with hyperthyroidism are therefore at higher risk for atrial fibrillation, heart failure and cardiovascular mortality. Similarly, TSH suppressive therapy for differentiated thyroid cancer is associated with increased cardiovascular risk. In this review, we present the latest insights on the cardiac effects of thyroid suppression therapy for the treatment of thyroid cancer. Finally, we will show new clinical data on how to implement this knowledge into the clinical practice of preventive medicine.

Open access
Signe Frøssing Department of Internal Medicine, Center of Endocrinology and Metabolism, Herlev Gentofte Hospital, Copenhagen, Denmark
Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark

Search for other papers by Signe Frøssing in
Google Scholar
PubMed
Close
,
Malin Nylander Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
Department of Obstetrics & Gynecology, Herlev Gentofte Hospital, Copenhagen, Denmark

Search for other papers by Malin Nylander in
Google Scholar
PubMed
Close
,
Caroline Kistorp Department of Internal Medicine, Center of Endocrinology and Metabolism, Herlev Gentofte Hospital, Copenhagen, Denmark
Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark

Search for other papers by Caroline Kistorp in
Google Scholar
PubMed
Close
,
Sven O Skouby Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
Department of Obstetrics & Gynecology, Herlev Gentofte Hospital, Copenhagen, Denmark

Search for other papers by Sven O Skouby in
Google Scholar
PubMed
Close
, and
Jens Faber Department of Internal Medicine, Center of Endocrinology and Metabolism, Herlev Gentofte Hospital, Copenhagen, Denmark
Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark

Search for other papers by Jens Faber in
Google Scholar
PubMed
Close

Context

Women with polycystic ovary syndrome (PCOS) have an increased risk of cardiovascular disease (CVD), and biomarkers can be used to detect early subclinical CVD. Midregional-pro-adrenomedullin (MR-proADM), midregional-pro-atrial natriuretic peptide (MR-proANP) and copeptin are all associated with CVD and part of the delicate system controlling fluid and hemodynamic homeostasis through vascular tonus and diuresis. The GLP-1 receptor agonist liraglutide, developed for treatment of type 2 diabetes (T2D), improves cardiovascular outcomes in patients with T2D including a decrease in particular MR-proANP.

Objective

To investigate if treatment with liraglutide in women with PCOS reduces levels of the cardiovascular biomarkers MR-proADM, MR-proANP and copeptin.

Methods

Seventy-two overweight women with PCOS were treated with 1.8 mg/day liraglutide or placebo for 26 weeks in a placebo-controlled RCT. Biomarkers, anthropometrics, insulin resistance, body composition (DXA) and visceral fat (MRI) were examined.

Results

Baseline median (IQR) levels were as follows: MR-proADM 0.52 (0.45–0.56) nmol/L, MR-proANP 44.8 (34.6–56.7) pmol/L and copeptin 4.95 (3.50–6.50) pmol/L. Mean percentage differences (95% CI) between liraglutide and placebo group after treatment were as follows: MR-proADM −6% (−11 to 2, P = 0.058), MR-proANP −25% (−37 to −11, P = 0.001) and copeptin +4% (−13 to 25, P = 0.64). Reduction in MR-proANP concentration correlated with both increased heart rate and diastolic blood pressure in the liraglutide group. Multiple regression analyses with adjustment for BMI, free testosterone, insulin resistance, visceral fat, heart rate and eGFR showed reductions in MR-proANP to be independently correlated with an increase in the heart rate.

Conclusion

In an RCT, liraglutide treatment in women with PCOS reduced levels of the cardiovascular risk biomarkers MR-proANP with 25% and MR-proADM with 6% (borderline significance) compared with placebo. The decrease in MR-proANP was independently associated with an increase in the heart rate.

Open access