Search Results

You are looking at 1 - 10 of 39 items for

  • Abstract: anti-androgenic x
  • Abstract: Birth defect x
  • Abstract: Bisphenol-A x
  • Abstract: Drugs x
  • Abstract: endocrine disrupters x
Clear All Modify Search
Open access

M Axelstad, U Hass, M Scholze, S Christiansen, A Kortenkamp and J Boberg

Human semen quality is declining in many parts of the world, but the causes are ill defined. In rodents, impaired sperm production can be seen with early life exposure to certain endocrine-disrupting chemicals, but the effects of combined exposures are not properly investigated. In this study, we examined the effects of early exposure to the painkiller paracetamol and mixtures of human relevant endocrine-disrupting chemicals in rats. One mixture contained four estrogenic compounds; another contained eight anti-androgenic environmental chemicals and a third mixture contained estrogens, anti-androgens and paracetamol. All exposures were administered by oral gavage to time-mated Wistar dams rats (n = 16–20) throughout gestation and lactation. In the postnatal period, testicular histology was affected by the total mixture, and at the end of weaning, male testis weights were significantly increased by paracetamol and the high doses of the total and the anti-androgenic mixture, compared to controls. In all dose groups, epididymal sperm counts were reduced several months after end of exposure, i.e. at 10 months of age. Interestingly, the same pattern of effects was seen for paracetamol as for mixtures with diverse modes of action. Reduced sperm count was seen at a dose level reflecting human therapeutic exposure to paracetamol. Environmental chemical mixtures affected sperm count at the lowest mixture dose indicating an insufficient margin of safety for the most exposed humans. This causes concern for exposure of pregnant women to paracetamol as well as environmental endocrine disrupters.

Open access

Maurício Martins da Silva, Lueni Lopes Felix Xavier, Carlos Frederico Lima Gonçalves, Ana Paula Santos-Silva, Francisca Diana Paiva-Melo, Mariana Lopes de Freitas, Rodrigo Soares Fortunato, Leandro Miranda-Alves and Andrea Claudia Freitas Ferreira

Bisphenol A (BPA) is the most common monomer in polycarbonate plastics and an endocrine disruptor. Though some effects of BPA on thyroid hormone (TH) synthesis and action have been described, the impact of this compound on thyroid H2O2 generation remains elusive. H2O2 is a reactive oxygen species (ROS), which could have deleterious effect on thyrocytes if in excess. Therefore, herein we aimed at evaluating the effect of BPA exposition both in vivo and in vitro on H2O2 generation in thyrocytes, besides other essential steps for TH synthesis. Female Wistar rats were treated with vehicle (control) or BPA 40 mg/kg BW for 15 days, by gavage. We then evaluated thyroid iodide uptake, mediated by sodium-iodide symporter (NIS), thyroperoxidase (TPO) and dual oxidase (DOUX) activities (H2O2 generation). Hydrogen peroxide generation was increased, while iodide uptake and TPO activity were reduced by BPA exposition. We have also incubated the rat thyroid cell line PCCL3 with 10−9 M BPA and evaluated Nis and Duox mRNA levels, besides H2O2 generation. Similar to that found in vivo, BPA treatment also led to increased H2O2 generation in PCCL3. Nis mRNA levels were reduced and Duox2 mRNA levels were increased in BPA-exposed cells. To evaluate the importance of oxidative stress on BPA-induced Nis reduction, PCCL3 was treated with BPA in association to N-acetylcysteine, an antioxidant, which reversed the effect of BPA on Nis. Our data suggest that BPA increases ROS production in thyrocytes, what could lead to oxidative damage thus possibly predisposing to thyroid disease.

Open access

Bilal B Mughal, Jean-Baptiste Fini and Barbara A Demeneix

This review covers recent findings on the main categories of thyroid hormone–disrupting chemicals and their effects on brain development. We draw mostly on epidemiological and experimental data published in the last decade. For each chemical class considered, we deal with not only the thyroid hormone–disrupting effects but also briefly mention the main mechanisms by which the same chemicals could modify estrogen and/or androgen signalling, thereby exacerbating adverse effects on endocrine-dependent developmental programmes. Further, we emphasize recent data showing how maternal thyroid hormone signalling during early pregnancy affects not only offspring IQ, but also neurodevelopmental disease risk. These recent findings add to established knowledge on the crucial importance of iodine and thyroid hormone for optimal brain development. We propose that prenatal exposure to mixtures of thyroid hormone–disrupting chemicals provides a plausible biological mechanism contributing to current increases in the incidence of neurodevelopmental disease and IQ loss.

Open access

Kylie D Rock, Brian Horman, Allison L Phillips, Susan L McRitchie, Scott Watson, Jocelin Deese-Spruill, Dereje Jima, Susan Sumner, Heather M Stapleton and Heather B Patisaul

Firemaster 550 (FM 550) is a flame retardant (FR) mixture that has become one of the most commonly used FRs in foam-based furniture and baby products. Human exposure to this commercial mixture, composed of brominated and organophosphate components, is widespread. We have repeatedly shown that developmental exposure can lead to sex-specific behavioral effects in rats. Accruing evidence of endocrine disruption and potential neurotoxicity has raised concerns regarding the neurodevelopmental effects of FM 550 exposure, but the specific mechanisms of action remains unclear. Additionally, we observed significant, and in some cases sex-specific, accumulation of FM 550 in placental tissue following gestational exposure. Because the placenta is an important source of hormones and neurotransmitters for the developing brain, it may be a critical target of toxicity to consider in the context of developmental neurotoxicity. Using a mixture of targeted and exploratory approaches, the goal of the present study was to identify possible mechanisms of action in the developing forebrain and placenta. Wistar rat dams were orally exposed to FM 550 (0, 300 or 1000 µg/day) for 10 days during gestation and placenta and fetal forebrain tissue collected for analysis. In placenta, evidence of endocrine, inflammatory and neurotransmitter signaling pathway disruption was identified. Notably, 5-HT turnover was reduced in placental tissue and fetal forebrains indicating that 5-HT signaling between the placenta and the embryonic brain may be disrupted. These findings demonstrate that environmental contaminants, like FM 550, have the potential to impact the developing brain by disrupting normal placental functions.

Open access

André Marques-Pinto and Davide Carvalho

Over recent decades, epidemiological studies have been reporting worrisome trends in the incidence of human infertility rates. Extensive detection of industrial chemicals in human serum, seminal plasma and follicular fluid has led the scientific community to hypothesise that these compounds may disrupt hormonal homoeostasis, leading to a vast array of physiological impairments. Numerous synthetic and natural substances have endocrine-disruptive effects, acting through several mechanisms. The main route of exposure to these chemicals is the ingestion of contaminated food and water. They may disturb intrauterine development, resulting in irreversible effects and may also induce transgenerational effects. This review aims to summarise the major scientific developments on the topic of human infertility associated with exposure to endocrine disruptors (EDs), integrating epidemiological and experimental evidence. Current data suggest that environmental levels of EDs may affect the development and functioning of the reproductive system in both sexes, particularly in foetuses, causing developmental and reproductive disorders, including infertility. EDs may be blamed for the rising incidence of human reproductive disorders. This constitutes a serious public health issue that should not be overlooked. The exposure of pregnant women and infants to EDs is of great concern. Therefore, precautionary avoidance of exposure to EDs is a prudent attitude in order to protect humans and wildlife from permanent harmful effects on fertility.

Open access

Shane M Regnier, Andrew G Kirkley, Daniel Ruiz, Wakanene Kamau, Qian Wu, Kurunthachalam Kannan and Robert M Sargis

Emerging evidence implicates environmental endocrine-disrupting chemicals (EDCs) in the pathogenesis of metabolic diseases such as obesity and diabetes; however, the interactions between EDCs and traditional risk factors in disease pathogenesis remain incompletely characterized. The present study interrogates the interaction of the EDC tolylfluanid (TF) and traditional dietary stressors in the promotion of metabolic dysfunction. Eight-week-old male C57BL/6 mice were fed a high-fat, high-sucrose diet (HFHSD) or a high-sucrose diet (HSD), with or without TF supplementation at 100 μg/g, for 12 weeks. Food intake, body weight and visceral adiposity were quantified. Glucose homeostasis was interrogated by intraperitoneal glucose and insulin tolerance tests at 9 and 10 weeks of exposure, respectively. After 12 weeks of dietary exposure, metabolic cage analyses were performed to interrogate nutrient handling and energy expenditure. In the background of an HFHSD, TF promoted glucose intolerance; however, weight gain and insulin sensitivity were unchanged, and visceral adiposity was reduced. In the background of an HSD, TF increased visceral adiposity; however, glucose tolerance and insulin sensitivity were unchanged, while weight gain was reduced. Thus, these analyses reveal that the metabolic perturbations induced by dietary exposure to TF, including the directionality of alterations in body weight gain, visceral adiposity and glucose homeostasis, are influenced by dietary macronutrient composition, suggesting that populations may exhibit distinct metabolic risks based on their unique dietary characteristics.

Open access

M Krause, H Frederiksen, K Sundberg, F S Jørgensen, L N Jensen, P Nørgaard, C Jørgensen, P Ertberg, J H Petersen, U Feldt-Rasmussen, A Juul, K T Drzewiecki, N E Skakkebaek and A M Andersson

Background

Several chemical UV filters/absorbers ('UV filters' hereafter) have endocrine-disrupting properties in vitro and in vivo. Exposure to these chemicals, especially during prenatal development, is of concern.

Objectives

To examine maternal exposure to UV filters, associations with maternal thyroid hormone, with growth factor concentrations as well as to birth outcomes.

Methods

Prospective study of 183 pregnant women with 2nd trimester serum and urine samples available. Maternal concentrations of the chemical UV filters benzophenone-1 (BP-1) and benzophenone-3 (BP-3) in urine and 4-hydroxy-benzophenone (4-HBP) in serum were measured by liquid chromatography–tandem mass spectrometry (LC–MS/MS). The relationships between 2nd trimester maternal concentrations of the three chemical UV filters and maternal serum concentrations of thyroid hormones and growth factors, as well as birth outcomes (weight, height, and head and abdominal circumferences) were examined.

Results

Positive associations between maternal serum concentrations of 4-HBP and triiodothyronine (T3), thyroxine (T4), insulin-like growth factor I (IGF-I) and its binding protein IGFBP3 were observed in mothers carrying male fetuses. Male infants of mothers in the middle 4-HBP exposure group had statistically significantly lower weight and shorter head and abdominal circumferences at birth compared to the low exposure group.

Conclusions

Widespread exposure of pregnant women to chemical UV filters and the possible impact on maternal thyroid hormones and growth factors, and on fetal growth, calls for further studies on possible long-term consequences of the exposure to UV filters on fetal development and children’s health.

Open access

Jean-Benoît Corcuff, Laurence Chardon, Ines El Hajji Ridah and Julie Brossaud

Context

Biogenic amines such as 5-hydroxy-indole acetic acid (5HIAA) the main metabolite of serotonin or metanephrines (catecholamines metabolites) are used as biomarkers of neuroendocrine tumours.

Objective

To re-evaluate the recommendations for urinary sampling (preservatives, diet, drugs, etc.) as many of the reported analytical interferences supporting these recommendations are related to obsolete assays.

Methods

Bibliographic analysis of old and modern assays concerning preservation, extraction, assay and interferences.

Results

5HIAA may degrade as soon as urine is excreted. Thus, acids as preservatives (hydrochloric or acetic acid) have to be immediately added. Care should be taken not to decrease the pH under 2. Urine preservative for metanephrine assays is not mandatory. Diets including serotonin-, tryptophan- and dopamine-rich foods have to be avoided depending on the biomarkers investigated (bananas, plantain, nuts, etc.). Tryptophan-rich over-the-counter formulas have to be prohibited when 5HIAA has to be assayed. Acetaminophen may interfere with electrochemical detection depending on high-pressure liquid chromatography (HPLC) parameters. No interference is known with mass spectrometric assays but with the one described for metanephrines determination. Some drugs interfere however with serotonin and catecholamines secretion and/or metabolism (monoamine oxidase inhibitors, serotonin or dopamine recapture inhibitors, etc.).

Conclusion

Revisited recommendations are provided for the diet, the drugs and the preservatives before HPLC coupled with electrochemical and mass spectrometry assays.

Open access

Lijin Ji, Na Yi, Qi Zhang, Shuo Zhang, Xiaoxia Liu, Hongli Shi and Bin Lu

Objective

To assess the current management of prolactinoma among endocrinologists in China.

Methods

An online survey of a large sample of endocrinologists was conducted in China. The questionnaire included 21 questions related to controversial issues about the management of prolactinomas. Doctors in the endocrinology department of a university-affiliated hospital or a comprehensive secondary hospital in 12 cities from East, West, South, North and Middle China were surveyed.

Results

A total of 290 valid questionnaires were collected, and the response rate was 40%. When hyperprolactinemia occurred, 97% of the respondents would test thyroid-stimulating hormone routinely. 22% of the respondents considered that prolactin levels <100 ng/mL exclude the presence of a prolactinoma. Only 9% of the respondents believed that prolactin >250 ng/mL could occur in all the following situations as macroprolactinoma, mircoprolactinoma, macroprolactinemia and drug-induced hyperprolactinemia. Surgery was not recommended by 272 (94%) endocrinologists as the first choice for treating microprolactinomas. 58% and 92% of endocrinologists would start drug treatment for microprolactinomas and macroprolactinomas at diagnosis. 70% and 40% chose to withdraw treatment after 2–3 years of prolactin normalization in microprolactinomas and macroprolactinomas. In case of pregnancy, 57% of the respondents considered bromocriptine as choice for women patients. Drug discontinuation after pregnancy was advocated in 63% and 27% for microprolactinoma and macroprolactinoma. Moreover, 44% of endocrinologists believed that breastfeeding was allowable in both micro- and macroprolactinoma.

Conclusion

This is the first study to investigate the management of prolactinomas among endocrinologists in China. We found that the current clinical treatment was not uniform. Therefore, it is necessary to strengthen the training of endocrinologists to improve clinical diagnosis and treatment practices.

Open access

Gavin P Vinson and Caroline H Brennan

Substantial evidence shows that the hypophyseal–pituitary–adrenal (HPA) axis and corticosteroids are involved in the process of addiction to a variety of agents, and the adrenal cortex has a key role. In general, plasma concentrations of cortisol (or corticosterone in rats or mice) increase on drug withdrawal in a manner that suggests correlation with the behavioural and symptomatic sequelae both in man and in experimental animals. Corticosteroid levels fall back to normal values in resumption of drug intake. The possible interactions between brain corticotrophin releasing hormone (CRH) and proopiomelanocortin (POMC) products and the systemic HPA, and additionally with the local CRH–POMC system in the adrenal gland itself, are complex. Nevertheless, the evidence increasingly suggests that all may be interlinked and that CRH in the brain and brain POMC products interact with the blood-borne HPA directly or indirectly. Corticosteroids themselves are known to affect mood profoundly and may themselves be addictive. Additionally, there is a heightened susceptibility for addicted subjects to relapse in conditions that are associated with change in HPA activity, such as in stress, or at different times of the day. Recent studies give compelling evidence that a significant part of the array of addictive symptoms is directly attributable to the secretory activity of the adrenal cortex and the actions of corticosteroids. Additionally, sex differences in addiction may also be attributable to adrenocortical function: in humans, males may be protected through higher secretion of DHEA (and DHEAS), and in rats, females may be more susceptible because of higher corticosterone secretion.