Search Results

You are looking at 71 - 80 of 85 items for

  • Abstract: anti-androgenic x
  • Abstract: Birth defect x
  • Abstract: Bisphenol-A x
  • Abstract: Drugs x
  • Abstract: endocrine disrupters x
Clear All Modify Search
M L Gild Cancer Genetics Laboratory, Department of Endocrinology, Kolling Institute of Medical Research, Sydney, New South Wales, Australia

Search for other papers by M L Gild in
Google Scholar
PubMed
Close
,
M Bullock Cancer Genetics Laboratory, Department of Endocrinology, Kolling Institute of Medical Research, Sydney, New South Wales, Australia

Search for other papers by M Bullock in
Google Scholar
PubMed
Close
,
C K Pon Cancer Genetics Laboratory, Department of Endocrinology, Kolling Institute of Medical Research, Sydney, New South Wales, Australia

Search for other papers by C K Pon in
Google Scholar
PubMed
Close
,
B G Robinson Cancer Genetics Laboratory, Department of Endocrinology, Kolling Institute of Medical Research, Sydney, New South Wales, Australia
Cancer Genetics Laboratory, Department of Endocrinology, Kolling Institute of Medical Research, Sydney, New South Wales, Australia

Search for other papers by B G Robinson in
Google Scholar
PubMed
Close
, and
R J Clifton-Bligh Cancer Genetics Laboratory, Department of Endocrinology, Kolling Institute of Medical Research, Sydney, New South Wales, Australia
Cancer Genetics Laboratory, Department of Endocrinology, Kolling Institute of Medical Research, Sydney, New South Wales, Australia

Search for other papers by R J Clifton-Bligh in
Google Scholar
PubMed
Close

Metastatic differentiated thyroid cancers (DTC) are resistant to traditional chemotherapy. Kinase inhibitors have shown promise in patients with progressive DTC, but dose-limiting toxicity is commonplace. HSP90 regulates protein degradation of several growth-mediating kinases such as RET, and we hypothesized that HSP90 inhibitor (AUY922) could inhibit RET-mediated medullary thyroid cancer (MTC) as well as papillary thyroid cancer (PTC) cell growth and also radioactive iodine uptake by PTC cells. Studies utilized MTC cell lines TT (C634W) and MZ-CRC-1 (M918T) and the PTC cell line TPC-1 (RET/PTC1). Cell viability was assessed with MTS assays and apoptosis by flow cytometry. Signaling target expression was determined by western blot and radioiodine uptake measured with a gamma counter. Prolonged treatment of both MTC cell lines with AUY922 simultaneously inhibited both MAPK and mTOR pathways and significantly induced apoptosis (58.7 and 78.7% reduction in MZ-CRC-1 and TT live cells respectively, following 1 μM AUY922; P<0.02). Similarly in the PTC cell line, growth and signaling targets were inhibited, and also a 2.84-fold increase in radioiodine uptake was observed following AUY922 administration (P=0.015). AUY922 demonstrates in vitro activity against MTC and PTC cell lines. We observed a potent dose-dependent increase in apoptosis in MTC cell lines following drug administration confirming its anti-tumorigenic effects. Western blots confirm inhibition of pro-survival proteins including AKT suggesting this as the mechanism of cell death. In a functional study, we observed an increase in radioiodine uptake in the PTC cell line following AUY922 treatment. We believe HSP90 inhibition could be a viable alternative for treatment of RET-driven chemo-resistant thyroid cancers.

Open access
Muthiah Subramanian Department of General Medicine, TB and Pulmonary Medicine, Endocrinology, Sri Ramachandra University, 1 Ramachandra Nagar, Porur, Chennai 600116, India

Search for other papers by Muthiah Subramanian in
Google Scholar
PubMed
Close
,
Manu Kurian Baby Department of General Medicine, TB and Pulmonary Medicine, Endocrinology, Sri Ramachandra University, 1 Ramachandra Nagar, Porur, Chennai 600116, India

Search for other papers by Manu Kurian Baby in
Google Scholar
PubMed
Close
, and
Krishna G Seshadri Department of General Medicine, TB and Pulmonary Medicine, Endocrinology, Sri Ramachandra University, 1 Ramachandra Nagar, Porur, Chennai 600116, India

Search for other papers by Krishna G Seshadri in
Google Scholar
PubMed
Close

Antithyroid drugs (ATDs) have been shown to attenuate the effectiveness of radioiodine (radioiodine ablation, RIA) therapy in Graves' disease. We undertook a study to look at the impact of iodine uptakes on the outcome of 131I therapy. To determine the effect of prior ATD use on the duration of time to achieve cure in patients with high vs intermediate uptake Graves' disease who received a fixed dose (15 mCi) of 131I radioiodine. In a retrospective study of patients with Graves' disease, 475 patients who underwent RIA were followed-up on a two-monthly basis with thyroid function tests. Of the 123 patients with a documented preablation RAIU and consistent follow-up it was observed that 40 patients had an intermediate RAIU (10–30%) and 83 subjects had a distinctly increased uptake (>30%). Successful cure was defined as the elimination of thyrotoxicosis in the form of low free thyroxin and rising TSH levels. When a standard dose of 15 mCi 131I was administered, a cure rate of 93% was achieved. The median duration of time to cure (TC) was 129 days. Surprisingly, a direct proportional linear relationship (R 2=0.92) was established between time to cure and radioiodine uptake (TC> 3 0%=172days, TC10 3 0%=105 days, P<0.001). Patients who used ATD medications took a proportionately longer duration to achieve remission (TCNO ATD=102days, TCATD=253days, P<0.001). The effect of prior ATD therapy in delaying remission was amplified in the subset of patients with higher uptakes (TC> 3 0% + ATD=310days, TC> 3 0% + NO ATD=102days, P<0.001) compared to those with the intermediate uptakes (TC10 3 0% + ATD=126 days, TC10 3 0% + NO ATD=99 days, P<0.001). RIA, using a dose of 15 mCi achieved a high cure rate. Higher uptakes predicted longer time to achieve remission, with prior ATD use amplifying this effect.

Open access
Jan Calissendorff Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

Search for other papers by Jan Calissendorff in
Google Scholar
PubMed
Close
and
Henrik Falhammar Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

Search for other papers by Henrik Falhammar in
Google Scholar
PubMed
Close

Background

Graves’ disease is a common cause of hyperthyroidism. Three therapies have been used for decades: pharmacologic therapy, surgery and radioiodine. In case of adverse events, especially agranulocytosis or hepatotoxicity, pre-treatment with Lugol’s solution containing iodine/potassium iodide to induce euthyroidism before surgery could be advocated, but this has rarely been reported.

Methods

All patients hospitalised due to uncontrolled hyperthyroidism at the Karolinska University Hospital 2005–2015 and treated with Lugol’s solution were included. All electronic files were carefully reviewed manually, with focus on the cause of treatment and admission, demographic data, and effects of iodine on thyroid hormone levels and pulse frequency.

Results

Twenty-seven patients were included. Lugol’s solution had been chosen due to agranulocytosis in 9 (33%), hepatotoxicity in 2 (7%), other side effects in 11 (41%) and poor adherence to medication in 5 (19%). Levels of free T4, free T3 and heart rate decreased significantly after 5–9 days of iodine therapy (free T4 53–20 pmol/L, P = 0.0002; free T3 20–6.5 pmol/L, P = 0.04; heart rate 87–76 beats/min P = 0.0007), whereas TSH remained unchanged. Side effects were noted in 4 (15%) (rash n = 2, rash and vomiting n = 1, swelling of fingers n = 1). Thyroidectomy was performed in 26 patients (96%) and one was treated with radioiodine; all treatments were without serious complications.

Conclusion

Treatment of uncontrolled hyperthyroidism with Lugol’s solution before definitive treatment is safe and it decreases thyroid hormone levels and heart rate. Side effects were limited. Lugol’s solution could be recommended pre-operatively in Graves’ disease with failed medical treatment, especially if side effects to anti-thyroid drugs have occurred.

Open access
Charlotte Höybye Department of Endocrinology, Metabolism and Diabetology, Karolinska University Hospital and Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden

Search for other papers by Charlotte Höybye in
Google Scholar
PubMed
Close
,
Andreas F H Pfeiffer Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Klinik für Endokrinologie & Stoffwechselmedizin, Berlin, Germany

Search for other papers by Andreas F H Pfeiffer in
Google Scholar
PubMed
Close
,
Diego Ferone IRCCS AOU San Martino-IST, Università di Genova – Endocrinologia DiMI, Dipartimento di Medicina Interna e Specialità Mediche, & CEBR, Centro di Eccellenza per la Ricerca Biomedica, Genova, Italy

Search for other papers by Diego Ferone in
Google Scholar
PubMed
Close
,
Jens Sandahl Christiansen Medicinsk Endokrinologist Afd., MEA, NBG, Århus Sygehus, Århus, Denmark

Search for other papers by Jens Sandahl Christiansen in
Google Scholar
PubMed
Close
,
David Gilfoyle Ascendis Pharma A/S, Hellerup, Denmark

Search for other papers by David Gilfoyle in
Google Scholar
PubMed
Close
,
Eva Dam Christoffersen Ascendis Pharma A/S, Hellerup, Denmark

Search for other papers by Eva Dam Christoffersen in
Google Scholar
PubMed
Close
,
Eva Mortensen Ascendis Pharma Inc., Palo Alto, California, USA

Search for other papers by Eva Mortensen in
Google Scholar
PubMed
Close
,
Jonathan A Leff Ascendis Pharma Inc., Palo Alto, California, USA

Search for other papers by Jonathan A Leff in
Google Scholar
PubMed
Close
, and
Michael Beckert Ascendis Pharma A/S, Hellerup, Denmark

Search for other papers by Michael Beckert in
Google Scholar
PubMed
Close

TransCon growth hormone is a sustained-release human growth hormone prodrug under development in which unmodified growth hormone is transiently linked to a carrier molecule. It is intended as an alternative to daily growth hormone in the treatment of growth hormone deficiency. This was a multi-center, randomized, open-label, active-controlled trial designed to compare the safety (including tolerability and immunogenicity), pharmacokinetics and pharmacodynamics of three doses of weekly TransCon GH to daily growth hormone (Omnitrope). Thirty-seven adult males and females diagnosed with adult growth hormone deficiency and stable on growth hormone replacement therapy for at least 3 months were, following a wash-out period, randomized (regardless of their pre-study dose) to one of three TransCon GH doses (0.02, 0.04 and 0.08 mg GH/kg/week) or Omnitrope 0.04 mg GH/kg/week (divided into 7 equal daily doses) for 4 weeks. Main outcomes evaluated were adverse events, immunogenicity and growth hormone and insulin-like growth factor 1 levels. TransCon GH was well tolerated; fatigue and headache were the most frequent drug-related adverse events and reported in all groups. No lipoatrophy or nodule formation was reported. No anti-growth hormone-binding antibodies were detected. TransCon GH demonstrated a linear, dose-dependent increase in growth hormone exposure without accumulation. Growth hormone maximum serum concentration and insulin-like growth factor 1 exposure were similar after TransCon GH or Omnitrope administered at comparable doses. The results suggest that long-acting TransCon GH has a profile similar to daily growth hormone but with a more convenient dosing regimen. These findings support further TransCon GH development.

Open access
Zhengrong Jiang Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China

Search for other papers by Zhengrong Jiang in
Google Scholar
PubMed
Close
,
Linghong Huang Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China

Search for other papers by Linghong Huang in
Google Scholar
PubMed
Close
,
Lijun Chen Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China

Search for other papers by Lijun Chen in
Google Scholar
PubMed
Close
,
Jingxiong Zhou Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China

Search for other papers by Jingxiong Zhou in
Google Scholar
PubMed
Close
,
Bo Liang Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China

Search for other papers by Bo Liang in
Google Scholar
PubMed
Close
,
Xuefeng Bai Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China

Search for other papers by Xuefeng Bai in
Google Scholar
PubMed
Close
,
Lizhen Wu Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China

Search for other papers by Lizhen Wu in
Google Scholar
PubMed
Close
, and
Huibin Huang Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China

Search for other papers by Huibin Huang in
Google Scholar
PubMed
Close

Background

Graves’ disease is a common autoimmune disease. Cytokines and their signalling pathways play a major part in the pathogenesis of Graves’ disease; however, the underlying mechanism needs to be clarified.

Aims

The aim of this study was to explore whether circular RNAs participate in the immunological pathology of Graves’ disease via cytokine-related signalling pathways.

Methods

Bioinformatics analysis was performed to identify differentially expressed circular RNAs and their targets and associated pathways. A total of three patients with Graves’ disease and three sex- and age-matched healthy controls were enrolled for validation with microarray analysis and real-time quantitative PCR (qPCR). An additional 24 patients with Graves’ disease and 24 gender- and age-matched controls were included for validation by real-time fluorescent qPCR. Flow cytometry and CCK8 assays were used to detect the apoptotic and proliferative levels of Jurkat cells (T lymphocytes) with the silenced expression of circRNA. ELISA was performed to detect the growth and apoptosis-related proteins. The competition mechanism of endogenous RNA was explored by real-time fluorescence qPCR.

Results

A total of 366 significantly differentially expressed circular RNAs were identified in the Graves’ disease group compared to healthy controls. The level of hsa_circ_0090364 was elevated in Graves’ disease patients and positively correlated with thyroid-stimulating hormone receptor antibodies. Further analyses suggested that hsa_circ_0090364 may regulate the JAK-STAT pathway via the hsa-miR-378a-3p/IL-6ST/IL21R axis to promote cell growth.

Conclusions

These results provide novel clues into the pathophysiological mechanisms of Graves’ disease and potential targets for drug treatment.

Open access
Rachel Forfar Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Rachel Forfar in
Google Scholar
PubMed
Close
,
Mashal Hussain Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK

Search for other papers by Mashal Hussain in
Google Scholar
PubMed
Close
,
Puneet Khurana Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Puneet Khurana in
Google Scholar
PubMed
Close
,
Jennifer Cook Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Jennifer Cook in
Google Scholar
PubMed
Close
,
Steve Lewis Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Steve Lewis in
Google Scholar
PubMed
Close
,
Dillon Popat Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK

Search for other papers by Dillon Popat in
Google Scholar
PubMed
Close
,
David Jackson Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK

Search for other papers by David Jackson in
Google Scholar
PubMed
Close
,
Ed McIver Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Ed McIver in
Google Scholar
PubMed
Close
,
Jeff Jerman Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Jeff Jerman in
Google Scholar
PubMed
Close
,
Debra Taylor Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Debra Taylor in
Google Scholar
PubMed
Close
,
Adrian JL Clark Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK

Search for other papers by Adrian JL Clark in
Google Scholar
PubMed
Close
, and
Li F Chan Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK

Search for other papers by Li F Chan in
Google Scholar
PubMed
Close

The overproduction of adrenocorticotropic hormone (ACTH), in conditions such as Cushing’s disease and congenital adrenal hyperplasia (CAH), leads to significant morbidity. Current treatment with glucocorticoids does not adequately suppress plasma ACTH, resulting in excess adrenal androgen production. At present, there is no effective medical treatment in clinical use that would directly block the action of ACTH. Such a therapy would be of great clinical value. ACTH acts via a highly selective receptor, the melanocortin-2 receptor (MC2R) associated with its accessory protein MRAP. ACTH is the only known naturally occurring agonist for this receptor. This lack of redundancy and the high degree of ligand specificity suggest that antagonism of this receptor could provide a useful therapeutic strategy in the treatment of conditions of ACTH excess. To this end, we screened an extensive library of low-molecular-weight drug-like compounds for MC2R antagonist activity using a high-throughput homogeneous time-resolved fluorescence cAMP assay in Chinese hamster ovary cells stably co-expressing human MC2R and MRAP. Hits that demonstrated MC2R antagonist properties were counter-screened against the β2 adrenergic receptor and dose–response analysis undertaken. This led to the identification of a highly specific MC2R antagonist capable of antagonising ACTH-induced progesterone release in murine Y-1 adrenal cells and having selectivity for MC2R amongst the human melanocortin receptors. This work provides a foundation for the clinical investigation of small-molecule ACTH antagonists as therapeutic agents and proof of concept for the screening and discovery of such compounds.

Open access
Angelica Sharma Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK

Search for other papers by Angelica Sharma in
Google Scholar
PubMed
Close
,
Katharine Lazarus Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK

Search for other papers by Katharine Lazarus in
Google Scholar
PubMed
Close
,
Deborah Papadopoulou Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK

Search for other papers by Deborah Papadopoulou in
Google Scholar
PubMed
Close
,
Hemanth Prabhudev Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK

Search for other papers by Hemanth Prabhudev in
Google Scholar
PubMed
Close
,
Tricia Tan Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
Department of Clinical Biochemistry, North West London Pathology, London, UK

Search for other papers by Tricia Tan in
Google Scholar
PubMed
Close
,
Karim Meeran Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK

Search for other papers by Karim Meeran in
Google Scholar
PubMed
Close
, and
Sirazum Choudhury Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
Department of Clinical Biochemistry, North West London Pathology, London, UK

Search for other papers by Sirazum Choudhury in
Google Scholar
PubMed
Close

Context

Patients with adrenal insufficiency (AI) have a higher mortality than the general population, possibly because of excess glucocorticoid exposure at inappropriate times. The cortisol circadian rhythm is difficult to mimic with twice- or thrice-daily hydrocortisone. Prednisolone is a once-daily alternative which may improve patient compliance through its convenience.

Objectives

Prednisolone day curves can be used to accurately downtitrate patients to the minimum effective dose. This study aimed to review prednisolone day curves and determine therapeutic ranges at different time points after administration.

Methods

Between August 2013 and May 2021, 108 prednisolone day curves from 76 individuals receiving prednisolone replacement were analysed. Prednisolone concentrations were determined by ultra-high-performance liquid chromatography-tandem mass spectrometry. Spearman’s correlation coefficient was used to determine the relationship between 2-, 4-, and 6-h prednisolone levels compared to the previously validated standard 8-h prednisolone level (15–25 μg/L).

Results

The median dose was 4 mg of prednisolone once daily. There was a strong correlation between the 4- and 8-h (R = 0.8829, P ≤ 0.0001) and 6- and 8-h prednisolone levels (R = 0.9530, P ≤ 0.0001). Target ranges for prednisolone were 37–62 μg/L at 4 h, 24–39 μg/L at 6 h, and 15–25 μg/L at 8 h. Prednisolone doses were successfully reduced in 21 individuals, and of these, 3 were reduced to 2 mg once daily. All patients were well upon follow-up.

Conclusion

This is the largest evaluation of oral prednisolone pharmacokinetics in humans. Low-dose prednisolone of 2–4 mg is safe and effective in most patients with AI. Doses can be titrated with either 4-, 6-, or 8-h single time point drug levels.

Open access
Jia Liu Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China

Search for other papers by Jia Liu in
Google Scholar
PubMed
Close
,
Min Liu Department of Radiology, China-Japan Friendship Hospital, Beijing, China

Search for other papers by Min Liu in
Google Scholar
PubMed
Close
,
Zhe Chen Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China

Search for other papers by Zhe Chen in
Google Scholar
PubMed
Close
,
Yumei Jia Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China

Search for other papers by Yumei Jia in
Google Scholar
PubMed
Close
, and
Guang Wang Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China

Search for other papers by Guang Wang in
Google Scholar
PubMed
Close

Objective

Autoimmune thyroiditis (AIT) is the most common autoimmune thyroid disease. Longitudinal relaxation time mapping (T1-mapping) measured by MRI is a new technique for assessing interstitial fibrosis of some organs, such as heart and liver. This study aimed to evaluate the relationship between T1-mapping value and thyroid function and determine the usefulness of T1-mapping in identifying thyroid destruction in AIT patients.

Methods

This case–control study recruited 57 drug-naïve AIT patients and 17 healthy controls. All participants were given thyroid MRI, and T1-mapping values were measured using a modified look-locker inversion-recovery sequence.

Results

AIT patients had significantly higher thyroid T1-mapping values than the healthy controls (1.077 ± 177 vs 778 ± 82.9 ms; P < 0.01). A significant increase in thyroid T1-mapping values was presented along with the increased severity of thyroid dysfunction (P < 0.01). Correlation analyses showed that increased thyroid T1-mapping values were associated with higher TSH and lower FT3 and FT4 levels (TSH: r = 0.75; FT3: r = −0.47; FT4: r = −0.72; all P < 0.01). Receiver-operating characteristic curve analysis revealed a high diagnostic value of T1-mapping values for the degree of thyroid destruction (area under the curve was 0.95, 95% CI: 0.90–0.99, P < 0.01).

Conclusions

AIT patients have higher thyroid T1-mapping values than the healthy controls, and the T1-mapping values increased with the progression of thyroid dysfunction. Thyroid T1-mapping value might be a new index to quantitatively evaluate the degree of thyroid destruction in AIT patients.

Open access
Nelma Veronica Marques Neuroendocrinology Research Center, Endocrinology Section, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

Search for other papers by Nelma Veronica Marques in
Google Scholar
PubMed
Close
,
Luiz Eduardo Armondi Wildemberg Neuroendocrinology Research Center, Endocrinology Section, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

Search for other papers by Luiz Eduardo Armondi Wildemberg in
Google Scholar
PubMed
Close
, and
Monica R Gadelha Neuroendocrinology Research Center, Endocrinology Section, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

Search for other papers by Monica R Gadelha in
Google Scholar
PubMed
Close

Pasireotide long-acting release is effective in achieving biochemical control and reducing tumour volume in patients with acromegaly inadequately controlled by first-line therapy. As part of a long-term, real-world study at our centre, 20 of 50 patients receiving pasireotide benefited from a reduction in pasireotide dose. Pasireotide reduced insulin-like growth factor 1 (IGF1) levels to below the upper limit of the normal range, with some patients responding within 1−3 months of treatment (n = 11) and others after ≥4 months (n = 9). Following pasireotide dose reduction, IGF1 levels showed a mild increase but remained within the normal range after a median of 39 months in the early responders and 17 months in the late responders. Glucose and glycated haemoglobin levels decreased following dose reduction. Identifying patients who may benefit from a reduction in pasireotide dose warrants further research as it may improve the management of pasireotide-associated hyperglycaemia in susceptible patients.

Significance statement

Patients with acromegaly often need medical therapy for extended periods of time, and pasireotide is an effective, long-term treatment option. However, pasireotide may increase blood glucose levels in some patients, such as those with pre-existing diabetes. In this single-centre study, we show that following dose reduction of pasireotide over time, patients with acromegaly maintained their biochemical response (IGF1 < ULN) and had improved glycaemic control. As such, dose reductions may be an effective, personalised treatment approach for managing some patients receiving long-term pasireotide therapy and could allow patients to achieve early and long-term biochemical control while minimising adverse drug effects.

Open access
Emily Warmington Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK

Search for other papers by Emily Warmington in
Google Scholar
PubMed
Close
,
Gabrielle Smith Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK

Search for other papers by Gabrielle Smith in
Google Scholar
PubMed
Close
,
Vasileios Chortis Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK

Search for other papers by Vasileios Chortis in
Google Scholar
PubMed
Close
,
Raimunde Liang Division of Endocrinology and Diabetes, University Hospital of Wuerzburg, Wuerzburg, Germany
Department of Neurosurgery, Technical University Munich (TMU), Munich, Germany

Search for other papers by Raimunde Liang in
Google Scholar
PubMed
Close
,
Juliane Lippert Division of Endocrinology and Diabetes, University Hospital of Wuerzburg, Wuerzburg, Germany

Search for other papers by Juliane Lippert in
Google Scholar
PubMed
Close
,
Sonja Steinhauer Division of Endocrinology and Diabetes, University Hospital of Wuerzburg, Wuerzburg, Germany

Search for other papers by Sonja Steinhauer in
Google Scholar
PubMed
Close
,
Laura-Sophie Landwehr Division of Endocrinology and Diabetes, University Hospital of Wuerzburg, Wuerzburg, Germany

Search for other papers by Laura-Sophie Landwehr in
Google Scholar
PubMed
Close
,
Constanze Hantel Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
Medizinische Klinik Und Poliklinik III, University Hospital Carl Gustav Carus, Dresden, Germany

Search for other papers by Constanze Hantel in
Google Scholar
PubMed
Close
,
Katja Kiseljak-Vassiliades Division of Endocrinology Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA

Search for other papers by Katja Kiseljak-Vassiliades in
Google Scholar
PubMed
Close
,
Margaret E Wierman Division of Endocrinology Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA

Search for other papers by Margaret E Wierman in
Google Scholar
PubMed
Close
,
Barbara Altieri Division of Endocrinology and Diabetes, University Hospital of Wuerzburg, Wuerzburg, Germany

Search for other papers by Barbara Altieri in
Google Scholar
PubMed
Close
,
Paul A Foster Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK

Search for other papers by Paul A Foster in
Google Scholar
PubMed
Close
, and
Cristina L Ronchi Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK

Search for other papers by Cristina L Ronchi in
Google Scholar
PubMed
Close

Adrenocortical carcinoma (ACC) is an aggressive malignancy with limited treatment options. Polo-like kinase 1 (PLK1) is a promising drug target; PLK1 inhibitors (PLK1i) have been investigated in solid cancers and are more effective in TP53-mutated cases. We evaluated PLK1 expression in ACC samples and the efficacy of two PLK1i in ACC cell lines with different genetic backgrounds. PLK1 protein expression was investigated by immunohistochemistry in tissue samples and correlated with clinical data. The efficacy of rigosertib (RGS), targeting RAS/PI3K, CDKs and PLKs, and poloxin (Pol), specifically targeting the PLK1 polo-box domain, was tested in TP53-mutated NCI-H295R, MUC-1, and CU-ACC2 cells and in TP53 wild-type CU-ACC1. Effects on proliferation, apoptosis, and viability were determined. PLK1 immunostaining was stronger in TP53-mutated ACC samples vs wild-type (P = 0.0017). High PLK1 expression together with TP53 mutations correlated with shorter progression-free survival (P= 0.041). NCI-H295R showed a time- and dose-dependent reduction in proliferation with both PLK1i (P< 0.05at 100 nM RGS and 30 µM Pol). In MUC-1, a less pronounced decrease was observed (P< 0.05at 1000 nM RGS and 100 µM Pol). 100 nM RGS increased apoptosis in NCI-H295R (P< 0.001), with no effect on MUC-1. CU-ACC2 apoptosis was induced only at high concentrations (P < 0.05 at 3000 nM RGS and 100 µM Pol), while proliferation decreased at 1000 nM RGS and 30 µM Pol. CU-ACC1 proliferation reduced, and apoptosis increased, only at 100 µM Pol. TP53-mutated ACC cell lines demonstrated better response to PLK1i than wild-type CU-ACC1. These data suggest PLK1i may be a promising targeted treatment of a subset of ACC patients, pre-selected according to tumour genetic signature.

Open access