Search Results

You are looking at 61 - 70 of 172 items for

  • Abstract: Bone x
  • Abstract: Mineral x
  • Abstract: Calcium x
  • Abstract: Hyperparathyroidism x
  • Abstract: Hypoparathyroidism x
  • Abstract: Skeleton x
Clear All Modify Search
Stan Ursem Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Endocrine Laboratory, Amsterdam, Netherlands

Search for other papers by Stan Ursem in
Google Scholar
PubMed
Close
,
Vito Francic Division of Endocrinology and Diabetology, Department of Internal Medicine, Endocrinology Lab Platform, Medical University of Graz, Graz, Austria

Search for other papers by Vito Francic in
Google Scholar
PubMed
Close
,
Martin Keppel University Institute for Medical and Chemical Laboratory Diagnostics, Paracelsus Medical University, Salzburg, Austria

Search for other papers by Martin Keppel in
Google Scholar
PubMed
Close
,
Verena Schwetz Division of Endocrinology and Diabetology, Department of Internal Medicine, Endocrinology Lab Platform, Medical University of Graz, Graz, Austria

Search for other papers by Verena Schwetz in
Google Scholar
PubMed
Close
,
Christian Trummer Division of Endocrinology and Diabetology, Department of Internal Medicine, Endocrinology Lab Platform, Medical University of Graz, Graz, Austria

Search for other papers by Christian Trummer in
Google Scholar
PubMed
Close
,
Marlene Pandis Division of Endocrinology and Diabetology, Department of Internal Medicine, Endocrinology Lab Platform, Medical University of Graz, Graz, Austria

Search for other papers by Marlene Pandis in
Google Scholar
PubMed
Close
,
Felix Aberer Division of Endocrinology and Diabetology, Department of Internal Medicine, Endocrinology Lab Platform, Medical University of Graz, Graz, Austria

Search for other papers by Felix Aberer in
Google Scholar
PubMed
Close
,
Martin R Grübler Division of Endocrinology and Diabetology, Department of Internal Medicine, Endocrinology Lab Platform, Medical University of Graz, Graz, Austria

Search for other papers by Martin R Grübler in
Google Scholar
PubMed
Close
,
Nicolas D Verheyen Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria

Search for other papers by Nicolas D Verheyen in
Google Scholar
PubMed
Close
,
Winfried März Synlab Academy, Synlab Holding Germany GmbH, München, Germany

Search for other papers by Winfried März in
Google Scholar
PubMed
Close
,
Andreas Tomaschitz Specialist Clinic of Rehabilitation Bad Gleichenberg, Bad Gleichenberg, Austria

Search for other papers by Andreas Tomaschitz in
Google Scholar
PubMed
Close
,
Stefan Pilz Division of Endocrinology and Diabetology, Department of Internal Medicine, Endocrinology Lab Platform, Medical University of Graz, Graz, Austria

Search for other papers by Stefan Pilz in
Google Scholar
PubMed
Close
,
Barbara Obermayer-Pietsch Division of Endocrinology and Diabetology, Department of Internal Medicine, Endocrinology Lab Platform, Medical University of Graz, Graz, Austria

Search for other papers by Barbara Obermayer-Pietsch in
Google Scholar
PubMed
Close
, and
Annemieke C Heijboer Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Endocrine Laboratory, Amsterdam, Netherlands
Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, Endocrine Laboratory, Amsterdam, Netherlands

Search for other papers by Annemieke C Heijboer in
Google Scholar
PubMed
Close

Objective

PTH can be oxidised in vivo, rendering it biologically inactive. Non-oxidised PTH (n-oxPTH) may therefore give a better image of the hormonal status of the patient. While vitamin D supplementation decreases total PTH (tPTH) concentration, the effect on n-oxPTH concentration is unexplored. We investigated the effect of vitamin D on n-oxPTH concentration in comparison to tPTH and compared the correlations between parameters of calcium, bone and lipid metabolism with n-oxPTH and tPTH.

Methods

N-oxPTH was measured in 108 vitamin D-insufficient (25(OH)D <75 nmol/L) hypertensive patients, treated with vitamin D (2800 IE daily) or placebo for 8 weeks in the Styrian Vitamin D Hypertension Trial (NCT02136771). We calculated the treatment effect and performed correlation analyses of n-oxPTH and tPTH with parameters of calcium, bone and lipid metabolism and oxidative stress.

Results

After treatment, compared to placebo, 25(OH)D concentrations increased, tPTH decreased by 9% (P < 0.001), n-oxPTH by 7% (P = 0.025) and the ratio of n-oxPTH/tPTH increased (P = 0.027). Changes in phosphate and HDL concentration correlated with changes in n-oxPTH, but not tPTH.

Conclusions

tPTH and n-oxPTH decrease upon vitamin D supplementation. Our study suggests that vitamin D supplementation reduces the oxidation of PTH, as we observed a small but significant increase in the non-oxidised proportion of PTH upon treatment. In addition, we found that changes in phosphate and HDL concentration showed a relationship with changes in n-oxPTH, but not tPTH. This may be explained by the biological activity of n-oxPTH. Further research should be carried out to establish the clinical relevance of n-oxPTH.

Open access
Matteo Scopel Medical Clinic III, Department of Medicine (DIMED), University Hospital of Padua, Padua, Italy

Search for other papers by Matteo Scopel in
Google Scholar
PubMed
Close
,
Eugenio De Carlo Medical Clinic III, Department of Medicine (DIMED), University Hospital of Padua, Padua, Italy

Search for other papers by Eugenio De Carlo in
Google Scholar
PubMed
Close
,
Francesca Bergamo Unit of Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy

Search for other papers by Francesca Bergamo in
Google Scholar
PubMed
Close
,
Sabina Murgioni Unit of Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy

Search for other papers by Sabina Murgioni in
Google Scholar
PubMed
Close
,
Riccardo Carandina Radiodiagnostic Unit, University Hospital of Padua, Padua, Italy

Search for other papers by Riccardo Carandina in
Google Scholar
PubMed
Close
,
Anna Rita Cervino Radiotherapy and Nuclear Medicine Unit, Istituto Oncologico Veneto IOV-IRCCS, Padua, Italy

Search for other papers by Anna Rita Cervino in
Google Scholar
PubMed
Close
,
Marta Burei Radiotherapy and Nuclear Medicine Unit, Istituto Oncologico Veneto IOV-IRCCS, Padua, Italy

Search for other papers by Marta Burei in
Google Scholar
PubMed
Close
,
Federica Vianello Radiotherapy and Nuclear Medicine Unit, Istituto Oncologico Veneto IOV-IRCCS, Padua, Italy

Search for other papers by Federica Vianello in
Google Scholar
PubMed
Close
,
Vittorina Zagonel Unit of Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy

Search for other papers by Vittorina Zagonel in
Google Scholar
PubMed
Close
,
Matteo Fassan Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy

Search for other papers by Matteo Fassan in
Google Scholar
PubMed
Close
, and
Roberto Vettor Medical Clinic III, Department of Medicine (DIMED), University Hospital of Padua, Padua, Italy

Search for other papers by Roberto Vettor in
Google Scholar
PubMed
Close

We considered 351 patients affected by neuroendocrine tumors (NETs), followed at the University Hospital of Padua and at the Veneto Oncological Institute. Of these, 72 (20.5%) suffered from bone metastases. The sample was divided according to the timing of presentation of bone metastases into synchronous (within 6 months of diagnosis of primary tumor) and metachronous (after 6 months). We collected data on the type and grading of the primary tumor and on the features of bone metastases. Our analysis shows that the group of synchronous metastases generally presents primary tumors with a higher degree of malignancy rather than the ones of the metachronous group. This is supported by the finding of a Ki-67 level in GEP-NETs, at the diagnosis of bone metastases, significantly higher in the synchronous group. Moreover, in low-grade NETs, chromogranin A values are higher in the patients with synchronous metastases, indicating a more burden of disease. The parameters of phospho-calcium metabolism are within the normal range, and we do not find significant differences between the groups. Serious bone complications are not frequent and are not correlated with the site of origin of the primary tumor. From the analysis of the survival curves of the total sample, a cumulative survival rate of 33% at 10 years emerges. The average survival is 80 months, higher than what is reported in the literature, while the median is 84 months. In our observation period, synchronous patients tend to have a worse prognosis than metachronous ones with 52-months survival rates of 58 and 86%.

Open access
Nancy Martini Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM-UNLP-CICPBA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina

Search for other papers by Nancy Martini in
Google Scholar
PubMed
Close
,
Lucas Streckwall Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM-UNLP-CICPBA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina

Search for other papers by Lucas Streckwall in
Google Scholar
PubMed
Close
, and
Antonio Desmond McCarthy Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM-UNLP-CICPBA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina

Search for other papers by Antonio Desmond McCarthy in
Google Scholar
PubMed
Close

In post-menopausal women, aged individuals, and patients with diabetes mellitus or chronic renal disease, bone mineral density (BMD) decreases while the vasculature accumulates arterial calcifications (ACs). AC can be found in the tunica intima and/or in the tunica media. Prospective studies have shown that patients with initially low BMD and/or the presence of fragility fractures have at follow-up a significantly increased risk for coronary and cerebrovascular events and for overall cardiovascular mortality. Similarly, patients presenting with abdominal aorta calcifications (an easily quantifiable marker of vascular pathology) show a significant decrease in the BMD (and an increase in the fragility) of bones irrigated by branches of the abdominal aorta, such as the hip and lumbar spine. AC induction is an ectopic tissue biomineralization process promoted by osteogenic transdifferentiation of vascular smooth muscle cells as well as by local and systemic secreted factors. In many cases, the same regulatory molecules modulate bone metabolism but in reverse. Investigation of animal and in vitro models has identified several potential mechanisms for this reciprocal bone–vascular regulation, such as vitamin K and D sufficiency, advanced glycation end-products–RAGE interaction, osteoprotegerin/RANKL/RANK, Fetuin A, oestrogen deficiency and phytooestrogen supplementation, microbiota and its relation to diet, among others. Complete elucidation of these potential mechanisms, as well as their clinical validation via controlled studies, will provide a basis for pharmacological intervention that could simultaneously promote bone and vascular health.

Open access
Veronica Kieffer
Search for other papers by Veronica Kieffer in
Google Scholar
PubMed
Close
,
Kate Davies University Hospitals of Leicester NHS Trust, Great Ormond Street Hospital for Children NHS Trust, Central Manchester University Hospitals NHS Foundation Trust, NHS Grampian, Portsmouth Hospitals NHS Trust, Salford Royal Hospitals Foundation Trust, Heart of England NHS Foundation Trust, The London Clinic, Department of Diabetes and Endocrinology, Leicester Royal Infirmary, Leicester, LE1 5WW, UK

Search for other papers by Kate Davies in
Google Scholar
PubMed
Close
,
Christine Gibson University Hospitals of Leicester NHS Trust, Great Ormond Street Hospital for Children NHS Trust, Central Manchester University Hospitals NHS Foundation Trust, NHS Grampian, Portsmouth Hospitals NHS Trust, Salford Royal Hospitals Foundation Trust, Heart of England NHS Foundation Trust, The London Clinic, Department of Diabetes and Endocrinology, Leicester Royal Infirmary, Leicester, LE1 5WW, UK

Search for other papers by Christine Gibson in
Google Scholar
PubMed
Close
,
Morag Middleton University Hospitals of Leicester NHS Trust, Great Ormond Street Hospital for Children NHS Trust, Central Manchester University Hospitals NHS Foundation Trust, NHS Grampian, Portsmouth Hospitals NHS Trust, Salford Royal Hospitals Foundation Trust, Heart of England NHS Foundation Trust, The London Clinic, Department of Diabetes and Endocrinology, Leicester Royal Infirmary, Leicester, LE1 5WW, UK

Search for other papers by Morag Middleton in
Google Scholar
PubMed
Close
,
Jean Munday University Hospitals of Leicester NHS Trust, Great Ormond Street Hospital for Children NHS Trust, Central Manchester University Hospitals NHS Foundation Trust, NHS Grampian, Portsmouth Hospitals NHS Trust, Salford Royal Hospitals Foundation Trust, Heart of England NHS Foundation Trust, The London Clinic, Department of Diabetes and Endocrinology, Leicester Royal Infirmary, Leicester, LE1 5WW, UK

Search for other papers by Jean Munday in
Google Scholar
PubMed
Close
,
Shashana Shalet University Hospitals of Leicester NHS Trust, Great Ormond Street Hospital for Children NHS Trust, Central Manchester University Hospitals NHS Foundation Trust, NHS Grampian, Portsmouth Hospitals NHS Trust, Salford Royal Hospitals Foundation Trust, Heart of England NHS Foundation Trust, The London Clinic, Department of Diabetes and Endocrinology, Leicester Royal Infirmary, Leicester, LE1 5WW, UK

Search for other papers by Shashana Shalet in
Google Scholar
PubMed
Close
,
Lisa Shepherd University Hospitals of Leicester NHS Trust, Great Ormond Street Hospital for Children NHS Trust, Central Manchester University Hospitals NHS Foundation Trust, NHS Grampian, Portsmouth Hospitals NHS Trust, Salford Royal Hospitals Foundation Trust, Heart of England NHS Foundation Trust, The London Clinic, Department of Diabetes and Endocrinology, Leicester Royal Infirmary, Leicester, LE1 5WW, UK

Search for other papers by Lisa Shepherd in
Google Scholar
PubMed
Close
, and
Phillip Yeoh University Hospitals of Leicester NHS Trust, Great Ormond Street Hospital for Children NHS Trust, Central Manchester University Hospitals NHS Foundation Trust, NHS Grampian, Portsmouth Hospitals NHS Trust, Salford Royal Hospitals Foundation Trust, Heart of England NHS Foundation Trust, The London Clinic, Department of Diabetes and Endocrinology, Leicester Royal Infirmary, Leicester, LE1 5WW, UK

Search for other papers by Phillip Yeoh in
Google Scholar
PubMed
Close

This competency framework was developed by a working group of endocrine specialist nurses with the support of the Society for Endocrinology to enhance the clinical care that adults with an endocrine disorder receive. Nurses should be able to demonstrate that they are functioning at an optimal level in order for patients to receive appropriate care. By formulating a competency framework from which an adult endocrine nurse specialist can work, it is envisaged that their development as professional practitioners can be enhanced. This is the second edition of the Competency Framework for Adult Endocrine Nursing. It introduces four new competencies on benign adrenal tumours, hypo- and hyperparathyroidism, osteoporosis and polycystic ovary syndrome. The authors and the Society for Endocrinology welcome constructive feedback on the document, both nationally and internationally, in anticipation that further developments and ideas can be incorporated into future versions.

Open access
Maria Mizamtsidi Department of Endocrinology, Diabetes and Metabolism, Hellenic Red Cross Hospital, Athens, Greece

Search for other papers by Maria Mizamtsidi in
Google Scholar
PubMed
Close
,
Constantinos Nastos Second Department of Surgery, Endocrine Surgery Unit, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece

Search for other papers by Constantinos Nastos in
Google Scholar
PubMed
Close
,
George Mastorakos Unit of Endocrinology, Diabetes and Metabolism, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece

Search for other papers by George Mastorakos in
Google Scholar
PubMed
Close
,
Roberto Dina Department of Pathology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK

Search for other papers by Roberto Dina in
Google Scholar
PubMed
Close
,
Ioannis Vassiliou Second Department of Surgery, Endocrine Surgery Unit, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece

Search for other papers by Ioannis Vassiliou in
Google Scholar
PubMed
Close
,
Maria Gazouli Department of Basic Medical Sciences, Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece

Search for other papers by Maria Gazouli in
Google Scholar
PubMed
Close
, and
Fausto Palazzo Department of Thyroid and Endocrine Surgery, Imperial College London, London, UK

Search for other papers by Fausto Palazzo in
Google Scholar
PubMed
Close

Primary hyperparathyroidism (pHPT) is a common endocrinopathy resulting from inappropriately high PTH secretion. It usually results from the presence of a single gland adenoma, multiple gland hyperplasia or rarely parathyroid carcinoma. All these conditions require different management, and it is important to be able to differentiate the underlined pathology, in order for the clinicians to provide the best therapeutic approach. Elucidation of the genetic background of each of these clinical entities would be of great interest. However, the molecular factors that control parathyroid tumorigenesis are poorly understood. There are data implicating the existence of specific genetic pathways involved in the emergence of parathyroid tumorigenesis. The main focus of the present study is to present the current optimal diagnostic and management protocols for pHPT as well as to review the literature regarding all molecular and genetic pathways that are to be involved in the pathophysiology of sporadic pHPT.

Open access
Lu Yang Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Search for other papers by Lu Yang in
Google Scholar
PubMed
Close
,
Xingguo Jing Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Search for other papers by Xingguo Jing in
Google Scholar
PubMed
Close
,
Hua Pang Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Search for other papers by Hua Pang in
Google Scholar
PubMed
Close
,
Lili Guan Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Search for other papers by Lili Guan in
Google Scholar
PubMed
Close
, and
Mengdan Li Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Search for other papers by Mengdan Li in
Google Scholar
PubMed
Close

In this review, we discuss the definition, prevalence, and etiology of sporadic multiglandular disease (MGD), with an emphasis on its preoperative and intraoperative predictors. Primary hyperparathyroidism (PHPT) is the third-most common endocrine disorder, and multiglandular parathyroid disease (MGD) is a cause of PHPT. Hereditary MGD can be definitively diagnosed with detailed family history and genetic testing, whereas sporadic MGD presents a greater challenge in clinical practice, and parathyroidectomy for MGD is associated with a higher risk of surgical failure than single gland disease (SGD). Therefore, it is crucial to be able to predict the presence of sporadic MGD in a timely manner, either preoperatively or intraoperatively. Various predictive methods cannot accurately identify all cases of sporadic MGD, but they can greatly optimize the management of MGD diagnosis and treatment and optimize the cure rate. Future research will urge us to investigate more integrative predictive models as well as increase our understanding of MGD pathogenesis.

Open access
Zhiyan Yu Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China

Search for other papers by Zhiyan Yu in
Google Scholar
PubMed
Close
,
Yueyue Wu Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China

Search for other papers by Yueyue Wu in
Google Scholar
PubMed
Close
,
Rui Zhang Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China

Search for other papers by Rui Zhang in
Google Scholar
PubMed
Close
,
Yue Li Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China

Search for other papers by Yue Li in
Google Scholar
PubMed
Close
,
Shufei Zang Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China

Search for other papers by Shufei Zang in
Google Scholar
PubMed
Close
, and
Jun Liu Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China

Search for other papers by Jun Liu in
Google Scholar
PubMed
Close

Background

This study aimed to investigate the association of non-alcoholic fatty liver disease (NAFLD) and liver fibrosis with osteoporosis in postmenopausal women and men over 50 years of age with type 2 diabetes (T2DM).

Methods

In this study, 1243 patients with T2DM (T2DM with coexistent NAFLD, n  = 760; T2DM with no NAFLD, n  = 483) were analysed. Non-invasive markers, NAFLD fibrosis score (NFS) and fibrosis index based on four factors (FIB-4), were applied to evaluate NAFLD fibrosis risk.

Results

There was no significant difference in bone mineral density (BMD) between the NAFLD group and the non-NAFLD group or between males and females after adjusting for age, BMI and gender. In postmenopausal women, there was an increased risk of osteoporosis (odds ratio (OR): 4.41, 95% CI: 1.04–18.70, P = 0.039) in the FIB-4 high risk group compared to the low risk group. Similarly, in women with high risk NFS, there was an increased risk of osteoporosis (OR: 5.98, 95% CI: 1.40–25.60, P = 0.043) compared to the low risk group. Among men over 50 years old, there was no significant difference in bone mineral density between the NAFLD group and the non-NAFLD group and no significant difference between bone mineral density and incidence of osteopenia or osteoporosis among those with different NAFLD fibrosis risk.

Conclusion

There was a significant association of high risk for NAFLD liver fibrosis with osteoporosis in postmenopausal diabetic women but not men. In clinical practice, gender-specific evaluation of osteoporosis is needed in patients with T2DM and coexistent NAFLD.

Open access
Kate E Lines Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK

Search for other papers by Kate E Lines in
Google Scholar
PubMed
Close
,
Mahsa Javid Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK

Search for other papers by Mahsa Javid in
Google Scholar
PubMed
Close
,
Anita A C Reed Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK

Search for other papers by Anita A C Reed in
Google Scholar
PubMed
Close
,
Gerard V Walls Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK

Search for other papers by Gerard V Walls in
Google Scholar
PubMed
Close
,
Mark Stevenson Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK

Search for other papers by Mark Stevenson in
Google Scholar
PubMed
Close
,
Michelle Simon MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK

Search for other papers by Michelle Simon in
Google Scholar
PubMed
Close
,
Kreepa G Kooblall Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK

Search for other papers by Kreepa G Kooblall in
Google Scholar
PubMed
Close
,
Sian E Piret Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK

Search for other papers by Sian E Piret in
Google Scholar
PubMed
Close
,
Paul T Christie Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK

Search for other papers by Paul T Christie in
Google Scholar
PubMed
Close
,
Paul J Newey Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK

Search for other papers by Paul J Newey in
Google Scholar
PubMed
Close
,
Ann-Marie Mallon MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK

Search for other papers by Ann-Marie Mallon in
Google Scholar
PubMed
Close
, and
Rajesh V Thakker Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK

Search for other papers by Rajesh V Thakker in
Google Scholar
PubMed
Close

Multiple endocrine neoplasia type 1 (MEN1), an autosomal dominant disorder caused by MEN1 germline mutations, is characterised by parathyroid, pancreatic and pituitary tumours. MEN1 mutations also cause familial isolated primary hyperparathyroidism (FIHP), a milder condition causing hyperparathyroidism only. Identical mutations can cause either MEN1 or FIHP in different families, thereby implicating a role for genetic modifiers in altering phenotypic expression of tumours. We therefore investigated the effects of genetic background and potential for genetic modifiers on tumour development in adult Men1+/- mice, which develop tumours of the parathyroids, pancreatic islets, anterior pituitary, adrenal cortex and gonads, that had been backcrossed to generate C57BL/6 and 129S6/SvEv congenic strains. A total of 275 Men1+/- mice, aged 5–26 months were macroscopically studied, and this revealed that genetic background significantly influenced the development of pituitary, adrenal and ovarian tumours, which occurred in mice over 12 months of age and more frequently in C57BL/6 females, 129S6/SvEv males and 129S6/SvEv females, respectively. Moreover, pituitary and adrenal tumours developed earlier, in C57BL/6 males and 129S6/SvEv females, respectively, and pancreatic and testicular tumours developed earlier in 129S6/SvEv males. Furthermore, glucagon-positive staining pancreatic tumours occurred more frequently in 129S6/SvEv Men1+/- mice. Whole genome sequence analysis of 129S6/SvEv and C57BL/6 Men1+/- mice revealed >54,000 different variants in >300 genes. These included, Coq7, Dmpk, Ccne2, Kras, Wnt2b, Il3ra and Tnfrsf10a, and qRT-PCR analysis revealed that Kras was significantly higher in pituitaries of male 129S6/SvEv mice. Thus, our results demonstrate that Kras and other genes could represent possible genetic modifiers of Men1.

Open access
Kristin Godang Section of Specialized Endocrinology, Oslo University Hospital, Oslo, Norway

Search for other papers by Kristin Godang in
Google Scholar
PubMed
Close
,
Karolina Lundstam Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden

Search for other papers by Karolina Lundstam in
Google Scholar
PubMed
Close
,
Charlotte Mollerup Clinic of Breast and Endocrine Surgery, Center HOC, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark

Search for other papers by Charlotte Mollerup in
Google Scholar
PubMed
Close
,
Stine Lyngvi Fougner Department of Endocrinology, St. Olavs Hospital, Trondheim, Norway

Search for other papers by Stine Lyngvi Fougner in
Google Scholar
PubMed
Close
,
Ylva Pernow Departments of Molecular Medicine, Surgery and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Ylva Pernow in
Google Scholar
PubMed
Close
,
Jörgen Nordenström Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

Search for other papers by Jörgen Nordenström in
Google Scholar
PubMed
Close
,
Thord Rosén Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden

Search for other papers by Thord Rosén in
Google Scholar
PubMed
Close
,
Svante Jansson Department of Endocrine Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden

Search for other papers by Svante Jansson in
Google Scholar
PubMed
Close
,
Mikael Hellström Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden

Search for other papers by Mikael Hellström in
Google Scholar
PubMed
Close
,
Jens Bollerslev Section of Specialized Endocrinology, Oslo University Hospital, Oslo, Norway
Faculty of Medicine, University of Oslo, Oslo, Norway

Search for other papers by Jens Bollerslev in
Google Scholar
PubMed
Close
,
Ansgar Heck Section of Specialized Endocrinology, Oslo University Hospital, Oslo, Norway
Faculty of Medicine, University of Oslo, Oslo, Norway

Search for other papers by Ansgar Heck in
Google Scholar
PubMed
Close
, and
the SIPH Study Group
Search for other papers by the SIPH Study Group in
Google Scholar
PubMed
Close

Context

Mild primary hyperparathyroidism has been associated with increased body fat mass and unfavorable cardiovascular risk factors.

Objective

To assess the effect of parathyroidectomy on fat mass, glucose and lipid metabolism.

Design, patients, interventions, main outcome measures

119 patients previously randomized to observation (OBS; n = 58) or parathyroidectomy (PTX; n = 61) within the Scandinavian Investigation of Primary Hyperparathyroidism (SIPH) trial, an open randomized multicenter study, were included. Main outcome measures for this study were the differences in fat mass, markers for lipid and glucose metabolism between OBS and PTX 5 years after randomization.

Results

In the OBS group, total cholesterol (Total-C) decreased from mean 5.9 (±1.1) to 5.6 (±1.0) mmol/L (P = 0.037) and LDL cholesterol (LDL-C) decreased from 3.7 (±1.0) to 3.3 (±0.9) mmol/L (P = 0.010). In the PTX group, the Total-C and LDL-C remained unchanged resulting in a significant between-group difference over time (P = 0.013 and P = 0.026, respectively). This difference was driven by patients who started with lipid-lowering medication during the study period (OBS: 5; PTX: 1). There was an increase in trunk fat mass in the OBS group, but no between-group differences over time. Mean 25(OH) vitamin D increased in the PTX group (P < 0.001), but did not change in the OBS group. No difference in parameters of glucose metabolism was detected.

Conclusion

In mild PHPT, the measured metabolic and cardiovascular risk factors were not modified by PTX. Observation seems safe and cardiovascular risk reduction should not be regarded as a separate indication for parathyroidectomy based on the results from this study.

Open access
Giuseppe Grande Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy

Search for other papers by Giuseppe Grande in
Google Scholar
PubMed
Close
,
Andrea Graziani Department of Medicine, University of Padova, Padova, Italy

Search for other papers by Andrea Graziani in
Google Scholar
PubMed
Close
,
Antonella Di Mambro Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy

Search for other papers by Antonella Di Mambro in
Google Scholar
PubMed
Close
,
Riccardo Selice Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy

Search for other papers by Riccardo Selice in
Google Scholar
PubMed
Close
, and
Alberto Ferlin Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy
Department of Medicine, University of Padova, Padova, Italy

Search for other papers by Alberto Ferlin in
Google Scholar
PubMed
Close

Low bone mass is common in men with Klinefelter syndrome (KS), with a prevalence of 6–15% of osteoporosis and of 25–48% of osteopenia. Reduced bone mass has been described since adolescence and it might be related to both reduced bone formation and higher bone resorption. Although reduced testosterone levels are clearly involved in the pathogenesis, this relation is not always evident. Importantly, fracture risk is increased independently from bone mineral density (BMD) and testosterone levels. Here we discuss the pathogenesis of osteoporosis in patients with KS, with a particular focus on the role of testosterone and testis function. In fact, other hormonal mechanisms, such as global Leydig cell dysfunction, causing reduced insulin-like factor 3 and 25-OH vitamin D levels, and high follicle-stimulating hormone and estradiol levels, might be involved. Furthermore, genetic aspects related to the supernumerary X chromosome might be involved, as well as androgen receptor expression and function. Notably, body composition, skeletal mass and strength, and age at diagnosis are other important aspects. Although dual-energy x-ray absorptiometry is recommended in the clinical workflow for patients with KS to measure BMD, recent evidence suggests that alterations in the microarchitecture of the bones and vertebral fractures might be present even in subjects with normal BMD. Therefore, analysis of trabecular bone score, high-resolution peripheral quantitative computed tomography and vertebral morphometry seem promising tools to better estimate the fracture risk of patients with KS. This review also summarizes the evidence on the best available treatments for osteoporosis in men with KS, with or without hypogonadism.

Open access