Search Results
Search for other papers by Ann-Kristin Picke in
Google Scholar
PubMed
Search for other papers by Graeme Campbell in
Google Scholar
PubMed
Division of Bone and Mineral Diseases, Washington University in St Louis, St Louis, Missouri, USA
Search for other papers by Nicola Napoli in
Google Scholar
PubMed
Search for other papers by Lorenz C Hofbauer in
Google Scholar
PubMed
Search for other papers by Martina Rauner in
Google Scholar
PubMed
The prevalence of type 2 diabetes mellitus (T2DM) is increasing worldwide, especially as a result of our aging society, high caloric intake and sedentary lifestyle. Besides the well-known complications of T2DM on the cardiovascular system, the eyes, kidneys and nerves, bone strength is also impaired in diabetic patients. Patients with T2DM have a 40–70% increased risk for fractures, despite having a normal to increased bone mineral density, suggesting that other factors besides bone quantity must account for increased bone fragility. This review summarizes the current knowledge on the complex effects of T2DM on bone including effects on bone cells, bone material properties and other endocrine systems that subsequently affect bone, discusses the effects of T2DM medications on bone and concludes with a model identifying factors that may contribute to poor bone quality and increased bone fragility in T2DM.
The University of Warwick, Coventry, UK
Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
Search for other papers by Sharon A Huish in
Google Scholar
PubMed
Search for other papers by Carl Jenkinson in
Google Scholar
PubMed
Search for other papers by Janet A Dunn in
Google Scholar
PubMed
Search for other papers by David J Meredith in
Google Scholar
PubMed
Search for other papers by Rosemary Bland in
Google Scholar
PubMed
Search for other papers by Martin Hewison in
Google Scholar
PubMed
Low serum 1,25-dihydroxyvitamin D (1,25(OH)2D) in end-stage renal disease (ESRD) is considered a consequence of elevated fibroblast growth factor 23 (FGF23) and concomitant reduced activity of renal 1α-hydroxylase (CYP27B1). Current ESRD treatment strategies to increase serum calcium and suppress secondary hyperparathyroidism involve supplementation with vitamin D analogues that circumvent 1α-hydroxylase. This overlooks the potential importance of 25-hydroxyvitamin D (25(OH)D) deficiency as a contributor to low serum 1,25(OH)2D. We investigated the effects of vitamin D (cholecalciferol) supplementation (40,000 IU for 12 weeks and maintenance dose of 20,000 IU fortnightly), on multiple serum vitamin D metabolites (25(OH)D, 1,25(OH)2D3 and 24,25(OH)2D3) in 55 haemodialysis patients. Baseline and 12 month data were compared using related-samples Wilcoxon signed rank test. All patients remained on active vitamin D analogues as part of routine ESRD care. 1,25(OH)2D3 levels were low at baseline (normal range: 60–120 pmol/L). Cholecalciferol supplementation normalised both serum 25(OH)D and 1,25(OH)2D3. Median serum 25(OH)D increased from 35.1 nmol/L (IQR: 23.0–47.5 nmol/L) to 119.9 nmol/L (IQR: 99.5–143.3 nmol/L) (P < 0.001). Median serum 1,25(OH)2D3 and 24,25(OH)2D3 increased from 48.3 pmol/L (IQR: 35.9–57.9 pmol/L) and 3.8 nmol/L (IQR: 2.3–6.0 nmol/L) to 96.2 pmol/L (IQR: 77.1–130.6 pmol/L) and 12.3 nmol/L (IQR: 9–16.4 nmol/L), respectively (P < 0.001). A non-significant reduction in daily active vitamin D analogue dose occurred, 0.94 µmcg at baseline to 0.77 µmcg at 12 months (P = 0.73). The ability to synthesise 1,25(OH)2D3 in ESRD is maintained but is substrate dependent, and serum 25(OH)D was a limiting factor at baseline. Therefore, 1,25(OH)2D3 deficiency in ESRD is partly a consequence of 25(OH)D deficiency, rather than solely due to reduced 1α-hydroxylase activity as suggested by current treatment strategies.
University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
Search for other papers by Mojca Zerjav Tansek in
Google Scholar
PubMed
Search for other papers by Ana Bertoncel in
Google Scholar
PubMed
Search for other papers by Brina Sebez in
Google Scholar
PubMed
Search for other papers by Janez Zibert in
Google Scholar
PubMed
University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
Search for other papers by Urh Groselj in
Google Scholar
PubMed
University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
Search for other papers by Tadej Battelino in
Google Scholar
PubMed
University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
Search for other papers by Magdalena Avbelj Stefanija in
Google Scholar
PubMed
Despite recent improvements in the composition of the diet, lower mineral bone density and overweight tendencies are incoherently described in patients with phenylketonuria (PKU). The impact of dietary factors and plasma phenylalanine levels on growth, BMI, body composition, and bone mineral density was investigated in our cohort of patients with hyperphenylalaninemia (HPA) with or without dietary treatment. The anthropometric, metabolic, BMI and other nutritional indicators and bone mineral density were compared between the group of 96 treated patients with PKU (58 classic PKU (cPKU) and 38 patients with moderate-mild PKU defined as non-classic PKU (non-cPKU)) and the untreated group of 62 patients with benign HPA. Having compared the treated and untreated groups, there were normal outcomes and no statistically significant differences in BMI, body composition, and bone mineral density. Lower body height standard deviation scores were observed in the treated as compared to the untreated group (P < 0.001), but the difference was not significant when analyzing patients older than 18 years; however, cPKU adults were shorter compared to non-cPKU treated adults (P = 0.012). Interestingly, the whole-body fat was statistically higher in non-cPKU as compared to cPKU patients. In conclusion, the dietary treatment ensured adequate nutrition without significant consequences in BMI, body composition, and bone mineral density. A low protein diet may have delayed the growth in childhood, but the treated patients gained a normal final height. Mild untreated hyperphenylalaninemia characteristic for benign HPA had no negative physiological effect on bone mineral density.
Department of Endocrinology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Search for other papers by Lizhi Zhang in
Google Scholar
PubMed
Search for other papers by Jinwei He in
Google Scholar
PubMed
Search for other papers by Xiang Sun in
Google Scholar
PubMed
Search for other papers by Dongyue Pang in
Google Scholar
PubMed
Search for other papers by Jingjing Hu in
Google Scholar
PubMed
Search for other papers by Bo Feng in
Google Scholar
PubMed
We demonstrated previously that there is a correlation between glucagon-like peptide-1 (GLP-1) single-nucleotide polymorphism (SNP) and bone mineral density in postmenopausal women. Both GLP-1 and glucose-dependent insulinotropic peptide are incretins. The glucose-dependent insulinotropic peptide receptor (GIPR) SNP rs10423928 has been extensively studied. However, it is not clear whether GIPR gene mutations affect bone metabolism. The aim of this study was to investigate the association between rs10423928 and bone mineral density in postmenopausal women in Shanghai. rs10423928 was detected in 884 postmenopausal women in Shanghai, and the correlation between the GIPR SNP and bone mineral density was assessed. The dominant T/T genotype of rs10423928 was found to be related to the bone mineral density of the femoral neck (P = 0.035). Overall, our findings indicate that the dominant T/T genotype of rs10423928 in postmenopausal women is significantly associated with a higher bone mineral density and that the T/T genotype exerts a bone-protective effect.
Search for other papers by Martine Cohen-Solal in
Google Scholar
PubMed
Search for other papers by Thomas Funck-Brentano in
Google Scholar
PubMed
Department of Renal Physiology, Necker Hospital, Université de Paris, Paris, France
Search for other papers by Pablo Ureña Torres in
Google Scholar
PubMed
Mineral and bone diseases (MBD) are predominant in patients with chronic kidney disease (CKD) and lead to several bone manifestations, from pain to skeletal fractures. Cumulative traditional clinical risk factors, such as age and gender, in addition to those related to CKD, enhance the risk of comorbidity and mortality related to fractures. Despite great advances in understanding MBD in CKD, clinical and biological targets are lacking, which leads to under-management of fractures. Optimal PTH control results in a net improvement in defining the levels of bone remodeling. In addition, circulating biomarkers such as bone-specific alkaline phosphatase and cross-linked collagen type I peptide will also provide additional information about remodeling rate, bone mineralization and the evaluation of fracture risk. Imaging techniques identify patients at risk by measurement of bone mineral density by DEXA or by high peripheral QCT, which allow the discrimination of trabecular and cortical bone. Here, we have reviewed the literature related to epidemiology and the pathophysiological role of mineral and biochemical factors involved in CKD-MBD with a special focus on fracture risk. We also provide an algorithm that could be used for the management of bone diseases and to guide treatment decisions. Finally, the combined expertise of clinicians from various disciplines is crucial for the best prevention of fractures.
Department of Endocrinology, Trondheim University Hospital (St Olavs Hospital), Trondheim, Norway
Search for other papers by Unni Syversen in
Google Scholar
PubMed
Medical Clinic, Trondheim University Hospital (St Olavs Hospital), Trondheim, Norway
Search for other papers by Mats Peder Mosti in
Google Scholar
PubMed
Search for other papers by Ida Maria Mynarek in
Google Scholar
PubMed
Search for other papers by Trude Seselie Jahr Vedal in
Google Scholar
PubMed
Department of Gastroenterology, Trondheim University Hospital (St Olavs Hospital), Trondheim, Norway
Search for other papers by Kristin Aasarød in
Google Scholar
PubMed
Search for other papers by Trude Basso in
Google Scholar
PubMed
Search for other papers by Janne E Reseland in
Google Scholar
PubMed
Search for other papers by Per Medbøe Thorsby in
Google Scholar
PubMed
K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Trondheim, Norway
Search for other papers by Bjorn O Asvold in
Google Scholar
PubMed
Search for other papers by Erik Fink Eriksen in
Google Scholar
PubMed
Medical Clinic, Trondheim University Hospital (St Olavs Hospital), Trondheim, Norway
Search for other papers by Astrid Kamilla Stunes in
Google Scholar
PubMed
Objective
Type 1 diabetes (T1D) is associated with substantial fracture risk. Bone mineral density (BMD) is, however, only modestly reduced, suggesting impaired bone microarchitecture and/or bone material properties. Yet, the skeletal abnormalities have not been uncovered. Men with T1D seem to experience a more pronounced bone loss than their female counterparts. Hence, we aimed to examine different aspects of bone quality in men with T1D.
Design and Methods
In this cross-sectional study, men with T1D and healthy male controls were enrolled. BMD (femoral neck, total hip, lumbar spine, whole body) and spine trabecular bone score (TBS) were measured by dual x-ray absorptiometry, and bone material strength index (BMSi) was measured by in vivo impact microindentation. HbA1c and bone turnover markers were analyzed.
Results
Altogether, 33 men with T1D (43 ± 12 years) and 28 healthy male controls (42 ± 12 years) were included. Subjects with T1D exhibited lower whole-body BMD than controls (P = 0.04). TBS and BMSi were attenuated in men with T1D vs controls (P = 0.016 and P = 0.004, respectively), and T1D subjects also had a lower bone turnover. The bone parameters did not differ between subjects with or without diabetic complications. Duration of disease correlated negatively with femoral neck BMD but not with TBS or BMSi.
Conclusions
This study revealed compromised bone material strength and microarchitecture in men with T1D. Moreover, our data confirm previous studies which found a modest decrease in BMD and low bone turnover in subjects with T1D. Accordingly, bone should be recognized as a target of diabetic complications.
Division of General and Emergency Medicine, University Department of Medicine, Kantonsspital Aarau AG, Aarau, Switzerland
Search for other papers by Marlena Mueller in
Google Scholar
PubMed
University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital, Basel, Switzerland
Search for other papers by Fahim Ebrahimi in
Google Scholar
PubMed
Search for other papers by Emanuel Christ in
Google Scholar
PubMed
Search for other papers by Christian Andreas Nebiker in
Google Scholar
PubMed
Division of General and Emergency Medicine, University Department of Medicine, Kantonsspital Aarau AG, Aarau, Switzerland
Faculty of Medicine, University Hospital Basel, Basel, Switzerland
Search for other papers by Philipp Schuetz in
Google Scholar
PubMed
Division of General and Emergency Medicine, University Department of Medicine, Kantonsspital Aarau AG, Aarau, Switzerland
Faculty of Medicine, University Hospital Basel, Basel, Switzerland
Search for other papers by Beat Mueller in
Google Scholar
PubMed
Division of General and Emergency Medicine, University Department of Medicine, Kantonsspital Aarau AG, Aarau, Switzerland
Search for other papers by Alexander Kutz in
Google Scholar
PubMed
Background
Primary hyperparathyroidism is a prevalent endocrinopathy for which surgery is the only curative option. Parathyroidectomy is primarily recommended in younger and symptomatic patients, while there are still concerns regarding surgical complications in older patients. We therefore assessed the association of age with surgical outcomes in patients undergoing parathyroidectomy in a large population in Switzerland.
Methods
Population-based cohort study of adult patients with primary hyperparathyroidism undergoing parathyroidectomy in Switzerland between 2012 and 2018. The cohort was divided into four age groups (<50 years, 50–64 years, 65–74 years, ≥75 years). The primary outcome was a composite of in-hospital postoperative complications. Secondary outcomes were intensive care unit (ICU) admission, unplanned 30-day-readmission, and prolonged length of hospital stay.
Results
We studied 2642 patients with a median (IQR) age of 62 (53–71) years. Overall, 111 patients had complications including surgical re-intervention, hypocalcemia, and vocal cord paresis. As compared to <50 year-old patients, older patients had no increased risk for in-hospital complications after surgery (50–64 years: odds ratio (OR): 0.51 (95% CI, 0.28 to 0.92); 65–74 years: OR: 0.72 (95% CI, 0.39 to 1.33); ≥75 years: OR: 1.03 (95% CI, 0.54 to 1.95), respectively. There was also no association of age and rates of ICU-admission and unplanned 30-day-readmission, but oldest patients had longer hospital stays (OR: 2.38 (95% CI, 1.57 to 3.60)).
Conclusion
≥50 year-old patients undergoing parathyroidectomy had comparable risk of in-hospital complications as compared with younger ones. These data support parathyroidectomy in even older patients with primary hyperparathyroidism as performed in clinical routine.
Search for other papers by Cheng Han Ng in
Google Scholar
PubMed
Search for other papers by Yip Han Chin in
Google Scholar
PubMed
Search for other papers by Marcus Hon Qin Tan in
Google Scholar
PubMed
Search for other papers by Jun Xuan Ng in
Google Scholar
PubMed
Department of Medicine, National University Hospital, Singapore
Search for other papers by Samantha Peiling Yang in
Google Scholar
PubMed
Search for other papers by Jolene Jiayu Kiew in
Google Scholar
PubMed
Department of Medicine, National University Hospital, Singapore
Search for other papers by Chin Meng Khoo in
Google Scholar
PubMed
Purpose:
Primary hyperparathyroidism (PHPT) is a common condition affecting people of all ages and is mainly treated with parathyroidectomy. Cinacalcet has been widely used in secondary or tertiary hyperparathyroidism, but the use of cinacalcet in PHPT is less clear.
Methods:
Searches were conducted in Medline and Embase for cinacalcet use in PHPT from induction to 10 April 2020. Articles and conferences abstracts describing the use of cinacalcet for PHPT in prospective or retrospective cohorts and randomized controlled trials restricted to English language only. We initially identified 1301 abstracts. Each article went extraction by two blinded authors on a structured proforma. Continuous outcomes were pooled with weight mean difference (WMD). Quality of included articles was assessed with Newcastle Ottwa Scale and Cochrane Risk of Bias 2.0.
Results:
Twenty-eight articles were included. Normalization rate of serum Ca levels was reported at 90% (CI: 0.82 to 0.96). Serum levels of Ca and PTH levels were significantly reduced (Ca, WMD: 1.647, CI: −1.922 to −1.371; PTH, WMD: −31.218, CI: −41.671 to −20.765) and phosphate levels significantly increased (WMD: 0.498, CI: 0.400 to 0.596) after cinacalcet therapy. The higher the baseline Ca levels, the greater Ca reduction with cinacalcet treatment. Age and gender did not modify the effect of cinacalcet on serum Ca levels.
Conclusion:
The results from the meta-analysis support the use of cinacalcet as an alternative or bridging therapy to treat hypercalcemia in people with PHPT.
Search for other papers by Sara Storvall in
Google Scholar
PubMed
Search for other papers by Helena Leijon in
Google Scholar
PubMed
Search for other papers by Eeva Ryhänen in
Google Scholar
PubMed
Search for other papers by Johanna Louhimo in
Google Scholar
PubMed
Search for other papers by Caj Haglund in
Google Scholar
PubMed
Search for other papers by Camilla Schalin-Jäntti in
Google Scholar
PubMed
Search for other papers by Johanna Arola in
Google Scholar
PubMed
Introduction
Parathyroid carcinoma represents a rare cause of primary hyperparathyroidism. Distinguishing carcinoma from the benign tumors underlying primary hyperparathyroidism remains challenging. The diagnostic criteria for parathyroid carcinoma are local and/or metastatic spreading. Atypical parathyroid adenomas share other histological features with carcinomas but lack invasive growth. Somatostatin receptors are commonly expressed in different neuroendocrine tumors, but whether this also holds for parathyroid tumors remains unknown.
Aim
Our aim is to examine the immunohistochemical expression of somatostatin receptor 1–5 in parathyroid typical adenomas, atypical adenomas and carcinomas.
Methods
We used a tissue microarray construct from a nationwide cohort of parathyroid carcinomas (n = 32), age- and gender-matched typical parathyroid adenomas (n = 72) and atypical parathyroid adenomas (n = 27) for immunohistochemistry of somatostatin receptor subtypes 1–5. We separately assessed cytoplasmic, membrane and nuclear expression and also investigated the associations with histological, biochemical and clinical characteristics.
Results
All parathyroid tumor subgroups expressed somatostatin receptors, although membrane expression appeared negligible. Except for somatostatin receptor 1, expression patterns differed between the three tumor types. Adenomas exhibited the weakest and carcinomas the strongest expression of somatostatin receptor 2, 3, 4 and 5. We observed the largest difference for cytoplasmic somatostatin receptor 5 expression.
Conclusions
Parathyroid adenomas, atypical adenomas and carcinomas all express somatostatin receptor subtypes 1–5. Somatostatin receptor 5 may serve as a potential tumor marker for malignancy. Studies exploring the role of somatostatin receptor imaging and receptor-specific therapies in patients with parathyroid carcinomas are needed.
Search for other papers by Glenville Jones in
Google Scholar
PubMed
Vitamin D has many physiological functions including upregulation of intestinal calcium and phosphate absorption, mobilization of bone resorption, renal reabsorption of calcium as well as actions on a variety of pleiotropic functions. It is believed that many of the hormonal effects of vitamin D involve a 1,25-dihydroxyvitamin D3-vitamin D receptor-mediated transcriptional mechanism involving binding to the cellular chromatin and regulating hundreds of genes in many tissues. This comprehensive historical review provides a unique perspective of the many steps of the discovery of vitamin D and its deficiency disease, rickets, stretching from 1650 until the present. The overview is divided into four distinct historical phases which cover the major developments in the field and in the process highlighting the: (a) first recognition of rickets or vitamin D deficiency; (b) discovery of the nutritional factor, vitamin D and its chemical structure; (c) elucidation of vitamin D metabolites including the hormonal form, 1,25-dihydroxyvitamin D3; (d) delineation of the vitamin D cellular machinery, functions and vitamin D-related diseases which focused on understanding the mechanism of action of vitamin D in its many target cells.