Search Results

You are looking at 1 - 10 of 223 items for

  • Abstract: Adrenal x
  • Abstract: Addisons x
  • Abstract: Adrenaline x
  • Abstract: Androgens x
  • Abstract: Catecholamines x
  • Abstract: hyperplasia x
  • Abstract: Cortex x
  • Abstract: Cushings x
  • Abstract: Noradrenaline x
Clear All Modify Search
Henrik Falhammar Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

Search for other papers by Henrik Falhammar in
Google Scholar
PubMed
Close
,
Magnus Kjellman Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
Department of Breast and Endocrine Surgery, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Magnus Kjellman in
Google Scholar
PubMed
Close
, and
Jan Calissendorff Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

Search for other papers by Jan Calissendorff in
Google Scholar
PubMed
Close

Background

With the increasing access to imaging more pheochromocytomas are diagnosed in the workup of adrenal incidentalomas. This may have changed the occurrence of the classic presentation with hypertension and the classic triad (headaches, sweating and palpitation).

Methods

We reviewed 94 consecutive cases of pheochromocytomas. Two cases of ectopic ACTH-syndrome were subsequently excluded.

Results

Of the 92 cases included 64% had presented as an incidentaloma, 32% as a suspected pheochromocytoma and 4% had been screened because of previously diagnosed MEN2A. Those screened were youngest while those with incidentalomas were oldest. The females were more common in the incidentaloma and the screening groups, and males in the suspected pheochromocytoma group. Measurements of noradrenaline/normetanephrine levels were highest in the suspected pheocromocytoma group and lowest in the screening group. Hypertension was present in 63% of the incidentalomas, 79% of suspected pheochromocytomas and in none of the screening group. Paroxysmal symptoms were present in almost all with suspected pheochromocytoma while only in half of the other groups. The suspected pheocromocytoma group had most symptoms and the screening group least. The classic triad was present in 14% of the incidentalomas, in 28% of the suspected and in none of the screening group, while no symptoms at all was present in 12%, 0% and 25%, respectively. Pheochromocytoma crisis occurred in 5%. There was a positive correlation between tumor size vs hormone levels, and catecholamine levels vs blood pressure.

Conclusion

Clinicians need to be aware of the modern presentation of pheochromocytomas since early identification can be life-saving.

Open access
Rachel Forfar Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Rachel Forfar in
Google Scholar
PubMed
Close
,
Mashal Hussain Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK

Search for other papers by Mashal Hussain in
Google Scholar
PubMed
Close
,
Puneet Khurana Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Puneet Khurana in
Google Scholar
PubMed
Close
,
Jennifer Cook Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Jennifer Cook in
Google Scholar
PubMed
Close
,
Steve Lewis Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Steve Lewis in
Google Scholar
PubMed
Close
,
Dillon Popat Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK

Search for other papers by Dillon Popat in
Google Scholar
PubMed
Close
,
David Jackson Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK

Search for other papers by David Jackson in
Google Scholar
PubMed
Close
,
Ed McIver Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Ed McIver in
Google Scholar
PubMed
Close
,
Jeff Jerman Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Jeff Jerman in
Google Scholar
PubMed
Close
,
Debra Taylor Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Debra Taylor in
Google Scholar
PubMed
Close
,
Adrian JL Clark Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK

Search for other papers by Adrian JL Clark in
Google Scholar
PubMed
Close
, and
Li F Chan Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK

Search for other papers by Li F Chan in
Google Scholar
PubMed
Close

The overproduction of adrenocorticotropic hormone (ACTH), in conditions such as Cushing’s disease and congenital adrenal hyperplasia (CAH), leads to significant morbidity. Current treatment with glucocorticoids does not adequately suppress plasma ACTH, resulting in excess adrenal androgen production. At present, there is no effective medical treatment in clinical use that would directly block the action of ACTH. Such a therapy would be of great clinical value. ACTH acts via a highly selective receptor, the melanocortin-2 receptor (MC2R) associated with its accessory protein MRAP. ACTH is the only known naturally occurring agonist for this receptor. This lack of redundancy and the high degree of ligand specificity suggest that antagonism of this receptor could provide a useful therapeutic strategy in the treatment of conditions of ACTH excess. To this end, we screened an extensive library of low-molecular-weight drug-like compounds for MC2R antagonist activity using a high-throughput homogeneous time-resolved fluorescence cAMP assay in Chinese hamster ovary cells stably co-expressing human MC2R and MRAP. Hits that demonstrated MC2R antagonist properties were counter-screened against the β2 adrenergic receptor and dose–response analysis undertaken. This led to the identification of a highly specific MC2R antagonist capable of antagonising ACTH-induced progesterone release in murine Y-1 adrenal cells and having selectivity for MC2R amongst the human melanocortin receptors. This work provides a foundation for the clinical investigation of small-molecule ACTH antagonists as therapeutic agents and proof of concept for the screening and discovery of such compounds.

Open access
Hanna F Nowotny Medizinische Klinik IV, Department of Endocrinology, Klinikum der Universität München, Munich, Germany

Search for other papers by Hanna F Nowotny in
Google Scholar
PubMed
Close
,
Jillian Bryce Office for Rare Conditions, University of Glasgow, Glasgow, UK

Search for other papers by Jillian Bryce in
Google Scholar
PubMed
Close
,
Salma R Ali Office for Rare Conditions, University of Glasgow, Glasgow, UK

Search for other papers by Salma R Ali in
Google Scholar
PubMed
Close
,
Roberta Giordano Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy

Search for other papers by Roberta Giordano in
Google Scholar
PubMed
Close
,
Federico Baronio Pediatric Unit, Department Hospital of Woman and Child, Endo-ERN Centre IT11, IRCSS AOU S.Orsola-Malpighi University Hospital, Bologna, Italy

Search for other papers by Federico Baronio in
Google Scholar
PubMed
Close
,
Irina Chifu Division of Endocrinology and Diabetology, Department of Internal Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany

Search for other papers by Irina Chifu in
Google Scholar
PubMed
Close
,
Lea Tschaidse Medizinische Klinik IV, Department of Endocrinology, Klinikum der Universität München, Munich, Germany

Search for other papers by Lea Tschaidse in
Google Scholar
PubMed
Close
,
Martine Cools Department of Paediatric Endocrinology, Ghent University Hospital, University of Ghent, Ghent, Belgium

Search for other papers by Martine Cools in
Google Scholar
PubMed
Close
,
Erica LT van den Akker Department of Pediatrics, Division of Pediatric Endocrinology, Erasmus MC - Sophia Children’s Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands

Search for other papers by Erica LT van den Akker in
Google Scholar
PubMed
Close
,
Henrik Falhammar Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Henrik Falhammar in
Google Scholar
PubMed
Close
,
Natasha M Appelman-Dijkstra Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands

Search for other papers by Natasha M Appelman-Dijkstra in
Google Scholar
PubMed
Close
,
Luca Persani Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan Italy

Search for other papers by Luca Persani in
Google Scholar
PubMed
Close
,
Guglielmo Beccuti Department of Clinical and Biological Sciences, University of Turin, Turin, Italy

Search for other papers by Guglielmo Beccuti in
Google Scholar
PubMed
Close
,
Ian L Ross Division of Endocrinology, Department of Medicine, University of Cape Town, Cape Town, South Africa

Search for other papers by Ian L Ross in
Google Scholar
PubMed
Close
,
Simona Grozinsky-Glasberg Neuroendocrine Tumor Unit, ENETS Center of Excellence, Department of Endocrinology and Metabolism, Hadassah Medical Organisation and Faculty of Medicine, the Hebrew University, Jerusalem, Israel

Search for other papers by Simona Grozinsky-Glasberg in
Google Scholar
PubMed
Close
,
Alberto M Pereira Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands

Search for other papers by Alberto M Pereira in
Google Scholar
PubMed
Close
,
Eystein S Husebye Department of Clinical Science and KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway
Department of Medicine, Karolinska Institutet, Stockholm, Sweden

Search for other papers by Eystein S Husebye in
Google Scholar
PubMed
Close
,
Stefanie Hahner Division of Endocrinology and Diabetology, Department of Internal Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany

Search for other papers by Stefanie Hahner in
Google Scholar
PubMed
Close
,
S Faisal Ahmed Office for Rare Conditions, University of Glasgow, Glasgow, UK
Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
Developmental Endocrinology Research Group, University of Glasgow, Glasgow, United Kingdom

Search for other papers by S Faisal Ahmed in
Google Scholar
PubMed
Close
, and
Nicole Reisch Medizinische Klinik IV, Department of Endocrinology, Klinikum der Universität München, Munich, Germany

Search for other papers by Nicole Reisch in
Google Scholar
PubMed
Close

Background

Information on clinical outcomes of coronavirus disease 19 (COVID-19) infection in patients with adrenal disorders is scarce.

Methods

A collaboration between the European Society of Endocrinology (ESE) Rare Disease Committee and European Reference Network on Rare Endocrine Conditions via the European Registries for Rare Endocrine Conditions allowed the collection of data on 64 cases (57 adrenal insufficiency (AI), 7 Cushing’s syndrome) that had been reported by 12 centres in 8 European countries between January 2020 and December 2021.

Results

Of all 64 patients, 23 were males and 41 females (13 of those children) with a median age of 37 and 51 years. In 45/57 (95%) AI cases, COVID-19 infection was confirmed by testing. Primary insufficiency was present in 45/57 patients; 19 were affected by Addison’s disease, 19 by congenital adrenal hyperplasia and 7 by primary AI (PAI) due to other causes. The most relevant comorbidities were hypertension (12%), obesity (n = 14%) and diabetes mellitus (9%). An increase by a median of 2.0 (IQR 1.4) times the daily replacement dose was reported in 42 (74%) patients. Two patients were administered i.m. injection of 100 mg hydrocortisone, and 11/64 were admitted to the hospital. Two patients had to be transferred to the intensive care unit, one with a fatal outcome. Four patients reported persistent SARS-CoV-2 infection, all others complete remission.

Conclusion

This European multicentre questionnaire is the first to collect data on the outcome of COVID-19 infection in patients with adrenal gland disorders. It suggests good clinical outcomes in case of duly dose adjustments and emphasizes the importance of patient education on sick day rules.

Open access
Anastasia P Athanasoulia-Kaspar Clinical Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany

Search for other papers by Anastasia P Athanasoulia-Kaspar in
Google Scholar
PubMed
Close
,
Matthias K Auer Clinical Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany

Search for other papers by Matthias K Auer in
Google Scholar
PubMed
Close
,
Günter K Stalla Clinical Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany

Search for other papers by Günter K Stalla in
Google Scholar
PubMed
Close
, and
Mira Jakovcevski Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany

Search for other papers by Mira Jakovcevski in
Google Scholar
PubMed
Close

Objective

Patients with non-functioning pituitary adenomas exhibit high morbidity and mortality rates. Growth hormone deficiency and high doses of glucocorticoid substitution therapy have been identified as corresponding risk factors. Interestingly, high levels of endogenous cortisol in, e.g., patients with post-traumatic stress disorder or patients with Cushing’s disease have been linked to shorter telomere length. Telomeres are noncoding DNA regions located at the end of chromosomes consisting of repetitive DNA sequences which shorten with aging and hereby determine cell survival. Therefore, telomere length can serve as a predictor for the onset of disease and mortality in some endocrine disorders (e.g., Cushing’s disease).

Design/methods

Here, we examine telomere length from blood in patients (n = 115) with non-functioning pituitary adenomas (NFPA) in a cross-sectional case–control (n = 106, age-, gender-matched) study using qPCR. Linear regression models were used to identify independent predictors of telomere length.

Results

We show that patients with NFPA exhibited shorter telomeres than controls. No significant association of indices of growth hormone deficiency (IGF-1-level-SDS, years of unsubstituted growth hormone deficiency etc.) with telomere length was detected. Interestingly, linear regression analysis showed that hydrocortisone replacement dosage in patients with adrenal insufficiency (n = 52) was a significant predictor for shorter telomere length (β = 0.377; P = 0.018) independent of potential confounders (gender, age, BMI, arterial hypertension, systolic blood pressure, number of antihypertensive drugs, total leukocyte count, waist-to-hip ratio, waist circumference, diabetes mellitus type 2, HbA1c, current statin use). Median split analysis revealed that higher hydrocortisone intake (>20 mg) was associated with significantly shorter telomeres.

Conclusion

These observations strengthen the importance of adjusted glucocorticoid treatment in NFPA patients with respect to morbidity and mortality rates.

Open access
Boni Xiang Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China

Search for other papers by Boni Xiang in
Google Scholar
PubMed
Close
,
Ran Tao Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China

Search for other papers by Ran Tao in
Google Scholar
PubMed
Close
,
Xinhua Liu Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China

Search for other papers by Xinhua Liu in
Google Scholar
PubMed
Close
,
Xiaoming Zhu Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China

Search for other papers by Xiaoming Zhu in
Google Scholar
PubMed
Close
,
Min He Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China

Search for other papers by Min He in
Google Scholar
PubMed
Close
,
Zengyi Ma Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China

Search for other papers by Zengyi Ma in
Google Scholar
PubMed
Close
,
Yehong Yang Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China

Search for other papers by Yehong Yang in
Google Scholar
PubMed
Close
,
Zhaoyun Zhang Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China

Search for other papers by Zhaoyun Zhang in
Google Scholar
PubMed
Close
,
Yiming Li Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China

Search for other papers by Yiming Li in
Google Scholar
PubMed
Close
,
Zhenwei Yao Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China

Search for other papers by Zhenwei Yao in
Google Scholar
PubMed
Close
,
Yongfei Wang Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China

Search for other papers by Yongfei Wang in
Google Scholar
PubMed
Close
, and
Hongying Ye Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China

Search for other papers by Hongying Ye in
Google Scholar
PubMed
Close

Objective

The aim of this study was to evaluate thyroid functions in Cushing’s syndrome (CS), the dynamic changes of thyroid hormones and antithyroid antibodies in Cushing’s disease (CD) pre- and postoperatively.

Design and methods

This is a retrospective study enrolling 118 patients with CS (102 CD, 10 adrenal CS and 6 ectopic adrenocorticotropic syndrome (EAS)). Thyroid functions (thyroid-stimulation hormone (TSH), T3, free T3 (FT3), T4 and free T4 (FT4)) were measured in all CS at the time of diagnosis and in all CD 3 months after transsphenoidal pituitary tumor resection. Postoperative hormone monitoring within 3 months was conducted in 9 CD patients completing remission. Twenty-eight remitted CD patients experienced hormone and antithyroid antibody evaluation preoperatively and on the 3rd, 6th and 12th month after surgery.

Results

TSH, T3 and FT3 were below the reference range in 31%, 69% and 44% of the 118 CS patients. Remitted CD patients (81/102) had significantly higher TSH (P = 0.000), T3 (P = 0.000) and FT3 (P = 0.000) than those in the non-remission group (21/102). After remission of CD, TSH, T3 and FT3 showed a significant increase, with a few cases above the reference range. By 12 months, most CD patients’ thyroid functions returned to normal. Thyroid hormones (including TSH, T3 and FT3) were negatively associated with serum cortisol levels both before and after surgery. No significant changes of antithyroid autoantibodies were observed.

Conclusions

TSH, T3 and FT3 are suppressed in endogenous hypercortisolemia. After remission of CD, TSH, T3 and FT3 increased significantly, even above the reference range, but returned to normal 1 year after surgery in most cases. Antithyroid antibodies did not change significantly after remission of CD.

Open access
Grethe Å Ueland Department of Clinical Science, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway

Search for other papers by Grethe Å Ueland in
Google Scholar
PubMed
Close
,
Thea Grinde Department of Clinical Science, University of Bergen, Bergen, Norway

Search for other papers by Thea Grinde in
Google Scholar
PubMed
Close
,
Paal Methlie Department of Clinical Science, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway
K. G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway

Search for other papers by Paal Methlie in
Google Scholar
PubMed
Close
,
Oskar Kelp Department of Medicine, Akershus University Hospital, Nordbyhagen, Norway

Search for other papers by Oskar Kelp in
Google Scholar
PubMed
Close
,
Kristian Løvås Department of Medicine, Haukeland University Hospital, Bergen, Norway
K. G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway

Search for other papers by Kristian Løvås in
Google Scholar
PubMed
Close
, and
Eystein S Husebye Department of Clinical Science, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway
K. G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway

Search for other papers by Eystein S Husebye in
Google Scholar
PubMed
Close

Objective:

Autonomous cortisol secretion (ACS) is a condition with ACTH-independent cortisol overproduction from adrenal incidentalomas (AI) or adrenal hyperplasia. The hypercortisolism is often mild, and most patients lack typical clinical features of overt Cushing’s syndrome (CS). ACS is not well defined and diagnostic tests lack validation.

Methods:

Retrospective study of 165 patients with AI evaluated clinically and by assay of morning plasma ACTH, late-night saliva cortisol, serum DHEA sulphate (DHEAS), 24-h urine-free cortisol, and cortisol after dexamethasone suppression.

Results:

Patients with AI (n = 165) were diagnosed as non-functioning incidentalomas (NFI) (n = 82) or ACS (n = 83) according to current European guidelines. Late-night saliva cortisol discriminated poorly between NFI and ACS, showing a high rate of false-positive (23/63) and false-negative (38/69) results. The conventional low-dose dexamethasone suppression test (LDDST) did not improve the diagnostic specificity, compared with the 1 mg overnight DST. Receiver operating characteristic curve analysis of DHEAS in the two cohorts demonstrated an area under the curve of 0.76 (P < 0.01) with a sensitivity for ACS of 58% and a specificity of 80% using the recommended cutoff at 1.04 µmol/L (40 µg/dL).

Conclusion:

We here demonstrate in a large retrospective cohort of incidentaloma patients, that neither DHEAS, late-night saliva cortisol nor 24-h urine free cortisol are useful to discriminate between non-functioning adrenal incidentalomas and ACS. The conventional LDDST do not add further information compared with the 1 mg overnight DST. Alternative biomarkers are needed to improve the diagnostic workup of ACS.

Open access
Jingya Zhou Department of Medical Records, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
Collaborating Center for the WHO Family of International Classifications in China, Beijing, China

Search for other papers by Jingya Zhou in
Google Scholar
PubMed
Close
,
Meng Zhang Department of Medical Records, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
Collaborating Center for the WHO Family of International Classifications in China, Beijing, China

Search for other papers by Meng Zhang in
Google Scholar
PubMed
Close
,
Lin Lu Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
Key Laboratory of Endocrinology of National Health Commission of People’s Republic of China, Beijing, China

Search for other papers by Lin Lu in
Google Scholar
PubMed
Close
,
Xiaopeng Guo Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China

Search for other papers by Xiaopeng Guo in
Google Scholar
PubMed
Close
,
Lu Gao Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China

Search for other papers by Lu Gao in
Google Scholar
PubMed
Close
,
Weigang Yan Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Search for other papers by Weigang Yan in
Google Scholar
PubMed
Close
,
Haiyu Pang Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
Clinical Epidemiology Unit, International Epidemiology Network, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Search for other papers by Haiyu Pang in
Google Scholar
PubMed
Close
,
Yi Wang Department of Medical Records, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
Collaborating Center for the WHO Family of International Classifications in China, Beijing, China

Search for other papers by Yi Wang in
Google Scholar
PubMed
Close
, and
Bing Xing Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China

Search for other papers by Bing Xing in
Google Scholar
PubMed
Close

Objective

To investigate the validity of discharge ICD-10 codes in detecting the etiology of endogenous Cushing’s syndrome (CS) in hospitalized patients.

Methods

We evaluated the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of CS etiology-related ICD-10 codes or code combinations by comparing hospital discharge administrative data (DAD) with established diagnoses from medical records.

Results

Coding for patients with adrenocortical adenoma (ACA) and those with bilateral macronodular adrenal hyperplasia (BMAH) demonstrated disappointingly low sensitivity at 78.8% (95% CI: 70.1–85.6%) and 83.9% (95% CI: 65.5–93.9%), respectively. BMAH had the lowest PPV of 74.3% (95% CI: 56.4–86.9%). In confirmed ACA patients, the sensitivity for ACA code combinations was higher in patients initially admitted to the Department of Endocrinology before surgery than that in patients directly admitted to the Department of Urology (90.0 vs 73.1%, P = 0.033). The same phenomenon was observed in the PPV for the BMAH code (100.0 vs 60.9%, P = 0.012). Misinterpreted or confusing situations caused by coders (68.1%) and by the omission or denormalized documentation of symptomatic diagnosis by clinicians (26.1%) accounted for the main source of coding errors.

Conclusions

Hospital DAD is an effective data source for evaluating the etiology of CS but not ACA and BMAH. Improving surgeons’ documentation, especially in the delineation of symptomatic and locative diagnoses in discharge abstracts; department- or disease-specific training for coders and more multidisciplinary collaboration are ways to enhance the applicability of administrative data for CS etiologies.

Open access
M Cherenko Department of Medicine, Division of Endocrinology, Leiden University Medical Centre, Leiden, Netherlands

Search for other papers by M Cherenko in
Google Scholar
PubMed
Close
,
N M Appelman-Dijkstra Department of Medicine, Division of Endocrinology, Leiden University Medical Centre, Leiden, Netherlands

Search for other papers by N M Appelman-Dijkstra in
Google Scholar
PubMed
Close
,
A L Priego Zurita Department of Medicine, Division of Endocrinology, Leiden University Medical Centre, Leiden, Netherlands

Search for other papers by A L Priego Zurita in
Google Scholar
PubMed
Close
,
N R Biermasz Department of Medicine, Division of Endocrinology, Leiden University Medical Centre, Leiden, Netherlands

Search for other papers by N R Biermasz in
Google Scholar
PubMed
Close
,
O M Dekkers Department of Medicine, Division of Endocrinology, Leiden University Medical Centre, Leiden, Netherlands

Search for other papers by O M Dekkers in
Google Scholar
PubMed
Close
,
,
F A Klok Department of Medicine, Division of Thrombosis and Haemostasis, Leiden University Medical Centre, Leiden, Netherlands

Search for other papers by F A Klok in
Google Scholar
PubMed
Close
,
N Reisch Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany

Search for other papers by N Reisch in
Google Scholar
PubMed
Close
,
A Aulinas Department of Endocrinology, Fundacio de Gestio Sanitaria Hospital de la Santa Creu i Sant Pau, IR-SantPau and CIBERER Unit 747 (ISCIII), Barcelona, Spain

Search for other papers by A Aulinas in
Google Scholar
PubMed
Close
,
B Biagetti Department of Endocrinology, Hospital Universitari Vall d’Hebron, Barcelona, Spain

Search for other papers by B Biagetti in
Google Scholar
PubMed
Close
,
S Cannavo Endocrine Unit, University Hospital AOU Policlinico G. Martino, Messina, Italy

Search for other papers by S Cannavo in
Google Scholar
PubMed
Close
,
L Canu University Hospital Florence Careggi, Florence, Italy

Search for other papers by L Canu in
Google Scholar
PubMed
Close
,
M Detomas Department of Internal Medicine, University Hospital Würzburg, Wuerzburg, Germany

Search for other papers by M Detomas in
Google Scholar
PubMed
Close
,
F Devuyst Department of Endocrinology, Hôpital Universitaire de Bruxelles, Hôpital Erasme, Brussels, Belgium

Search for other papers by F Devuyst in
Google Scholar
PubMed
Close
,
H Falhammar Department of Endocrinology, Karolinska University Hospital and Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

Search for other papers by H Falhammar in
Google Scholar
PubMed
Close
,
R A Feelders Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands

Search for other papers by R A Feelders in
Google Scholar
PubMed
Close
,
F Ferrau Endocrine Unit, University Hospital AOU Policlinico G. Martino, Messina, Italy

Search for other papers by F Ferrau in
Google Scholar
PubMed
Close
,
F Gatto IRCCS Ospedale Policlinico San Martino, Genova, Genoa, Italy

Search for other papers by F Gatto in
Google Scholar
PubMed
Close
,
C Grasselli Cardiovascular Medicine Unit, AUSL-IRCCS, Reggio Emilia, Italy

Search for other papers by C Grasselli in
Google Scholar
PubMed
Close
,
P van Houten Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Nijmegen, Netherlands

Search for other papers by P van Houten in
Google Scholar
PubMed
Close
,
C Hoybye Department of Endocrinology, Karolinska University Hospital and Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

Search for other papers by C Hoybye in
Google Scholar
PubMed
Close
,
A M Isidori Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy

Search for other papers by A M Isidori in
Google Scholar
PubMed
Close
,
A Kyrilli Department of Endocrinology, Hôpital Universitaire de Bruxelles, Hôpital Erasme, Brussels, Belgium

Search for other papers by A Kyrilli in
Google Scholar
PubMed
Close
,
P Loli Division of Endocrinology, San Raffaele Vita-Salute University, IRCCS San Raffaele Hospital Milan, Italy

Search for other papers by P Loli in
Google Scholar
PubMed
Close
,
D Maiter Department of Endocrinology, Cliniques universitaires Saint-Luc – UCLouvain, Brussels, Belgium

Search for other papers by D Maiter in
Google Scholar
PubMed
Close
,
E Nowak Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany

Search for other papers by E Nowak in
Google Scholar
PubMed
Close
,
R Pivonello Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università “Federico II” di Napoli, Naples, Italy

Search for other papers by R Pivonello in
Google Scholar
PubMed
Close
,
O Ragnarsson Sahlgrenska Academy, Wallenberg Centre for Molecular and Translational Medicine, Institute of Medicine (O.R.), University of Gothenburg, Sweden

Search for other papers by O Ragnarsson in
Google Scholar
PubMed
Close
,
R V Steenaard Department of Internal Medicine, Máxima MC, Veldhoven, Netherlands

Search for other papers by R V Steenaard in
Google Scholar
PubMed
Close
,
N Unger University Hospital Essen, Department of Endocrinology, Diabetes and Metabolism, Essen, Germany

Search for other papers by N Unger in
Google Scholar
PubMed
Close
,
A van de Ven Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Nijmegen, Netherlands

Search for other papers by A van de Ven in
Google Scholar
PubMed
Close
,
S M Webb Department of Endocrinology, Fundacio de Gestio Sanitaria Hospital de la Santa Creu i Sant Pau, IR-SantPau and CIBERER Unit 747 (ISCIII), Barcelona, Spain

Search for other papers by S M Webb in
Google Scholar
PubMed
Close
,
D Yeste Pediatric Endocrinology Service, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain. CIBER Enfermedades Raras, Instituto Carlos III, Madrid, Spain

Search for other papers by D Yeste in
Google Scholar
PubMed
Close
,
S F Ahmed Department of Medicine, Division of Endocrinology, Leiden University Medical Centre, Leiden, Netherlands
University of Glasgow, Office for Rare Conditions, Glasgow, UK
University of Glasgow, Developmental Endocrinology Research Group, Royal Hospital for Children, Glasgow, UK

Search for other papers by S F Ahmed in
Google Scholar
PubMed
Close
, and
A M Pereira Department of Endocrinology & Metabolism, Amsterdam University Medical Centre, Amsterdam, Noord-Holland, Netherlands

Search for other papers by A M Pereira in
Google Scholar
PubMed
Close

Background

Patients with Cushing syndrome (CS) are at increased risk of venous thromboembolism (VTE).

Objective

The aim was to evaluate the current management of new cases of CS with a focus on VTE and thromboprophylaxis.

Design and methods

A survey was conducted within those that report in the electronic reporting tool (e-REC) of the European Registries for Rare Endocrine Conditions (EuRRECa) and the involved main thematic groups (MTG’s) of the European Reference Networks for Rare Endocrine Disorders (Endo-ERN) on new patients with CS from January 2021 to July 2022.

Results

Of 222 patients (mean age 44 years, 165 females), 141 patients had Cushing disease (64%), 69 adrenal CS (31%), and 12 patients with ectopic CS (5.4%). The mean follow-up period post-CS diagnosis was 15 months (range 3–30). Cortisol-lowering medications were initiated in 38% of patients. One hundred fifty-four patients (69%) received thromboprophylaxis (including patients on chronic anticoagulant treatment), of which low-molecular-weight heparins were used in 96% of cases. VTE was reported in six patients (2.7%), of which one was fatal: two long before CS diagnosis, two between diagnosis and surgery, and two postoperatively. Three patients were using thromboprophylaxis at time of the VTE diagnosis. The incidence rate of VTE in patients after Cushing syndrome diagnosis in our study cohort was 14.6 (95% CI 5.5; 38.6) per 1000 person-years.

Conclusion

Thirty percent of patients with CS did not receive preoperative thromboprophylaxis during their active disease stage, and half of the VTE cases even occurred during this stage despite thromboprophylaxis. Prospective trials to establish the optimal thromboprophylaxis strategy in CS patients are highly needed.

Significance statement

The incidence rate of venous thromboembolism in our study cohort was 14.6 (95% CI 5.5; 38.6) per 1000 person-years. Notably, this survey showed that there is great heterogeneity regarding time of initiation and duration of thromboprophylaxis in expert centers throughout Europe.

Open access
M S Elston Department of Endocrinology, Waikato Hospital, Hamilton, New Zealand
Waikato Clinical Campus, University of Auckland, Hamilton, New Zealand

Search for other papers by M S Elston in
Google Scholar
PubMed
Close
,
V B Crawford Department of Endocrinology, Waikato Hospital, Hamilton, New Zealand

Search for other papers by V B Crawford in
Google Scholar
PubMed
Close
,
M Swarbrick Department of Radiology, Waikato Hospital, Hamilton, New Zealand

Search for other papers by M Swarbrick in
Google Scholar
PubMed
Close
,
M S Dray Department of Pathology, Waikato Hospital, Hamilton, New Zealand

Search for other papers by M S Dray in
Google Scholar
PubMed
Close
,
M Head Department of Oncology, Tauranga Hospital, Tauranga, New Zealand

Search for other papers by M Head in
Google Scholar
PubMed
Close
, and
J V Conaglen Waikato Clinical Campus, University of Auckland, Hamilton, New Zealand

Search for other papers by J V Conaglen in
Google Scholar
PubMed
Close

Cushing’s syndrome (CS) due to ectopic adrenocorticotrophic hormone (ACTH) is associated with a variety of tumours most of which arise in the thorax or abdomen. Prostate carcinoma is a rare but important cause of rapidly progressive CS. To report a case of severe CS due to ACTH production from prostate neuroendocrine carcinoma and summarise previous published cases. A 71-year-old male presented with profound hypokalaemia, oedema and new onset hypertension. The patient reported two weeks of weight gain, muscle weakness, labile mood and insomnia. CS due to ectopic ACTH production was confirmed with failure to suppress cortisol levels following low- and high-dose dexamethasone suppression tests in the presence of a markedly elevated ACTH and a normal pituitary MRI. Computed tomography demonstrated an enlarged prostate with features of malignancy, confirmed by MRI. Subsequent prostatic biopsy confirmed neuroendocrine carcinoma of small cell type and conventional adenocarcinoma of the prostate. Adrenal steroidogenesis blockade was commenced using ketoconazole and metyrapone. Complete biochemical control of CS and evidence of disease regression on imaging occurred after four cycles of chemotherapy with carboplatin and etoposide. By the sixth cycle, the patient demonstrated radiological progression followed by recurrence of CS and died nine months after initial presentation. Prostate neuroendocrine carcinoma is a rare cause of CS that can be rapidly fatal, and early aggressive treatment of the CS is important. In CS where the cause of EAS is unable to be identified, a pelvic source should be considered and imaging of the pelvis carefully reviewed.

Open access
Alberto Giacinto Ambrogio Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano IRCCS, Milan, Italy

Search for other papers by Alberto Giacinto Ambrogio in
Google Scholar
PubMed
Close
,
Massimiliano Andrioli Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano IRCCS, Milan, Italy

Search for other papers by Massimiliano Andrioli in
Google Scholar
PubMed
Close
,
Martina De Martin Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano IRCCS, Milan, Italy

Search for other papers by Martina De Martin in
Google Scholar
PubMed
Close
,
Francesco Cavagnini Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano IRCCS, Milan, Italy

Search for other papers by Francesco Cavagnini in
Google Scholar
PubMed
Close
, and
Francesca Pecori Giraldi Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano IRCCS, Milan, Italy
Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy

Search for other papers by Francesca Pecori Giraldi in
Google Scholar
PubMed
Close

Recurrence of Cushing’s disease after successful transsphenoidal surgery occurs in some 30% of the patients and the response to desmopressin shortly after surgery has been proposed as a marker for disease recurrence. The aim of the present study was to evaluate the response to desmopressin over time after surgery. We tested 56 patients with Cushing’s disease in remission after transsphenoidal surgery with desmopressin for up to 20 years after surgery. The ACTH and cortisol response to desmopressin over time was evaluated in patients on long-term remission or undergoing relapse; an increase by at least 27 pg/mL in ACTH levels identified responders. The vast majority of patients who underwent successful adenomectomy failed to respond to desmopressin after surgery and this response pattern was maintained over time in patients on long-term remission. Conversely, a response to desmopressin reappeared in patients who subsequently developed a recurrence of Cushing’s disease, even years prior to frank hypercortisolism. It appears therefore that a change in the response pattern to desmopressin proves predictive of recurrence of Cushing’s disease and may indicate which patients require close monitoring.

Open access