Search Results

You are looking at 101 - 110 of 223 items for

  • Abstract: Adrenal x
  • Abstract: Addisons x
  • Abstract: Adrenaline x
  • Abstract: Androgens x
  • Abstract: Catecholamines x
  • Abstract: hyperplasia x
  • Abstract: Cortex x
  • Abstract: Cushings x
  • Abstract: Medulla x
  • Abstract: Noradrenaline x
Clear All Modify Search
Supitcha Patjamontri Developmental Endocrinology Research Group, University of Glasgow, Royal Hospital for Children, Glasgow, UK
Division of Endocrinology and Metabolism, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

Search for other papers by Supitcha Patjamontri in
Google Scholar
PubMed
Close
,
Alexander Spiers MRC Centre for Environment and Health, Imperial College London, London, UK
NIHR Health Protection Research Unit on Chemical Radiation Threats and Hazards, Imperial College London, London, UK

Search for other papers by Alexander Spiers in
Google Scholar
PubMed
Close
,
Rachel B Smith MRC Centre for Environment and Health, Imperial College London, London, UK
NIHR Health Protection Research Unit on Chemical Radiation Threats and Hazards, Imperial College London, London, UK
National Institute for Health Research (NIHR) Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, UK
Mohn Centre for Children’s Health and Wellbeing, Imperial College London, London, UK

Search for other papers by Rachel B Smith in
Google Scholar
PubMed
Close
,
Chen Shen MRC Centre for Environment and Health, Imperial College London, London, UK
NIHR Health Protection Research Unit on Chemical Radiation Threats and Hazards, Imperial College London, London, UK

Search for other papers by Chen Shen in
Google Scholar
PubMed
Close
,
Jo Adaway Department of Clinical Biochemistry, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK

Search for other papers by Jo Adaway in
Google Scholar
PubMed
Close
,
Brian G Keevil Department of Clinical Biochemistry, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK

Search for other papers by Brian G Keevil in
Google Scholar
PubMed
Close
,
Mireille B Toledano MRC Centre for Environment and Health, Imperial College London, London, UK
NIHR Health Protection Research Unit on Chemical Radiation Threats and Hazards, Imperial College London, London, UK
National Institute for Health Research (NIHR) Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, UK
Mohn Centre for Children’s Health and Wellbeing, Imperial College London, London, UK

Search for other papers by Mireille B Toledano in
Google Scholar
PubMed
Close
, and
S Faisal Ahmed Developmental Endocrinology Research Group, University of Glasgow, Royal Hospital for Children, Glasgow, UK

Search for other papers by S Faisal Ahmed in
Google Scholar
PubMed
Close

Context

Salivary androgens represent non-invasive biomarkers of puberty that may have utility in clinical and population studies.

Objective

To understand normal age-related variation in salivary sex steroids and demonstrate their correlation to pubertal development in young adolescents.

Design, setting and participants

School-based cohort study of 1495 adolescents at two time points for collecting saliva samples approximately 2 years apart.

Outcome measures

The saliva samples were analyzed for five androgens (testosterone, androstenedione (A4), 17-hydroxyprogesterone, 11-ketotestosterone and 11β-hydroxyandrostenedione) using liquid chromatography-mass spectrometry; in addition, salivary dehydroepiandrosterone (DHEA) and oestradiol (OE2) were analysed by ELISA. The pubertal staging was self-reported using the Pubertal Development Scale (PDS).

Results

In 1236 saliva samples from 903 boys aged between 11 and 16 years, salivary androgens except DHEA exhibited an increasing trend with an advancing age (ANOVA, P < 0.001), with salivary testosterone and A4 concentration showing the strongest correlation (r = 0.55, P < 0.001 and r = 0.48, P < 0.001, respectively). In a subgroup analysis of 155 and 63 saliva samples in boys and girls, respectively, morning salivary testosterone concentrations showed the highest correlation with composite PDS scores and voice-breaking category from PDS self-report in boys (r = 0.75, r = 0.67, respectively). In girls, salivary DHEA and OE2 had negligible correlations with age or composite PDS scores.

Conclusion

In boys aged 11–16 years, an increase in salivary testosterone and A4 is associated with self-reported pubertal progress and represents valid non-invasive biomarkers of puberty in boys.

Open access
Katica Bajuk Studen Nuclear Medicine Department, University Medical Centre Ljubljana, Ljubljana, Slovenia

Search for other papers by Katica Bajuk Studen in
Google Scholar
PubMed
Close
and
Marija Pfeifer Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia

Search for other papers by Marija Pfeifer in
Google Scholar
PubMed
Close

Polycystic ovary syndrome (PCOS) is a common disorder in women of reproductive age. Besides hyperandrogenism, oligomenorrhea and fertility issues, it is associated with a high prevalence of metabolic disorders and cardiovascular risk factors. Several genetic polymorphisms have been identified for possible associations with cardiometabolic derangements in PCOS. Different PCOS phenotypes differ significantly in their cardiometabolic risk, which worsens with severity of androgen excess. Due to methodological difficulties, longer time-scale data about cardiovascular morbidity and mortality in PCOS and about possible beneficial effects of different treatment interventions is missing leaving many issues regarding cardiovascular risk unresolved.

Open access
Jin Kyu Oh Department of Urology, College of Medicine, Gachon University, Incheon, Republic of Korea

Search for other papers by Jin Kyu Oh in
Google Scholar
PubMed
Close
,
Young Jae Im Department of Urology, College of Medicine, Seoul National University, Seoul, Republic of Korea

Search for other papers by Young Jae Im in
Google Scholar
PubMed
Close
,
Kwanjin Park Department of Urology, College of Medicine, Seoul National University, Seoul, Republic of Korea

Search for other papers by Kwanjin Park in
Google Scholar
PubMed
Close
, and
Jae-Seung Paick Department of Urology, College of Medicine, Seoul National University, Seoul, Republic of Korea

Search for other papers by Jae-Seung Paick in
Google Scholar
PubMed
Close

Although it is well known that penile growth is dependent on androgens, few clinical studies have reported successful treatment of micropenis with testosterone, likely due to concerns regarding the efficacy and safety of prolonged testosterone use. Thus, we assessed the synergenic effects of growth hormone (GH) treatments with and without testosterone on phallic growth in a rat model of micropenis. Fifty Sprague–Dawley rats were assigned to control (C), microphallus (MP), testosterone, GH (G) and GH plus testosterone (GT) treatment groups, and microphallus was induced by secondary hypogonadism. Pre-pubertal treatments with testosterone, GH or the combination were initiated from 7 days after birth and were maintained until 12 weeks of age. To assess the efficacy of treatments, phallic dimensions were determined and histological markers of cavernosal integrity were evaluated. Skeletal and gonadal safety profiles of the treatments were then assessed according to right tibial lengths and testicular weights, respectively. No monotreatments normalised penile dimensions, whereas combination treatments led to complete restoration. The combination treatment also prevented decreases in histological indicators of cavernosal integrity, including smooth muscle actin and collagen III expression levels and fat globule accumulation and sinusoidal density. These synergenic effects of GH treatments on penile growth may follow changes in androgen receptor expression levels and were accompanied by decreased testicular volume losses. Although the physiological conditions of phallic growth differ between humans and rats, this proof-of-concept study provides a strategy for circumventing the problems of testosterone monotherapy for human micropenis.

Open access
Luigi Laino Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Luigi Laino in
Google Scholar
PubMed
Close
,
Silvia Majore Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Silvia Majore in
Google Scholar
PubMed
Close
,
Nicoletta Preziosi Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Nicoletta Preziosi in
Google Scholar
PubMed
Close
,
Barbara Grammatico Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Barbara Grammatico in
Google Scholar
PubMed
Close
,
Carmelilia De Bernardo Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Carmelilia De Bernardo in
Google Scholar
PubMed
Close
,
Salvatore Scommegna Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Salvatore Scommegna in
Google Scholar
PubMed
Close
,
Anna Maria Rapone Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Anna Maria Rapone in
Google Scholar
PubMed
Close
,
Giacinto Marrocco Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Giacinto Marrocco in
Google Scholar
PubMed
Close
,
Irene Bottillo Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Irene Bottillo in
Google Scholar
PubMed
Close
, and
Paola Grammatico
Search for other papers by Paola Grammatico in
Google Scholar
PubMed
Close

Sex development is a process under genetic control directing both the bi-potential gonads to become either a testis or an ovary, and the consequent differentiation of internal ducts and external genitalia. This complex series of events can be altered by a large number of genetic and non-genetic factors. Disorders of sex development (DSD) are all the medical conditions characterized by an atypical chromosomal, gonadal, or phenotypical sex. Incomplete knowledge of the genetic mechanisms involved in sex development results in a low probability of determining the molecular definition of the genetic defect in many of the patients. In this study, we describe the clinical, cytogenetic, and molecular study of 88 cases with DSD, including 29 patients with 46,XY and disorders in androgen synthesis or action, 18 with 46,XX and disorders in androgen excess, 17 with 46,XY and disorders of gonadal (testicular) development, 11 classified as 46,XX other, eight with 46,XX and disorders of gonadal (ovarian) development, and five with sex chromosome anomalies. In total, we found a genetic variant in 56 out of 88 of them, leading to the clinical classification of every patient, and we outline the different steps required for a coherent genetic testing approach. In conclusion, our results highlight the fact that each category of DSD is related to a large number of different DNA alterations, thus requiring multiple genetic studies to achieve a precise etiological diagnosis for each patient.

Open access
Angelica Lindén Hirschberg Division of Obstetrics and Gynaecology, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden.

Search for other papers by Angelica Lindén Hirschberg in
Google Scholar
PubMed
Close

Emerging evidence indicates that testosterone, which can increase muscle mass and strength, stimulates erythropoiesis, promotes competitive behaviour, and enhances the physical performance of women. Indeed, the levels of testosterone within the normal female range are related to muscle mass and athletic performance in female athletes. Furthermore, among these athletes, the prevalence of hyperandrogenic conditions, including both polycystic ovary syndrome and rare differences/disorders of sex development (DSD), which may greatly increase testosterone production, are elevated. Thus, if the androgen receptors of an individual with XY DSD are functional, her muscle mass will develop like that of a man. These findings have led to the proposal that essential hyperandrogenism is beneficial for athletic performance and plays a role in the choice by women to compete in athletic activities. Moreover, a recent randomized controlled trial demonstrated a significant increase in the lean mass and aerobic performance by young exercising women when their testosterone levels were enhanced moderately. Circulating testosterone is considered the strongest factor to explain the male advantage in sport performance, ranging between 10 and 20%. It appears to be unfair to allow female athletes with endogenous testosterone levels in the male range (i.e. 10–20 times higher than normal) to compete against those with normal female androgen levels. In 2012, this consideration led international organizations to establish eligibility regulations for the female classification in order to ensure fair and meaningful competition, but the regulations are controversial and have been challenged in court.

Open access
D A Dart Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, Wales, UK
Imperial College London, London, UK

Search for other papers by D A Dart in
Google Scholar
PubMed
Close
,
K Ashelford Division of Cancer and Genetics, Wales Gene Park, School of Medicine, Cardiff University, Cardiff, Wales, UK

Search for other papers by K Ashelford in
Google Scholar
PubMed
Close
, and
W G Jiang Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, Wales, UK

Search for other papers by W G Jiang in
Google Scholar
PubMed
Close

Advanced prostate cancer is often treated with AR antagonists which target the androgen receptor (AR) on which the growth of the tumour depends. Prostate cancer often develops AR-antagonist resistance via a plethora of mechanisms, many of which are as yet unknown, but it is thought that AR upregulation or AR ligand-binding site mutations, may be responsible. Here we describe the production of cell lines based on LNCaP and VCaP, with acquired resistance to the clinically relevant AR antagonists, bicalutamide and enzalutamide. In these resistant cells, we observed, via RNA-seq, that new variants in the 3′UTR of the AR mRNA were detectable and that the levels were increased both with AR-antagonist treatment and with hormonal starvation. Around 20% of AR transcripts showed a 3 kb deletion within the 6.7 kb 3′UTR sequence. Actinomycin D and luciferase fusion studies indicated that this shorter mRNA variant was inherently more stable in anti-androgen-resistant cell lines. Of additional interest was that the AR UTR variant could be detected in the sera of prostate cancer patients in a cohort of serum samples collected from patients of Gleason grades 6–10, with an increasing level correlated to increasing grade. We hypothesise that the shorter AR UTR variant is a survival adaptation to low hormone levels and/or AR-antagonist treatment in these cells, where a more stable mRNA may allow higher levels of AR expression under these conditions.

Open access
Pravik Solanki Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
Alfred Health, Melbourne, Victoria, Australia

Search for other papers by Pravik Solanki in
Google Scholar
PubMed
Close
,
Beng Eu Prahran Market Clinic, Victoria, Australia
Department of General Practice, Melbourne Medical School, The University of Melbourne, Victoria, Australia

Search for other papers by Beng Eu in
Google Scholar
PubMed
Close
,
Jeremy Smith Faculty of Science, University of Western Australia, Perth, Australia

Search for other papers by Jeremy Smith in
Google Scholar
PubMed
Close
,
Carolyn Allan Hudson Institute of Medical Research, Melbourne, Victoria, Australia

Search for other papers by Carolyn Allan in
Google Scholar
PubMed
Close
, and
Kevin Lee Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia

Search for other papers by Kevin Lee in
Google Scholar
PubMed
Close

Hypogonadism can result following anabolic steroid abuse. The duration and degree of recovery from anabolic steroid-induced hypogonadism (ASIH) is immensely variable, and there is a paucity of prospective controlled data characterising the trajectory of natural recovery following cessation. This poses difficulties for users trying to stop androgen abuse, and clinicians wanting to assist them. The objective of this paper was to synthesise evidence on the physical, psychological and biochemical patterns of ASIH recovery. We present the pathophysiology of ASIH through a literature review of hypothalamic–pituitary–testosterone axis recovery in supraphysiological testosterone exposure. This is followed by a scoping review of relevant observational and interventional studies published on PubMed and finally, a conclusion that is an easy reference for clinicians helping patients that are recovering from AAS abuse. Results indicate that ASIH recovery depends on age and degree of androgen abuse, with physical changes like testicular atrophy expected to have near full recovery over months to years; spermatogenesis expected to achieve full recovery over months to years; libido returning to baseline over several months (typically less potent than during AAS use); and recovery from gynaecomastia being unlikely. For psychological recovery, data are insufficient and conflicting, indicating a transient withdrawal period which may be followed by persisting longer-term milder symptoms. For biochemical recovery, near complete recovery of testosterone is seen over months, and complete gonadotropin recovery is expected over 3–6 months. Further prospective studies are indicated to more closely describe patterns of recovery.

Open access
Bilal B Mughal CNRS/UMR7221, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France

Search for other papers by Bilal B Mughal in
Google Scholar
PubMed
Close
,
Jean-Baptiste Fini CNRS/UMR7221, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France

Search for other papers by Jean-Baptiste Fini in
Google Scholar
PubMed
Close
, and
Barbara A Demeneix CNRS/UMR7221, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France

Search for other papers by Barbara A Demeneix in
Google Scholar
PubMed
Close

This review covers recent findings on the main categories of thyroid hormone–disrupting chemicals and their effects on brain development. We draw mostly on epidemiological and experimental data published in the last decade. For each chemical class considered, we deal with not only the thyroid hormone–disrupting effects but also briefly mention the main mechanisms by which the same chemicals could modify estrogen and/or androgen signalling, thereby exacerbating adverse effects on endocrine-dependent developmental programmes. Further, we emphasize recent data showing how maternal thyroid hormone signalling during early pregnancy affects not only offspring IQ, but also neurodevelopmental disease risk. These recent findings add to established knowledge on the crucial importance of iodine and thyroid hormone for optimal brain development. We propose that prenatal exposure to mixtures of thyroid hormone–disrupting chemicals provides a plausible biological mechanism contributing to current increases in the incidence of neurodevelopmental disease and IQ loss.

Open access
Brenda Anguiano Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México

Search for other papers by Brenda Anguiano in
Google Scholar
PubMed
Close
,
Carlos Montes de Oca Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México

Search for other papers by Carlos Montes de Oca in
Google Scholar
PubMed
Close
,
Evangelina Delgado-González Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México

Search for other papers by Evangelina Delgado-González in
Google Scholar
PubMed
Close
, and
Carmen Aceves Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México

Search for other papers by Carmen Aceves in
Google Scholar
PubMed
Close

Thyroid hormones (THs) are involved in the development and function of the male reproductive system, but their effects on the prostate have been poorly studied. This work reviews studies related to the interrelationship between the thyroid and the prostate. The information presented here is based upon bibliographic searches in PubMed using the following search terms: prostate combined with thyroid hormone or triiodothyronine, thyroxine, hypothyroidism, hyperthyroidism, or deiodinase. We identified and searched 49 articles directly related to the issue, and discarded studies related to endocrine disruptors. The number of publications has grown in the last 20 years, considering that one of the first studies was published in 1965. This review provides information based on in vitro studies, murine models, and clinical protocols in patients with thyroid disorders. Studies indicate that THs regulate different aspects of growth, metabolism, and prostate pathology, whose global effect depends on total and/or free concentrations of THs in serum, local bioavailability, and the endocrine androgen/thyronine context.

Open access
Thomas Reinehr Department of Pediatric Endocrinology, Diabetes, and Nutrition Medicine, Vestische Hospital for Children and Adolescents, University of Witten/Herdecke, Datteln, Germany

Search for other papers by Thomas Reinehr in
Google Scholar
PubMed
Close
,
Alexandra Kulle Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University Hospital of Schleswig – Holstein, UKSH, Campus Kiel/Christian Albrechts University of Kiel, CAU, Kiel, Germany

Search for other papers by Alexandra Kulle in
Google Scholar
PubMed
Close
,
Juliane Rothermel Department of Pediatric Endocrinology, Diabetes, and Nutrition Medicine, Vestische Hospital for Children and Adolescents, University of Witten/Herdecke, Datteln, Germany

Search for other papers by Juliane Rothermel in
Google Scholar
PubMed
Close
,
Caroline Knop-Schmenn Department of Pediatric Endocrinology, Diabetes, and Nutrition Medicine, Vestische Hospital for Children and Adolescents, University of Witten/Herdecke, Datteln, Germany

Search for other papers by Caroline Knop-Schmenn in
Google Scholar
PubMed
Close
,
Nina Lass Department of Pediatric Endocrinology, Diabetes, and Nutrition Medicine, Vestische Hospital for Children and Adolescents, University of Witten/Herdecke, Datteln, Germany

Search for other papers by Nina Lass in
Google Scholar
PubMed
Close
,
Christina Bosse Department of Pediatric Endocrinology, Diabetes, and Nutrition Medicine, Vestische Hospital for Children and Adolescents, University of Witten/Herdecke, Datteln, Germany

Search for other papers by Christina Bosse in
Google Scholar
PubMed
Close
, and
Paul-Martin Holterhus Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University Hospital of Schleswig – Holstein, UKSH, Campus Kiel/Christian Albrechts University of Kiel, CAU, Kiel, Germany

Search for other papers by Paul-Martin Holterhus in
Google Scholar
PubMed
Close

Objective

The underlying mechanisms of polycystic ovarian syndrome (PCOS) are not fully understood yet. The aim of the study was to get functional insights into the regulation of steroid hormones in PCOS by steroid metabolomics.

Design

This is a longitudinal study of changes of steroid hormones in 40 obese girls aged 13–16 years (50% with PCOS) participating in a 1-year lifestyle intervention. Girls with and without PCOS were matched to age, BMI and change of weight status.

Methods

We measured progesterone, 17-hydroxyprogesterone, 17-hydroxyprogenolon, 11-deoxycorticosterone, 21-deoxycorticosterone, deoxycorticosterone, corticosterone, 11-deoxycortisol, cortisol, cortisone, androstenedione, testosterone, dehydroepiandrostendione-sulfate (DHEA-S), estrone and estradiol by LC–MS/MS steroid profiling at baseline and one year later.

Results

At baseline, obese PCOS girls demonstrated significantly higher androstenedione and testosterone concentrations compared to obese girls without PCOS, whereas the other steroid hormones including glucocorticoids, mineralocorticoids, estrogens and precursors of androgens did not differ significantly. Weight loss in obese PCOS girls was associated with a significant decrease of testosterone, androstenedione, DHEA-S, cortisol and corticosterone concentrations. Weight loss in obese non-PCOS girls was associated with a significant decrease of DHEA-S, cortisol and corticosterone concentrations, whereas no significant changes of testosterone and androstenedione concentrations could be observed. Without weight loss, no significant changes of steroid hormones were measured except an increase of estradiol in obese PCOS girls without weight loss.

Conclusions

The key steroid hormones in obese adolescents with PCOS are androstenedione and testosterone, whereas glucocorticoids, mineralocorticoids, estrogens and precursors of androgens did not differ between obese girls with and without PCOS.

Open access