Search Results

You are looking at 41 - 50 of 461 items for

  • Abstract: adrenarche x
  • Abstract: amenorrhoea x
  • Abstract: fertility x
  • Abstract: Gender x
  • Abstract: Hypogonadism x
  • Abstract: infertility x
  • Abstract: Klinefelter x
  • Abstract: menarche x
  • Abstract: menopause x
  • Abstract: testes x
  • Abstract: transsexual x
  • Abstract: Turner x
  • Abstract: ovary x
  • Abstract: follicles x
Clear All Modify Search
Teresa Vilariño-García Department of Medical Biochemistry, Molecular Biology and Immunology. Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain

Search for other papers by Teresa Vilariño-García in
Google Scholar
PubMed
Close
,
Antonio Pérez-Pérez Department of Medical Biochemistry, Molecular Biology and Immunology. Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain

Search for other papers by Antonio Pérez-Pérez in
Google Scholar
PubMed
Close
,
Esther Santamaría-López Valencian Infertility Institute (IVI), Seville, Spain

Search for other papers by Esther Santamaría-López in
Google Scholar
PubMed
Close
,
Nicolás Prados Valencian Infertility Institute (IVI), Seville, Spain

Search for other papers by Nicolás Prados in
Google Scholar
PubMed
Close
,
Manuel Fernández-Sánchez Valencian Infertility Institute (IVI), Seville, Spain

Search for other papers by Manuel Fernández-Sánchez in
Google Scholar
PubMed
Close
, and
Víctor Sánchez-Margalet Department of Medical Biochemistry, Molecular Biology and Immunology. Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain

Search for other papers by Víctor Sánchez-Margalet in
Google Scholar
PubMed
Close

Introduction

Polycystic ovary syndrome (PCOS) is a complex metabolic disorder associated with ovulatory dysfunction, hyperandrogenism, obesity, and insulin resistance, that leads to subfertility. Sam68 is an RNA-binding protein with signaling functions that is ubiquitously expressed, including gonads. Sam68 is recruited to leptin signaling, mediating different leptin actions.

Objective

We aimed to investigate the role of Sam68 in leptin signaling, mediating the effect on aromatase expression in granulosa cells and the posible implication of Sam68 in the leptin resistance in PCOS.

Materials and methods

Granulosa cells were from healthy donors (n = 25) and women with PCOS (n = 25), within the age range of 20 to 40 years, from Valencian Infertility Institute (IVI), Seville, Spain. Sam68 expression was inhibited by siRNA method and overexpressed by expression vector. Expression level was analysed by qPCR and immunoblot. Statistical significance was assessed by ANOVA followed by different post-hoc tests. A P value of <0.05 was considered statistically significant.

Results

We have found that leptin stimulation increases phosphorylation and expression level of Sam68 and aromatase in granulosa cells from normal donors. Downregulation of Sam68 expression resulted in a lower activation of MAPK and PI3K pathways in response to leptin, whereas overexpression of Sam68 increased leptin stimulation of signaling, enhancing aromatase expression. Granulosa cells from women with PCOS presented lower expression of Sam68 and were resistant to the leptin effect on aromatase expression.

Conclusions

These results suggest the participation of Sam68 in leptin receptor signaling, mediating the leptin effect on aromatase expression in granulosa cells, and point to a new target in leptin resistance in PCOS.

Open access
Hamidreza Mani Diabetes Research Centre, Leicester Diabetes Centre, University of Leicester, Leicester General Hospital, Leicester, UK
Department of Diabetes and Endocrinology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK

Search for other papers by Hamidreza Mani in
Google Scholar
PubMed
Close
,
Yogini Chudasama Diabetes Research Centre, Leicester Diabetes Centre, University of Leicester, Leicester General Hospital, Leicester, UK

Search for other papers by Yogini Chudasama in
Google Scholar
PubMed
Close
,
Michelle Hadjiconstantinou Diabetes Research Centre, Leicester Diabetes Centre, University of Leicester, Leicester General Hospital, Leicester, UK

Search for other papers by Michelle Hadjiconstantinou in
Google Scholar
PubMed
Close
,
Danielle H Bodicoat Diabetes Research Centre, Leicester Diabetes Centre, University of Leicester, Leicester General Hospital, Leicester, UK

Search for other papers by Danielle H Bodicoat in
Google Scholar
PubMed
Close
,
Charlotte Edwardson Diabetes Research Centre, Leicester Diabetes Centre, University of Leicester, Leicester General Hospital, Leicester, UK
The Leicester Biomedical Research Centre, Leicester and Loughborough, UK

Search for other papers by Charlotte Edwardson in
Google Scholar
PubMed
Close
,
Miles J Levy Department of Diabetes and Endocrinology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK

Search for other papers by Miles J Levy in
Google Scholar
PubMed
Close
,
Laura J Gray Department of Health Sciences, University of Leicester, Leicester, UK

Search for other papers by Laura J Gray in
Google Scholar
PubMed
Close
,
Janette Barnett Department of Diabetes and Endocrinology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK

Search for other papers by Janette Barnett in
Google Scholar
PubMed
Close
,
Heather Daly Leicester Medical Group, Thurmaston Health Centre, Leicester, UK

Search for other papers by Heather Daly in
Google Scholar
PubMed
Close
,
Trevor A Howlett Department of Diabetes and Endocrinology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK

Search for other papers by Trevor A Howlett in
Google Scholar
PubMed
Close
,
Kamlesh Khunti Diabetes Research Centre, Leicester Diabetes Centre, University of Leicester, Leicester General Hospital, Leicester, UK

Search for other papers by Kamlesh Khunti in
Google Scholar
PubMed
Close
, and
Melanie J Davies Diabetes Research Centre, Leicester Diabetes Centre, University of Leicester, Leicester General Hospital, Leicester, UK

Search for other papers by Melanie J Davies in
Google Scholar
PubMed
Close

Objective

To evaluate the effectiveness of a structured education programmes in women with polycystic ovary syndrome (PCOS).

Methods

Single-centre, randomised controlled trial, testing a single exposure to a group-based, face-to-face, structured education programme. Inclusion criteria were women with PCOS, aged 18–49 years inclusive and body mass index ≥23 kg/m2 for black and minority ethnicities or ≥25 kg/m2 for white Europeans. Primary outcome was step-count/day at 12 months. Secondary outcomes included indices of physical activity, cardiovascular risk factors, quality of life (QoL) and illness perception (IP).

Results

161 women were included (78 control, 83 intervention); 69% white; mean age 33.4 (s.d. 7.6) years, of whom 100 (48 intervention; 52 control) attended their 12-month visit (38% attrition). 77% of the intervention arm attended the education programme. No significant change in step-count was observed at 12 months (mean difference: +351 steps/day (95% confidence interval −481, +1183); P = 0.40). No differences were found in biochemical or anthropometric outcomes. The education programme improved participants’ IP in 2 dimensions: understanding their PCOS (P < 0.001) and sense of control (P < 0.01) and improved QoL in 3 dimensions: emotions (P < 0.05), fertility (P < 0.05), weight (P < 0.01) and general mental well-being (P < 0.01).

Discussion

A single exposure to structured education programme did not increase physical activity or improve biochemical markers in overweight and obese women with PCOS. However, providing a structured education in parallel to routine medical treatment can be beneficial for participants’ understanding of their condition, reducing their anxiety and improving their QoL.

Open access
Lukas Plachy Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Search for other papers by Lukas Plachy in
Google Scholar
PubMed
Close
,
Lenka Petruzelkova Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Search for other papers by Lenka Petruzelkova in
Google Scholar
PubMed
Close
,
Petra Dusatkova Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Search for other papers by Petra Dusatkova in
Google Scholar
PubMed
Close
,
Klara Maratova Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Search for other papers by Klara Maratova in
Google Scholar
PubMed
Close
,
Dana Zemkova Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Search for other papers by Dana Zemkova in
Google Scholar
PubMed
Close
,
Lenka Elblova Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Search for other papers by Lenka Elblova in
Google Scholar
PubMed
Close
,
Vit Neuman Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Search for other papers by Vit Neuman in
Google Scholar
PubMed
Close
,
Stanislava Kolouskova Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Search for other papers by Stanislava Kolouskova in
Google Scholar
PubMed
Close
,
Barbora Obermannova Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Search for other papers by Barbora Obermannova in
Google Scholar
PubMed
Close
,
Marta Snajderova Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Search for other papers by Marta Snajderova in
Google Scholar
PubMed
Close
,
Zdenek Sumnik Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Search for other papers by Zdenek Sumnik in
Google Scholar
PubMed
Close
,
Jan Lebl Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Search for other papers by Jan Lebl in
Google Scholar
PubMed
Close
, and
Stepanka Pruhova Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic

Search for other papers by Stepanka Pruhova in
Google Scholar
PubMed
Close

Familial short stature (FSS) describes vertically transmitted growth disorders. Traditionally, polygenic inheritance is presumed, but monogenic inheritance seems to occur more frequently than expected. Clinical predictors of monogenic FSS have not been elucidated. The aim of the study was to identify the monogenic etiology and its clinical predictors in FSS children. Of 747 patients treated with growth hormone (GH) in our center, 95 with FSS met the inclusion criteria (pretreatment height ≤−2 SD in child and his/her shorter parent); secondary short stature and Turner/Prader–Willi syndrome were excluded criteria. Genetic etiology was known in 11/95 children before the study, remaining 84 were examined by next-generation sequencing. The results were evaluated by American College of Medical Genetics and Genomics (ACMG) guidelines. Nonparametric tests evaluated differences between monogenic and non-monogenic FSS, an ROC curve estimated quantitative cutoffs for the predictors. Monogenic FSS was confirmed in 36/95 (38%) children. Of these, 29 (81%) carried a causative genetic variant affecting the growth plate, 4 (11%) a variant affecting GH–insulin-like growth factor 1 (IGF1) axis and 3 (8%) a variant in miscellaneous genes. Lower shorter parent’s height (P = 0.015) and less delayed bone age (BA) before GH treatment (P = 0.026) predicted monogenic FSS. In children with BA delayed less than 0.4 years and with shorter parent’s heights ≤−2.4 SD, monogenic FSS was revealed in 13/16 (81%) cases. To conclude, in FSS children treated with GH, a monogenic etiology is frequent, and gene variants affecting the growth plate are the most common. Shorter parent’s height and BA are clinical predictors of monogenic FSS.

Open access
Christian Trummer Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria

Search for other papers by Christian Trummer in
Google Scholar
PubMed
Close
,
Stefan Pilz Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria

Search for other papers by Stefan Pilz in
Google Scholar
PubMed
Close
,
Verena Schwetz Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria

Search for other papers by Verena Schwetz in
Google Scholar
PubMed
Close
,
Barbara Obermayer-Pietsch Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria

Search for other papers by Barbara Obermayer-Pietsch in
Google Scholar
PubMed
Close
, and
Elisabeth Lerchbaum Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria

Search for other papers by Elisabeth Lerchbaum in
Google Scholar
PubMed
Close

Background

Accumulating evidence from animal and human studies suggests that vitamin D is involved in many functions of the reproductive system in both genders.

Aim

The aim of this review was to provide an overview on the effects of vitamin D on polycystic ovary syndrome (PCOS) in women and androgen metabolism in men.

Methods

We performed a systematic literature search in PubMed for relevant English language publications published from January 2012 until September 2017.

Results and discussion

The vitamin D receptor and vitamin D-metabolizing enzymes are found in reproductive tissues of women and men. In women, vitamin D status has been associated with several features of PCOS. In detail, cross-sectional data suggest a regulatory role of vitamin D in PCOS-related aspects such as ovulatory dysfunction, insulin resistance as well as hyperandrogenism. Moreover, results from randomized controlled trials (RCTs) suggest that vitamin D supplementation may be beneficial for metabolic, endocrine and fertility aspects in PCOS. In men, vitamin D status has been associated with androgen levels and hypogonadism. Further, there is some evidence for a favorable effect of vitamin D supplementation on testosterone concentrations, although others failed to show a significant effect on testosterone levels.

Conclusion

In summary, vitamin D deficiency is associated with adverse fertility outcomes including PCOS and hypogonadism, but the evidence is insufficient to establish causality. High-quality RCTs are needed to further evaluate the effects of vitamin D supplementation in PCOS women as well as on androgen levels in men.

Open access
Henrik H Thomsen Medical Research Laboratories, Departments of Clinical Biochemistry, Molecular Medicine, Department of Clinical Genetics, Department of Endocrinology and Internal Medicine, Clinical Institute, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark

Search for other papers by Henrik H Thomsen in
Google Scholar
PubMed
Close
,
Holger J Møller Medical Research Laboratories, Departments of Clinical Biochemistry, Molecular Medicine, Department of Clinical Genetics, Department of Endocrinology and Internal Medicine, Clinical Institute, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark

Search for other papers by Holger J Møller in
Google Scholar
PubMed
Close
,
Christian Trolle Medical Research Laboratories, Departments of Clinical Biochemistry, Molecular Medicine, Department of Clinical Genetics, Department of Endocrinology and Internal Medicine, Clinical Institute, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark

Search for other papers by Christian Trolle in
Google Scholar
PubMed
Close
,
Kristian A Groth Medical Research Laboratories, Departments of Clinical Biochemistry, Molecular Medicine, Department of Clinical Genetics, Department of Endocrinology and Internal Medicine, Clinical Institute, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark

Search for other papers by Kristian A Groth in
Google Scholar
PubMed
Close
,
Anne Skakkebæk Medical Research Laboratories, Departments of Clinical Biochemistry, Molecular Medicine, Department of Clinical Genetics, Department of Endocrinology and Internal Medicine, Clinical Institute, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark

Search for other papers by Anne Skakkebæk in
Google Scholar
PubMed
Close
,
Anders Bojesen Medical Research Laboratories, Departments of Clinical Biochemistry, Molecular Medicine, Department of Clinical Genetics, Department of Endocrinology and Internal Medicine, Clinical Institute, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark

Search for other papers by Anders Bojesen in
Google Scholar
PubMed
Close
,
Christian Høst Medical Research Laboratories, Departments of Clinical Biochemistry, Molecular Medicine, Department of Clinical Genetics, Department of Endocrinology and Internal Medicine, Clinical Institute, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark

Search for other papers by Christian Høst in
Google Scholar
PubMed
Close
, and
Claus H Gravholt Medical Research Laboratories, Departments of Clinical Biochemistry, Molecular Medicine, Department of Clinical Genetics, Department of Endocrinology and Internal Medicine, Clinical Institute, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark
Medical Research Laboratories, Departments of Clinical Biochemistry, Molecular Medicine, Department of Clinical Genetics, Department of Endocrinology and Internal Medicine, Clinical Institute, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark

Search for other papers by Claus H Gravholt in
Google Scholar
PubMed
Close

Soluble CD163 (sCD163) is a novel marker linked to states of low-grade inflammation such as diabetes, obesity, liver disease, and atherosclerosis, all prevalent in subjects with Turner syndrome (TS) and Klinefelter syndrome (KS). We aimed to assess the levels of sCD163 and the regulation of sCD163 in regards to treatment with sex hormone therapy in males with and without KS and females with and without TS. Males with KS (n=70) and age-matched controls (n=71) participating in a cross-sectional study and 12 healthy males from an experimental hypogonadism study. Females with TS (n=8) and healthy age-matched controls (n=8) participating in a randomized crossover trial. The intervention comprised of treatment with sex steroids. Males with KS had higher levels of sCD163 compared with controls (1.75 (0.47–6.90) and 1.36 (0.77–3.11) respectively, P<0.001) and the levels correlated to plasma testosterone (r=−0.31, P<0.01), BMI (r=0.42, P<0.001), and homeostasis model of assessment insulin resistance (r=0.46, P<0.001). Treatment with testosterone did not significantly lower sCD163. Females with TS not receiving hormone replacement therapy (HRT) had higher levels of sCD163 than those of their age-matched healthy controls (1.38±0.44 vs 0.91±0.40, P=0.04). HRT and oral contraceptive therapy decreased sCD163 in TS by 22% (1.07±0.30) and in controls by 39% (0.55±0.36), with significance in both groups (P=0.01 and P=0.04). We conclude that levels of sCD163 correlate with endogenous testosterone in KS and are higher in KS subjects compared with controls, but treatment did not significantly lower levels. Both endogenous and exogenous estradiol in TS was associated with lower levels of sCD163.

Open access
Signe Kirkegaard Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark

Search for other papers by Signe Kirkegaard in
Google Scholar
PubMed
Close
,
Nanna Maria Uldall Torp Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark

Search for other papers by Nanna Maria Uldall Torp in
Google Scholar
PubMed
Close
,
Stig Andersen Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
Department of Geriatrics, Aalborg University Hospital, Aalborg, Denmark

Search for other papers by Stig Andersen in
Google Scholar
PubMed
Close
, and
Stine Linding Andersen Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark

Search for other papers by Stine Linding Andersen in
Google Scholar
PubMed
Close

Endometriosis and polycystic ovary syndrome (PCOS) are common gynecological disorders that constitute a significant burden of disease in women of fertile age. The disorders share a link to female reproduction and infertility; however, divergent effects on menstrual cycle, related hormones, and body composition have been proposed. Disorders of the thyroid gland including abnormal thyroid dysfunction (hyperthyroidism or hypothyroidism) and/or markers of thyroid autoimmunity similarly show a female predominance and onset in younger age groups. We reviewed the literature on the association between endometriosis, PCOS, and thyroid disease up until July 1, 2023, and identified 8 original studies on endometriosis and thyroid disease and 30 original studies on PCOS and thyroid disease. The studies were observational and heterogeneous regarding the design, sample size, and definitions of exposure and outcome; however, a tendency was seen toward an association between hyperthyroidism and endometriosis. Especially an association between endometriosis and slightly elevated levels of thyroid-stimulating hormone receptor antibodies has been found and corroborated in studies from different populations. On the other hand, the literature review turned a focus toward an association between hypothyroidism and PCOS, however, with uncertainties as to whether the association is caused by hypothyroidism per se and/or the thyroid autoantibodies (thyroid peroxidase and thyroglobulin antibodies). More evidence is needed to substantiate an association between endometriosis, PCOS, and thyroid disease, and to differentiate between the role of thyroid function and thyroid autoimmunity. Furthermore, studies are warranted to extend knowledge on the different disease characteristics and underlying mechanisms.

Open access
Angela Köninger Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany

Search for other papers by Angela Köninger in
Google Scholar
PubMed
Close
,
Antonella Iannaccone Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany

Search for other papers by Antonella Iannaccone in
Google Scholar
PubMed
Close
,
Ensar Hajder Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany

Search for other papers by Ensar Hajder in
Google Scholar
PubMed
Close
,
Mirjam Frank Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Essen, Germany

Search for other papers by Mirjam Frank in
Google Scholar
PubMed
Close
,
Boerge Schmidt Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Essen, Germany

Search for other papers by Boerge Schmidt in
Google Scholar
PubMed
Close
,
Ekkehard Schleussner Department of Obstetrics, Jena University Hospital, Jena, Germany

Search for other papers by Ekkehard Schleussner in
Google Scholar
PubMed
Close
,
Rainer Kimmig Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany

Search for other papers by Rainer Kimmig in
Google Scholar
PubMed
Close
,
Alexandra Gellhaus Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany

Search for other papers by Alexandra Gellhaus in
Google Scholar
PubMed
Close
, and
Hans Dieplinger Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria

Search for other papers by Hans Dieplinger in
Google Scholar
PubMed
Close

Background

Patients suffering from polycystic ovary syndrome (PCOS) are often insulin resistant and at elevated risk for developing gestational diabetes mellitus (GDM). The aim of this study was to explore afamin, which can be determined preconceptionally to indicate patients who will subsequently develop GDM. Serum concentrations of afamin are altered in conditions of oxidative stress like insulin resistance (IR) and correlate with the gold standard of IR determination, the HOMA index.

Methods

Afamin serum concentrations and the HOMA index were analyzed post hoc in 63 PCOS patients with live births. Patients were treated at Essen University Hospital, Germany, between 2009 and 2018. Mann–Whitney U test, T test, Spearman’s correlation, linear regression models and receiver-operating characteristic (ROC) analyses were performed for statistical analysis.

Results

Patients who developed GDM showed significantly higher HOMA and serum afamin values before their pregnancy (P < 0.001, respectively). ROCs for afamin concentrations showed an area under the curve of 0.78 (95% confidence interval (CI) 0.65–0.90) and of 0.77 (95% CI 0.64–0.89) for the HOMA index. An afamin threshold of 88.6 mg/L distinguished between women who will develop GDM and those who will not with a sensitivity of 79.3% and a specificity of 79.4%. A HOMA index of 2.5 showed a sensitivity of 65.5% and a specificity of 88.2%.

Conclusion

The HOMA index and its surrogate parameter afamin are able to identify pre-pregnant PCOS patients who are at risk to develop GDM. Serum afamin concentrations are independent of fasting status and therefore an easily determinable biomarker.

Open access
Valentina Guarnotta Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza ‘G. D’Alessandro’ (PROMISE), Sezione di Malattie Endocrine, del Ricambio e della Nutrizione, Università di Palermo, Palermo, Italy

Search for other papers by Valentina Guarnotta in
Google Scholar
PubMed
Close
,
Silvia Lucchese Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza ‘G. D’Alessandro’ (PROMISE), Sezione di Malattie Endocrine, del Ricambio e della Nutrizione, Università di Palermo, Palermo, Italy

Search for other papers by Silvia Lucchese in
Google Scholar
PubMed
Close
,
Mariagrazia Irene Mineo Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza ‘G. D’Alessandro’ (PROMISE), Sezione di Malattie Endocrine, del Ricambio e della Nutrizione, Università di Palermo, Palermo, Italy

Search for other papers by Mariagrazia Irene Mineo in
Google Scholar
PubMed
Close
,
Donatella Mangione Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza ‘G. D’Alessandro’ (PROMISE), Sezione di Ostetricia e Ginecologia, Università di Palermo, Palermo, Italy

Search for other papers by Donatella Mangione in
Google Scholar
PubMed
Close
,
Renato Venezia Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza ‘G. D’Alessandro’ (PROMISE), Sezione di Ostetricia e Ginecologia, Università di Palermo, Palermo, Italy

Search for other papers by Renato Venezia in
Google Scholar
PubMed
Close
,
Piero Luigi Almasio Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza ‘G. D’Alessandro’ (PROMISE), Sezione di Gastroenterologia ed Epatologia, Università di Palermo, Palermo, Italy

Search for other papers by Piero Luigi Almasio in
Google Scholar
PubMed
Close
, and
Carla Giordano Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza ‘G. D’Alessandro’ (PROMISE), Sezione di Malattie Endocrine, del Ricambio e della Nutrizione, Università di Palermo, Palermo, Italy

Search for other papers by Carla Giordano in
Google Scholar
PubMed
Close

Objective

The aim of this study is to clarify, in girls with premature pubarche (PP), the influence of premature androgenization on the prevalence of polycystic ovary syndrome (PCOS).

Design and patients

Ninety-nine PP girls, 63 who developed PCOS and 36 who did not develop PCOS, were retrospectively included. Clinical, anthropometric, and metabolic parameters were evaluated at the time of diagnosis of PP and after 10 years from menarche to find predictive factors of PCOS.

Results

Young females with PP showed a PCOS prevalence of 64% and showed a higher prevalence of familial history of diabetes (P = 0.004) and a lower prevalence of underweight (P = 0.025) than PP-NO-PCOS. In addition, girls with PP-PCOS showed higher BMI (P < 0.001), waist circumference (P < 0.001), total testosterone (P = 0.026), visceral adiposity index (VAI) (P = 0.013), total cholesterol (P < 0.001), LDL-cholesterol (P < 0.001), non-HDL cholesterol (P < 0.001) and lower age of menarche (P = 0.015), ISI-Matsuda (P < 0.001), DIo (P = 0.002), HDL cholesterol (P = 0.026) than PP-NO-PCOS. Multivariate analysis showed that WC (P = 0.049), ISI-Matsuda (P < 0.001), oral disposition index (DIo) (P < 0.001), VAI (P < 0.001), total testosterone (P < 0.001) and LDL-cholesterol (P < 0.001) are independent predictive factors for PCOS in girls with PP.

Conclusions

Our study established a strong association between multiple risk factors and development of PCOS in PP girls. These risk factors are predominantly related to the regulation of glucose, lipid, and androgen metabolism. Among these factors, WC, ISI-Matsuda, DIo, VAI, total testosterone, and LDL-cholesterol predict PCOS.

Open access
Feifei Cheng Department of Medicine and Therapeutics The Chinese University of Hong Kong, Hong Kong, Hong Kong

Search for other papers by Feifei Cheng in
Google Scholar
PubMed
Close
,
Noel Yat Hey Ng Department of Medicine and Therapeutics The Chinese University of Hong Kong, Hong Kong, Hong Kong

Search for other papers by Noel Yat Hey Ng in
Google Scholar
PubMed
Close
,
Claudia Ha Ting Tam Department of Medicine and Therapeutics The Chinese University of Hong Kong, Hong Kong, Hong Kong
Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, Hong Kong

Search for other papers by Claudia Ha Ting Tam in
Google Scholar
PubMed
Close
,
Yuying Zhang Department of Medicine and Therapeutics The Chinese University of Hong Kong, Hong Kong, Hong Kong
Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, Hong Kong

Search for other papers by Yuying Zhang in
Google Scholar
PubMed
Close
,
Cadmon King Poo Lim Department of Medicine and Therapeutics The Chinese University of Hong Kong, Hong Kong, Hong Kong
Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong

Search for other papers by Cadmon King Poo Lim in
Google Scholar
PubMed
Close
,
Guozhi Jiang Department of Medicine and Therapeutics The Chinese University of Hong Kong, Hong Kong, Hong Kong
Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, Hong Kong

Search for other papers by Guozhi Jiang in
Google Scholar
PubMed
Close
,
Alex Chi Wai Ng Department of Medicine and Therapeutics The Chinese University of Hong Kong, Hong Kong, Hong Kong

Search for other papers by Alex Chi Wai Ng in
Google Scholar
PubMed
Close
,
Tiffany Tse Ling Yau Department of Medicine and Therapeutics The Chinese University of Hong Kong, Hong Kong, Hong Kong

Search for other papers by Tiffany Tse Ling Yau in
Google Scholar
PubMed
Close
,
Lai Ping Cheung Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong

Search for other papers by Lai Ping Cheung in
Google Scholar
PubMed
Close
,
Aimin Xu Department of Medicine, Li Ka Shing (LKS) Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, Hong Kong
Department of Pharmacy and Pharmacology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong

Search for other papers by Aimin Xu in
Google Scholar
PubMed
Close
,
Juliana C N Chan Department of Medicine and Therapeutics The Chinese University of Hong Kong, Hong Kong, Hong Kong
Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, Hong Kong
Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong, Hong Kong

Search for other papers by Juliana C N Chan in
Google Scholar
PubMed
Close
, and
Ronald C W Ma Department of Medicine and Therapeutics The Chinese University of Hong Kong, Hong Kong, Hong Kong
Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, Hong Kong
Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong, Hong Kong

Search for other papers by Ronald C W Ma in
Google Scholar
PubMed
Close

Women with polycystic ovary syndrome (PCOS) have an increased risk of developing type 2 diabetes. FGF19, FGF21 and lipocalin-2 have emerged as important markers of metabolic risk. This study aims to compare the levels of FGF19, FGF21 and lipocalin-2 between subjects with or without PCOS, and to investigate the relationship between proteins and diabetes progression. In this nested case–control cohort study, 128 Chinese PCOS women and 128 controls were recruited and followed-up. All subjects underwent the oral glucose tolerance test for the evaluation of glycaemic status. Baseline serum protein levels were measured using ELISA. Compared with controls, PCOS subjects had higher levels of FGF19 (P < 0.001) and FGF21 (P = 0.022), but had lower lipocalin-2 (P < 0.001). In total, 20.8% of PCOS and 9.2% of controls developed diabetes over a mean duration of 10.4 ± 1.2 and 11.3 ± 0.5 years, respectively. Logistic regression analyses suggested FGF19 was positively associated with diabetes progression in controls, after adjusting for age, follow-up duration, waist and fasting glucose (P = 0.026, odds ratio (OR) (95% CI): 7.4 (1.3–43.6)), and the positive relationship between FGF21 and diabetes progression in controls was attenuated by adjusting for age and follow-up duration (P = 0.183). Lipocalin-2 was positively correlated with diabetes progression in PCOS group (P = 0.026, OR (95% CI)): 2.5 (1.1–5.6)); however, this became attenuated after adjusting for waist and fasting glucose (P = 0.081). In conclusion, there is differential expression of FGF19, FGF21, and lipocalin-2 in PCOS. The serum level of FGF19, and FGF21 is associated with diabetes progression in women without PCOS, while lipocalin-2 was related to diabetes progression in PCOS women.

Open access
Malin Nylander Department of Obstetrics and Gynecology, Herlev Gentofte Hospital, Herlev, Denmark
Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Malin Nylander in
Google Scholar
PubMed
Close
,
Signe Frøssing Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Department of Internal Medicine, Endocrine Unit, Herlev Gentofte Hospital, Herlev, Denmark

Search for other papers by Signe Frøssing in
Google Scholar
PubMed
Close
,
Caroline Kistorp Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Department of Internal Medicine, Endocrine Unit, Herlev Gentofte Hospital, Herlev, Denmark

Search for other papers by Caroline Kistorp in
Google Scholar
PubMed
Close
,
Jens Faber Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Department of Internal Medicine, Endocrine Unit, Herlev Gentofte Hospital, Herlev, Denmark

Search for other papers by Jens Faber in
Google Scholar
PubMed
Close
, and
Sven O Skouby Department of Obstetrics and Gynecology, Herlev Gentofte Hospital, Herlev, Denmark
Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Sven O Skouby in
Google Scholar
PubMed
Close

Polycystic ovary syndrome (PCOS) is associated with increased risk of venous thromboembolism (VTE) and cardiovascular disease (CVD) in later life. We aimed to study the effect of liraglutide intervention on markers of VTE and CVD risk, in PCOS. In a double-blind, placebo-controlled, randomized trial, 72 overweight and/or insulin-resistant women with PCOS were randomized, in a 2:1 ratio, to liraglutide or placebo 1.8 mg/day. Endpoints included between-group difference in change (baseline to follow-up) in plasminogen activator inhibitor-1 levels and in thrombin generation test parameters: endogenous thrombin potential, peak thrombin concentration, lag time and time to peak. Mean weight loss was 5.2 kg (95% CI 3.0–7.5 kg, P < 0.001) in the liraglutide group compared with placebo. We detected no effect on endogenous thrombin potential in either group. In the liraglutide group, peak thrombin concentration decreased by 16.71 nmol/L (95% CI 2.32–31.11, P < 0.05) and lag time and time to peak increased by 0.13 min (95% CI 0.01–0.25, P < 0.05) and 0.38 min (95% CI 0.09–0.68, P < 0.05), respectively, but there were no between-group differences. There was a trend toward 12% (95% CI 0–23, P = 0.05) decreased plasminogen activator inhibitor-1 in the liraglutide group, and there was a trend toward 16% (95% CI −4 to 32, P = 0.10) reduction, compared with placebo. In overweight women with PCOS, liraglutide intervention caused an approximate 5% weight loss. In addition, liraglutide affected thrombin generation, although not significantly differently from placebo. A concomitant trend toward improved fibrinolysis indicates a possible reduction of the baseline thrombogenic potential. The findings point toward beneficial effects of liraglutide on markers of VTE and CVD risk, which should be further pursued in larger studies.

Open access