Search Results
You are looking at 31 - 40 of 420 items for
- Abstract: adrenarche x
- Abstract: amenorrhoea x
- Abstract: fertility x
- Abstract: Gender x
- Abstract: Hypogonadism x
- Abstract: infertility x
- Abstract: Klinefelter x
- Abstract: menarche x
- Abstract: menopause x
- Abstract: testes x
- Abstract: transsexual x
- Abstract: Turner x
- Abstract: sperm* x
- Abstract: follicles x
Search for other papers by Lukas Plachy in
Google Scholar
PubMed
Search for other papers by Lenka Petruzelkova in
Google Scholar
PubMed
Search for other papers by Petra Dusatkova in
Google Scholar
PubMed
Search for other papers by Klara Maratova in
Google Scholar
PubMed
Search for other papers by Dana Zemkova in
Google Scholar
PubMed
Search for other papers by Lenka Elblova in
Google Scholar
PubMed
Search for other papers by Vit Neuman in
Google Scholar
PubMed
Search for other papers by Stanislava Kolouskova in
Google Scholar
PubMed
Search for other papers by Barbora Obermannova in
Google Scholar
PubMed
Search for other papers by Marta Snajderova in
Google Scholar
PubMed
Search for other papers by Zdenek Sumnik in
Google Scholar
PubMed
Search for other papers by Jan Lebl in
Google Scholar
PubMed
Search for other papers by Stepanka Pruhova in
Google Scholar
PubMed
Familial short stature (FSS) describes vertically transmitted growth disorders. Traditionally, polygenic inheritance is presumed, but monogenic inheritance seems to occur more frequently than expected. Clinical predictors of monogenic FSS have not been elucidated. The aim of the study was to identify the monogenic etiology and its clinical predictors in FSS children. Of 747 patients treated with growth hormone (GH) in our center, 95 with FSS met the inclusion criteria (pretreatment height ≤−2 SD in child and his/her shorter parent); secondary short stature and Turner/Prader–Willi syndrome were excluded criteria. Genetic etiology was known in 11/95 children before the study, remaining 84 were examined by next-generation sequencing. The results were evaluated by American College of Medical Genetics and Genomics (ACMG) guidelines. Nonparametric tests evaluated differences between monogenic and non-monogenic FSS, an ROC curve estimated quantitative cutoffs for the predictors. Monogenic FSS was confirmed in 36/95 (38%) children. Of these, 29 (81%) carried a causative genetic variant affecting the growth plate, 4 (11%) a variant affecting GH–insulin-like growth factor 1 (IGF1) axis and 3 (8%) a variant in miscellaneous genes. Lower shorter parent’s height (P = 0.015) and less delayed bone age (BA) before GH treatment (P = 0.026) predicted monogenic FSS. In children with BA delayed less than 0.4 years and with shorter parent’s heights ≤−2.4 SD, monogenic FSS was revealed in 13/16 (81%) cases. To conclude, in FSS children treated with GH, a monogenic etiology is frequent, and gene variants affecting the growth plate are the most common. Shorter parent’s height and BA are clinical predictors of monogenic FSS.
Search for other papers by Henrik H Thomsen in
Google Scholar
PubMed
Search for other papers by Holger J Møller in
Google Scholar
PubMed
Search for other papers by Christian Trolle in
Google Scholar
PubMed
Search for other papers by Kristian A Groth in
Google Scholar
PubMed
Search for other papers by Anne Skakkebæk in
Google Scholar
PubMed
Search for other papers by Anders Bojesen in
Google Scholar
PubMed
Search for other papers by Christian Høst in
Google Scholar
PubMed
Medical Research Laboratories, Departments of Clinical Biochemistry, Molecular Medicine, Department of Clinical Genetics, Department of Endocrinology and Internal Medicine, Clinical Institute, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark
Search for other papers by Claus H Gravholt in
Google Scholar
PubMed
Soluble CD163 (sCD163) is a novel marker linked to states of low-grade inflammation such as diabetes, obesity, liver disease, and atherosclerosis, all prevalent in subjects with Turner syndrome (TS) and Klinefelter syndrome (KS). We aimed to assess the levels of sCD163 and the regulation of sCD163 in regards to treatment with sex hormone therapy in males with and without KS and females with and without TS. Males with KS (n=70) and age-matched controls (n=71) participating in a cross-sectional study and 12 healthy males from an experimental hypogonadism study. Females with TS (n=8) and healthy age-matched controls (n=8) participating in a randomized crossover trial. The intervention comprised of treatment with sex steroids. Males with KS had higher levels of sCD163 compared with controls (1.75 (0.47–6.90) and 1.36 (0.77–3.11) respectively, P<0.001) and the levels correlated to plasma testosterone (r=−0.31, P<0.01), BMI (r=0.42, P<0.001), and homeostasis model of assessment insulin resistance (r=0.46, P<0.001). Treatment with testosterone did not significantly lower sCD163. Females with TS not receiving hormone replacement therapy (HRT) had higher levels of sCD163 than those of their age-matched healthy controls (1.38±0.44 vs 0.91±0.40, P=0.04). HRT and oral contraceptive therapy decreased sCD163 in TS by 22% (1.07±0.30) and in controls by 39% (0.55±0.36), with significance in both groups (P=0.01 and P=0.04). We conclude that levels of sCD163 correlate with endogenous testosterone in KS and are higher in KS subjects compared with controls, but treatment did not significantly lower levels. Both endogenous and exogenous estradiol in TS was associated with lower levels of sCD163.
Search for other papers by Angela Köninger in
Google Scholar
PubMed
Search for other papers by Philippos Edimiris in
Google Scholar
PubMed
Search for other papers by Laura Koch in
Google Scholar
PubMed
Search for other papers by Antje Enekwe in
Google Scholar
PubMed
Search for other papers by Claudia Lamina in
Google Scholar
PubMed
Search for other papers by Sabine Kasimir-Bauer in
Google Scholar
PubMed
Search for other papers by Rainer Kimmig in
Google Scholar
PubMed
Department of Gynecology and Obstetrics, Division of Genetic Epidemiology, Vitateq Biotechnology GmbH, University of Duisburg-Essen, D-45122 Essen, Germany
Search for other papers by Hans Dieplinger in
Google Scholar
PubMed
Oxidative stress seems to be present in patients with polycystic ovary syndrome (PCOS). The aim of this study was to evaluate the correlation between characteristics of PCOS and serum concentrations of afamin, a novel binding protein for the antioxidant vitamin E. A total of 85 patients with PCOS and 76 control subjects were investigated in a pilot cross-sectional study design between 2009 and 2013 in the University Hospital of Essen, Germany. Patients with PCOS were diagnosed according to the Rotterdam ESHRE/ASRM-sponsored PCOS Consensus Workshop Group. Afamin and diagnostic parameters of PCOS were determined at early follicular phase. Afamin concentrations were significantly higher in patients with PCOS than in controls (odds ratio (OR) for a 10 mg/ml increase in afamin=1.3, 95% CI=1.08–1.58). This difference vanished in a model adjusting for age, BMI, free testosterone index (FTI), and sex hormone-binding globulin (SHBG) (OR=1.05, 95% CI=0.80–1.38). In patients with PCOS, afamin correlated significantly with homeostatic model assessment-insulin resistance (HOMA-IR), fasting glucose, BMI, FTI, and SHBG (P<0.001), but in a multivariate linear model, only HOMA-IR remained significantly associated with afamin (P=0.001). No correlation was observed between afamin and androgens, LH, FSH, LH/FSH ratio, antral follicle count, ovarian volume, or anti-Müllerian hormone. In conclusion, elevated afamin values may indicate a state of oxidative stress and inflammation, strongly associated with IR and offering an indicator of impaired glucose tolerance in patients with PCOS irrespective of obesity.
Disciplina de Endocrinologia, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, São Paulo, Brazil
Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular LIM/42, Disciplina de Endocrinologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
Search for other papers by Renata C Scalco in
Google Scholar
PubMed
Search for other papers by Ericka B Trarbach in
Google Scholar
PubMed
Search for other papers by Edoarda V A Albuquerque in
Google Scholar
PubMed
Search for other papers by Thais K Homma in
Google Scholar
PubMed
Search for other papers by Thais H Inoue-Lima in
Google Scholar
PubMed
Search for other papers by Mirian Y Nishi in
Google Scholar
PubMed
Search for other papers by Berenice B Mendonca in
Google Scholar
PubMed
Search for other papers by Alexander A L Jorge in
Google Scholar
PubMed
Most patients with Turner syndrome (TS) need hormone replacement therapy because of hypergonadotropic hypogonadism; individual outcomes, however, are highly variable. Our objective was to assess the influence of five estrogen receptor 1 gene (ESR1) polymorphisms (rs543650, rs1038304, rs2046210, rs2234693 and rs9340799) on adult height, breast development, uterine volume and bone mineral density (BMD). We studied 91 TS patients from a tertiary hospital using adult estrogen dose. In our group, ESR1 rs2234693 was associated with femoral neck and total hip BMD, and it accounted for around 10% of BMD variability in both sites (P < 0.01). Patients homozygous for C allele in this polymorphism had significantly lower femoral neck BMD (0.699 ± 0.065 g/cm2 vs 0.822 ± 0.113 g/cm2, P = 0.008) and total hip BMD (0.777 ± 0.118 g/cm2 vs 0.903 ± 0.098 g/cm2, P = 0.009) than patients homozygous for T allele. The other four ESR1 polymorphisms were not able to predict any of the above estrogen therapy outcomes in an isolated manner. Patients homozygous for the haplotype GCG formed by polymorphisms rs543650, rs2234693 and rs9340799 had an even more significantly lower femoral neck BMD (0.666 ± 0.049 vs 0.820 ± 0.105 g/cm2, P = 0.0047) and total hip BMD (0.752 ± 0.093 vs 0.908 ± 0.097 g/cm2, P = 0.0029) than patients homozygous for haplotypes with a T allele in rs2234693. In conclusion, homozygosity for C allele in ESR1 rs2234693 and/or for GCG haplotype appears to be associated with lower femoral neck and total hip BMD. We believe that the identification of polymorphisms related to estrogen outcomes may contribute to individualization of treatment in TS.
Search for other papers by M von Wolff in
Google Scholar
PubMed
Laboratory of Biometry, University of Thessaly, Volos, Greece
Search for other papers by C T Nakas in
Google Scholar
PubMed
Division of Pneumology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
Search for other papers by M Tobler in
Google Scholar
PubMed
Search for other papers by T M Merz in
Google Scholar
PubMed
Search for other papers by M P Hilty in
Google Scholar
PubMed
Search for other papers by J D Veldhuis in
Google Scholar
PubMed
Search for other papers by A R Huber in
Google Scholar
PubMed
Search for other papers by J Pichler Hefti in
Google Scholar
PubMed
Humans cannot live at very high altitude for reasons, which are not completely understood. Since these reasons are not restricted to cardiorespiratory changes alone, changes in the endocrine system might also be involved. Therefore, hormonal changes during prolonged hypobaric hypoxia were comprehensively assessed to determine effects of altitude and hypoxia on stress, thyroid and gonadal hypothalamus–pituitary hormone axes. Twenty-one male and 19 female participants were examined repetitively during a high-altitude expedition. Cortisol, prolactin, thyroid-stimulating hormone (TSH), fT4 and fT3 and in males follicle-stimulating hormone (FSH), luteinizing hormone (LH) and total testosterone were analysed as well as parameters of hypoxemia, such as SaO2 and paO2 at 550 m (baseline) (n = 40), during ascent at 4844 m (n = 38), 6022 m (n = 31) and 7050 m (n = 13), at 4844 m (n = 29) after acclimatization and after the expedition (n = 38). Correlation analysis of hormone concentrations with oxygen parameters and with altitude revealed statistical association in most cases only with altitude. Adrenal, thyroid and gonadal axes were affected by increasing altitude. Adrenal axis and prolactin were first supressed at 4844 m and then activated with increasing altitude; thyroid and gonadal axes were directly activated or suppressed respectively with increasing altitude. Acclimatisation at 4844 m led to normalization of adrenal and gonadal but not of thyroid axes. In conclusion, acclimatization partly leads to a normalization of the adrenal, thyroid and gonadal axes at around 5000 m. However, at higher altitude, endocrine dysregulation is pronounced and might contribute to the physical degradation found at high altitude.
Search for other papers by M Boering in
Google Scholar
PubMed
Isala, Department of Internal Medicine, Zwolle, The Netherlands
Search for other papers by P R van Dijk in
Google Scholar
PubMed
Langerhans Medical Research group, Zwolle, The Netherlands
Search for other papers by S J J Logtenberg in
Google Scholar
PubMed
Department of General Practice, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
Search for other papers by K H Groenier in
Google Scholar
PubMed
Search for other papers by B H R Wolffenbuttel in
Google Scholar
PubMed
Search for other papers by R O B Gans in
Google Scholar
PubMed
Langerhans Medical Research group, Zwolle, The Netherlands
Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
Search for other papers by N Kleefstra in
Google Scholar
PubMed
Isala, Department of Internal Medicine, Zwolle, The Netherlands
Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
Search for other papers by H J G Bilo in
Google Scholar
PubMed
Aims
Elevated sex hormone-binding globulin (SHBG) concentrations have been described in patients with type 1 diabetes mellitus (T1DM), probably due to low portal insulin concentrations. We aimed to investigate whether the route of insulin administration, continuous intraperitoneal insulin infusion (CIPII), or subcutaneous (SC), influences SHBG concentrations among T1DM patients.
Methods
Post hoc analysis of SHBG in samples derived from a randomized, open-labeled crossover trial was carried out in 20 T1DM patients: 50% males, mean age 43 (±13) years, diabetes duration 23 (±11) years, and hemoglobin A1c (HbA1c) 8.7 (±1.1) (72 (±12) mmol/mol). As secondary outcomes, testosterone, 17-β-estradiol, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) were analyzed.
Results
Estimated mean change in SHBG was −10.3nmol/L (95% CI: −17.4, −3.2) during CIPII and 3.7nmol/L (95% CI: −12.0, 4.6) during SC insulin treatment. Taking the effect of treatment order into account, the difference in SHBG between therapies was −6.6nmol/L (95% CI: −17.5, 4.3); −12.7nmol/L (95% CI: −25.1, −0.4) for males and −1.7nmol/L (95% CI: −24.6, 21.1) for females, respectively. Among males, SHBG and testosterone concentrations changed significantly during CIPII; −15.8nmol/L (95% CI: −24.2, −7.5) and −8.3nmol/L (95% CI: −14.4, −2.2), respectively. The difference between CIPII and SC insulin treatment was also significant for change in FSH 1.2U/L (95% CI: 0.1, 2.2) among males.
Conclusions
SHBG concentrations decreased significantly during CIPII treatment. Moreover, the difference in change between CIPII and SC insulin therapy was significant for SHBG and FSH among males. These findings support the hypothesis that portal insulin administration influences circulating SHBG and sex steroids.
Search for other papers by Liza Haqq in
Google Scholar
PubMed
Search for other papers by James McFarlane in
Google Scholar
PubMed
Search for other papers by Gudrun Dieberg in
Google Scholar
PubMed
Search for other papers by Neil Smart in
Google Scholar
PubMed
Polycystic ovarian syndrome (PCOS) affects 18–22% of women at reproductive age. We conducted a systematic review and meta-analysis evaluating the expected benefits of lifestyle (exercise plus diet) interventions on the reproductive endocrine profile in women with PCOS. Potential studies were identified by systematically searching PubMed, CINAHL and the Cochrane Controlled Trials Registry (1966–April 30, 2013) systematically using key concepts of PCOS. Significant improvements were seen in women receiving lifestyle intervention vs usual care in follicle-stimulating hormone (FSH) levels, mean difference (MD) 0.39 IU/l (95% CI 0.09 to 0.70, P=0.01), sex hormone-binding globulin (SHBG) levels, MD 2.37 nmol/l (95% CI 1.27 to 3.47, P<0.0001), total testosterone levels, MD −0.13 nmol/l (95% CI −0.22 to −0.03, P=0.008), androstenedione levels, MD −0.09 ng/dl (95% CI −0.15 to −0.03, P=0.005), free androgen index (FAI) levels, MD −1.64 (95% CI −2.94 to −0.35, P=0.01) and Ferriman–Gallwey (FG) score, MD −1.01 (95% CI −1.54 to −0.48, P=0.0002). Significant improvements were also observed in women who received exercise-alone intervention vs usual care in FSH levels, MD 0.42 IU/l (95% CI 0.11 to 0.73, P=0.009), SHBG levels, MD 3.42 nmol/l (95% CI 0.11 to 6.73, P=0.04), total testosterone levels, MD −0.16 nmol/l (95% CI −0.29 to −0.04, P=0.01), androstenedione levels, MD −0.09 ng/dl (95% CI −0.16 to −0.03, P=0.004) and FG score, MD −1.13 (95% CI −1.88 to −0.38, P=0.003). Our analyses suggest that lifestyle (diet and exercise) intervention improves levels of FSH, SHBG, total testosterone, androstenedione and FAI, and FG score in women with PCOS.
Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
Search for other papers by Tao Mei in
Google Scholar
PubMed
Search for other papers by Jianhe Zhang in
Google Scholar
PubMed
Search for other papers by Liangfeng Wei in
Google Scholar
PubMed
Search for other papers by Xingfeng Qi in
Google Scholar
PubMed
Search for other papers by Yiming Ma in
Google Scholar
PubMed
Search for other papers by Xianhua Liu in
Google Scholar
PubMed
Search for other papers by Shaohua Chen in
Google Scholar
PubMed
Search for other papers by Songyuan Li in
Google Scholar
PubMed
Search for other papers by Jianwu Wu in
Google Scholar
PubMed
Search for other papers by Shousen Wang in
Google Scholar
PubMed
Tumor cells require large amounts of energy to sustain growth. Through the mediated transport of glucose transporters, the uptake and utilization of glucose by tumor cells are significantly enhanced in the hypoxic microenvironment. Pituitary adenomas are benign tumors with high-energy metabolisms. We aimed to investigate the role of expression of glucose transporter 3 (GLUT3) and glucose transporter 1 (GLUT1) in pituitary adenomas, including effects on size, cystic change and hormone type. Pituitary adenomas from 203 patients were collected from January 2013 to April 2017, and immunohistochemical analysis was used to detect the expression of GLUT3 and GLUT1 in tumor specimens. GLUT3-positive expression in the cystic change group was higher than that in the non-cystic change group (P = 0.018). Proportions of GLUT3-positive staining of microadenomas, macroadenomas, and giant adenomas were 22.7 (5/22), 50.4 (66/131) and 54.0% (27/50), respectively (P = 0.022). In cases of prolactin adenoma, GLUT3-positive staining was predominant in cell membranes (P = 0.000006), while in cases of follicle-stimulating hormone or luteotropic hormone adenoma, we found mainly paranuclear dot-like GLUT3 staining (P = 0.025). In other hormonal adenomas, GLUT3 was only partially expressed, and the intensity of cell membrane or paranuclear punctate staining was weak. In contrast to GLUT3, GLUT1 expression was not associated with pituitary adenomas. Thus, our results indicate that the expression of GLUT3 in pituitary adenomas is closely related to cystic change and hormonal type. This study is the first to report a unique paranuclear dot-like GLUT3 staining pattern in pituitary adenomas.
Search for other papers by Yunting Lin in
Google Scholar
PubMed
Search for other papers by Endi Song in
Google Scholar
PubMed
Search for other papers by Han Jin in
Google Scholar
PubMed
Search for other papers by Yong Jin in
Google Scholar
PubMed
Background
Reproductive hormones may be a risk factor for cardiovascular disease (CVD), but their influence is often underestimated. Obesity can exacerbate the progression of CVD. Arterial stiffness (AS) is correlated with the risk of CVD. Brachial-ankle pulse wave velocity (baPWV) has served as a practical tool for assessing AS with broad clinical applications. This study aimed to investigate the association between reproductive hormones and baPWV in obese male and female subjects.
Methods
A retrospective case–control design was designed. AS was assessed using baPWV, with a baPWV ≥ 1400 cm/s indicating increased AS. Between September 2018 and October 2022, 241 obese subjects with increased AS were recruited from Ningbo Yinzhou No. 2 Hospital. The control group consisted of 241 obese subjects without increased AS. A 1:1 propensity score matching was performed to correct potential confounders by age and sex. We additionally performed a sex-based sub-analysis.
Results
Correlation analysis demonstrated that luteinizing hormone (LH) (r = 0.214, P = 0.001) and follicle-stimulating hormone (FSH) (r = 0.328, P < 0.001) were positively correlated with baPWV in obese male subjects. In the multivariate conditional logistic regression analysis, FSH (OR = 1.407, 95% CI = 1.040–1.902, P = 0.027) rather than LH (OR = 1.210, 95% CI = 0.908–1.612, P = 0.194) was independently and positively associated with increased AS in obese male subjects. However, there was no significant correlation between reproductive hormones and baPWV in women.
Conclusions
Our study identified FSH as a potential risk factor for arteriosclerosis in obese male subjects. This provides a novel and intriguing perspective on the pathogenesis of CVD in obese subjects.
Search for other papers by Yanling Cai in
Google Scholar
PubMed
Search for other papers by Yan Yang in
Google Scholar
PubMed
Search for other papers by Xiao Pang in
Google Scholar
PubMed
Search for other papers by Suping Li in
Google Scholar
PubMed
Purpose
The aim was to investigate the effect of radioactive iodine (RAI) treatment for differentiated thyroid cancer (DTC) on male gonadal function.
Methods
PubMed, Embase, Web of Science, OVID, Scopus, and Wanfang databases were searched up to June 10, 2022, to identify published studies related to RAI and male gonadal function. ReviewManager version 5.4.1 software was used to calculate mean differences (MDs) with 95% CIs.
Results
Initially, 1958 articles were retrieved from the databases, and 6 articles were included in the quantitative analysis. The meta-analysis results showed that follicle-stimulating hormone (FSH) increased when the follow-up duration was ≥12 months after RAI, but the difference was not statistically significant (MD = −2.64, 95% CI = (−5.61, 0.33), P = 0.08). But the results of the subgroup analysis showed that when the follow-up time was ≤6 months, FSH levels were significantly higher after RAI (MD = −7.65, 95% CI = (−13.95, −1.34), P = 0.02). The level of inhibin B was significantly lower at ≥12 months and ≤6 months after RAI (MD = 66.38, 95% CI = (8.39, 124.37), P = 0.02) and (MD = 116.27, 95% CI = (43.56, 188.98), P = 0.002). Additionally, luteinizing hormone (LH) and testosterone have similar results – that is, LH and testosterone levels were higher after RAI, but the difference was not statistically significant (MD = –0.87, 95% CI = (−2.04, 0.30), P = 0.15) and (MD = −1.69, 95% CI (−7.29, 3.90), P = 0.55).
Conclusions
Male gonadal function may be temporarily impaired within 6 months after RAI but may return to normal levels afterward.