Search Results

You are looking at 11 - 20 of 422 items for

  • Abstract: adrenarche x
  • Abstract: amenorrhoea x
  • Abstract: fertility x
  • Abstract: Gender x
  • Abstract: Hypogonadism x
  • Abstract: infertility x
  • Abstract: Klinefelter x
  • Abstract: menarche x
  • Abstract: menopause x
  • Abstract: testes x
  • Abstract: transsexual x
  • Abstract: Turner x
  • Abstract: sperm* x
  • Abstract: follicles x
Clear All Modify Search
Elinor Chelsom Vogt Department of Clinical Science, University of Bergen, Bergen, Norway
K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway

Search for other papers by Elinor Chelsom Vogt in
Google Scholar
PubMed
Close
,
Francisco Gómez Real Department of Clinical Science, University of Bergen, Bergen, Norway
Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway

Search for other papers by Francisco Gómez Real in
Google Scholar
PubMed
Close
,
Eystein Sverre Husebye Department of Clinical Science, University of Bergen, Bergen, Norway
K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway

Search for other papers by Eystein Sverre Husebye in
Google Scholar
PubMed
Close
,
Sigridur Björnsdottir Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Sigridur Björnsdottir in
Google Scholar
PubMed
Close
,
Bryndis Benediktsdottir Medical Faculty, University of Iceland, Reykjavik, Iceland
Department of Sleep, Landspitali University Hospital Reykjavík, Reykjavik, Iceland

Search for other papers by Bryndis Benediktsdottir in
Google Scholar
PubMed
Close
,
Randi Jacobsen Bertelsen Department of Clinical Science, University of Bergen, Bergen, Norway

Search for other papers by Randi Jacobsen Bertelsen in
Google Scholar
PubMed
Close
,
Pascal Demoly University Hospital of Montpellier, IDESP, Univ Montpellier-Inserm, Montpellier, France

Search for other papers by Pascal Demoly in
Google Scholar
PubMed
Close
,
Karl Anders Franklin Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden

Search for other papers by Karl Anders Franklin in
Google Scholar
PubMed
Close
,
Leire Sainz de Aja Gallastegui Unit of Epidemiology and Public Health, Department of Health, Basque Government, Vitoria-Gasteiz, Spain

Search for other papers by Leire Sainz de Aja Gallastegui in
Google Scholar
PubMed
Close
,
Francisco Javier Callejas González Department of Respiratory Medicine, Albacete University Hospital, Albacete, Spain

Search for other papers by Francisco Javier Callejas González in
Google Scholar
PubMed
Close
,
Joachim Heinrich Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Joachim Heinrich in
Google Scholar
PubMed
Close
,
Mathias Holm Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Mathias Holm in
Google Scholar
PubMed
Close
,
Nils Oscar Jogi Department of Clinical Science, University of Bergen, Bergen, Norway

Search for other papers by Nils Oscar Jogi in
Google Scholar
PubMed
Close
,
Benedicte Leynaert Université Paris-Saclay, Inserm U1018, Center for Epidemiology and Population Health, Integrative Respiratory Epidemiology Team, Villejuif, France

Search for other papers by Benedicte Leynaert in
Google Scholar
PubMed
Close
,
Eva Lindberg Department of Medical Sciences, Respiratory, Allergy and Sleep Medicine, Uppsala University, Uppsala, Sweden

Search for other papers by Eva Lindberg in
Google Scholar
PubMed
Close
,
Andrei Malinovschi Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden

Search for other papers by Andrei Malinovschi in
Google Scholar
PubMed
Close
,
Jesús Martínez-Moratalla Pneumology Service of the General University Hospital of Albacete, Albacete, Spain
Albacete Faculty of Medicine, Castilla-La Mancha University, Albacete, Spain

Search for other papers by Jesús Martínez-Moratalla in
Google Scholar
PubMed
Close
,
Raúl Godoy Mayoral Department of Respiratory Medicine, Albacete University Hospital, Albacete, Spain

Search for other papers by Raúl Godoy Mayoral in
Google Scholar
PubMed
Close
,
Anna Oudin Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden

Search for other papers by Anna Oudin in
Google Scholar
PubMed
Close
,
Antonio Pereira-Vega Juan Ramón Jiménez University Hospital in Huelva, Huelva, Spain

Search for other papers by Antonio Pereira-Vega in
Google Scholar
PubMed
Close
,
Chantal Raherison Semjen INSERM, EpiCene Team U1219, University of Bordeaux, Talence, France

Search for other papers by Chantal Raherison Semjen in
Google Scholar
PubMed
Close
,
Vivi Schlünssen Department of Public Health, Environment, Work and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
The National Research Center for the Working Environment, Copenhagen, Denmark

Search for other papers by Vivi Schlünssen in
Google Scholar
PubMed
Close
,
Kai Triebner Department of Clinical Science, University of Bergen, Bergen, Norway

Search for other papers by Kai Triebner in
Google Scholar
PubMed
Close
, and
Marianne Øksnes Department of Clinical Science, University of Bergen, Bergen, Norway
K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway

Search for other papers by Marianne Øksnes in
Google Scholar
PubMed
Close

Objective

To investigate markers of premature menopause (<40 years) and specifically the prevalence of autoimmune primary ovarian insufficiency (POI) in European women.

Design

Postmenopausal women were categorized according to age at menopause and self-reported reason for menopause in a cross-sectional analysis of 6870 women.

Methods

Variables associated with the timing of menopause and hormone measurements of 17β-estradiol and follicle-stimulating hormone were explored using multivariable logistic regression analysis. Specific immunoprecipitating assays of steroidogenic autoantibodies against 21-hydroxylase (21-OH), side-chain cleavage enzyme (anti-SCC) and 17alpha-hydroxylase (17 OH), as well as NACHT leucine-rich-repeat protein 5 were used to identify women with likely autoimmune POI.

Results

Premature menopause was identified in 2.8% of women, and these women had higher frequencies of nulliparity (37.4% vs 19.7%), obesity (28.7% vs 21.4%), osteoporosis (17.1% vs 11.6%), hormone replacement therapy (59.1% vs 36.9%) and never smokers (60.1% vs 50.9%) (P < 0.05), compared to women with menopause ≥40 years. Iatrogenic causes were found in 91 (47%) and non-ovarian causes in 27 (14%) women, while 77 (39%) women were classified as POI of unknown cause, resulting in a 1.1% prevalence of idiopathic POI. After adjustments nulliparity was the only variable significantly associated with POI (odds ratio 2.46; 95% CI 1.63–3.42). Based on the presence of autoantibodies against 21 OH and SCC, 4.5% of POI cases were of likely autoimmune origin.

Conclusion

Idiopathic POI affects 1.1% of all women and almost half of the women with premature menopause. Autoimmunity explains 4.5% of these cases judged by positive steroidogenic autoantibodies.

Open access
Maki Igarashi Medical Support Center for Japan Environmental and Children’s Study, National Center for Child Health and Development, Setagaya, Tokyo, Japan
Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Maki Igarashi in
Google Scholar
PubMed
Close
,
Tadayuki Ayabe Medical Support Center for Japan Environmental and Children’s Study, National Center for Child Health and Development, Setagaya, Tokyo, Japan
Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Tadayuki Ayabe in
Google Scholar
PubMed
Close
,
Kiwako Yamamoto-Hanada Medical Support Center for Japan Environmental and Children’s Study, National Center for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Kiwako Yamamoto-Hanada in
Google Scholar
PubMed
Close
,
Keiko Matsubara Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Keiko Matsubara in
Google Scholar
PubMed
Close
,
Hatoko Sasaki Medical Support Center for Japan Environmental and Children’s Study, National Center for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Hatoko Sasaki in
Google Scholar
PubMed
Close
,
Mayako Saito-Abe Medical Support Center for Japan Environmental and Children’s Study, National Center for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Mayako Saito-Abe in
Google Scholar
PubMed
Close
,
Miori Sato Medical Support Center for Japan Environmental and Children’s Study, National Center for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Miori Sato in
Google Scholar
PubMed
Close
,
Nathan Mise Department of Environmental and Preventive Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan

Search for other papers by Nathan Mise in
Google Scholar
PubMed
Close
,
Akihiko Ikegami Department of Environmental and Preventive Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan

Search for other papers by Akihiko Ikegami in
Google Scholar
PubMed
Close
,
Masayuki Shimono Regional Center for Pilot Study of Japan Environment and Children’s Study, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan

Search for other papers by Masayuki Shimono in
Google Scholar
PubMed
Close
,
Reiko Suga Regional Center for Pilot Study of Japan Environment and Children’s Study, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan

Search for other papers by Reiko Suga in
Google Scholar
PubMed
Close
,
Shouichi Ohga Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
Research Center for Environment and Developmental Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan

Search for other papers by Shouichi Ohga in
Google Scholar
PubMed
Close
,
Masafumi Sanefuji Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
Research Center for Environment and Developmental Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan

Search for other papers by Masafumi Sanefuji in
Google Scholar
PubMed
Close
,
Masako Oda Department of Public Health, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan

Search for other papers by Masako Oda in
Google Scholar
PubMed
Close
,
Hiroshi Mitsubuchi Department of Neonatology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan

Search for other papers by Hiroshi Mitsubuchi in
Google Scholar
PubMed
Close
,
Takehiro Michikawa Japan Environment and Children’s Study Programme Office, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan

Search for other papers by Takehiro Michikawa in
Google Scholar
PubMed
Close
,
Shin Yamazaki Japan Environment and Children’s Study Programme Office, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan

Search for other papers by Shin Yamazaki in
Google Scholar
PubMed
Close
,
Shoji Nakayama Japan Environment and Children’s Study Programme Office, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan

Search for other papers by Shoji Nakayama in
Google Scholar
PubMed
Close
,
Yukihiro Ohya Medical Support Center for Japan Environmental and Children’s Study, National Center for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Yukihiro Ohya in
Google Scholar
PubMed
Close
, and
Maki Fukami Medical Support Center for Japan Environmental and Children’s Study, National Center for Child Health and Development, Setagaya, Tokyo, Japan
Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Maki Fukami in
Google Scholar
PubMed
Close

Objective

Ultra-sensitive hormone assays have detected slight sex differences in blood estradiol (E2) levels in young children before adrenarche. However, the origin of circulating E2 in these individuals remains unknown. This study aimed to clarify how E2 is produced in young girls before adrenarche.

Design

This is a satellite project of the Japan Environment and Children’s Study organized by the National Institute for Environmental Studies.

Methods

We collected blood samples from healthy 6-year-old Japanese children (79 boys and 71 girls). Hormone measurements and data analysis were performed in the National Institute for Environmental Studies and the Medical Support Center of the Japan Environment and Children’s Study, respectively.

Results

E2 and follicle stimulating hormone (FSH) levels were significantly higher in girls than in boys, while dehydroepiandrosterone sulfate (DHEA-S) and testosterone levels were comparable between the two groups. Girls showed significantly higher E2/testosterone ratios than boys. In children of both sexes, a correlation was observed between E2 and testosterone levels and between testosterone and DHEA-S levels. Moreover, E2 levels were correlated with FSH levels only in girls.

Conclusions

The results indicate that in 6-year-old girls, circulating E2 is produced primarily in the ovary from adrenal steroids through FSH-induced aromatase upregulation. This study provides evidence that female-dominant E2 production starts several months or years before adrenarche. The biological significance of E2 biosynthesis in these young children needs to be clarified in future studies.

Open access
David Mark Robertson Department of Molecular and Translational Sciences, Hudson Institute of Medical Research, Monash University, Clayton, Victoria, Australia
School of Women’s & Children’s Health, Discipline of Obstetrics and Gynaecology, University of New South Wales, Sydney, Australia

Search for other papers by David Mark Robertson in
Google Scholar
PubMed
Close
,
Chel Hee Lee Clinical Research Support Unit, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Search for other papers by Chel Hee Lee in
Google Scholar
PubMed
Close
, and
Angela Baerwald Department of Obstetrics, Gynecology & Reproductive Sciences, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Search for other papers by Angela Baerwald in
Google Scholar
PubMed
Close

It is recognised that ovarian factors, including steroid and protein hormones, are critical in the feedback regulation of pituitary gonadotropins; however, their individual contributions are less defined. The aim of this study was to explore the reciprocal relationships between ovarian and pituitary hormones across the normal ovulatory menstrual cycle as women age. FSH, LH, oestradiol, progesterone, inhibin A, inhibin B and anti-mullerian hormone (AMH) were measured in serum collected every 1–3 days across one interovulatory interval (IOI) from 26 healthy women aged 18–50 years. The antral follicle count (AFC) for follicles 2–5 mm, >6 mm and 2–10 mm were tabulated across the IOI. Independent associations between ovarian hormones/AFC vs pituitary follicle-stimulating hormone (FSH) and luteinising hormone (LH) were investigated using multivariate regression analysis. The data were sub-grouped based on the presence or absence luteal phase-dominant follicles (LPDF). Serum oestradiol and AMH were inversely correlated with FSH in both follicular and luteal phases. Inhibin B correlated inversely with FSH and LH in the late follicular phase and directly in the luteal phase. AFC, inhibin A and progesterone were not key predictors of either FSH or LH. The strong association between AMH and FSH with age implies that AMH, as well as oestradiol and inhibin B are important regulators of FSH. The change in feedback response of inhibin B with both FSH and LH across the cycle suggests two phases of the negative feedback.

Open access
Henrik Falhammar Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

Search for other papers by Henrik Falhammar in
Google Scholar
PubMed
Close
,
Hedi Claahsen-van der Grinten Department of Pediatric Endocrine Disease, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

Search for other papers by Hedi Claahsen-van der Grinten in
Google Scholar
PubMed
Close
,
Nicole Reisch Medizinische Klinik and Poliklinik IV, Department of Endocrinology, University Hospital Munich, Munich, Germany

Search for other papers by Nicole Reisch in
Google Scholar
PubMed
Close
,
Jolanta Slowikowska-Hilczer Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland

Search for other papers by Jolanta Slowikowska-Hilczer in
Google Scholar
PubMed
Close
,
Anna Nordenström Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
Department of Paediatric Endocrinology, Astrid Lindgren Children Hospital, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Anna Nordenström in
Google Scholar
PubMed
Close
,
Robert Roehle Coordinating Center for Clinical Studies, Charité Universitätsmedizin, Berlin, Germany

Search for other papers by Robert Roehle in
Google Scholar
PubMed
Close
,
Claire Bouvattier Paris-Sud University, Orsay, France
Department of Pediatric Endocrinology, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France

Search for other papers by Claire Bouvattier in
Google Scholar
PubMed
Close
,
Baudewijntje P C Kreukels Department of Medical Psychology, VU University Medical Center, Amsterdam, The Netherlands

Search for other papers by Baudewijntje P C Kreukels in
Google Scholar
PubMed
Close
,
Birgit Köhler Department of Paediatric Endocrinology and Diabetology, Charité Universitätsmedizin, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany

Search for other papers by Birgit Köhler in
Google Scholar
PubMed
Close
, and
on behalf of the dsd-LIFE group
Search for other papers by on behalf of the dsd-LIFE group in
Google Scholar
PubMed
Close

Objective

The knowledge about health status in adults with disorder of sex development (DSD) is scarce.

Design and methods

A cross-sectional observational study in 14 European tertiary centers recruited 1040 participants (717 females, 311 males, 12 others) with DSD. Mean age was 32.4 ± 13.6 year (range 16–75). The cohort was divided into: Turner (n = 301), Klinefelter (n = 224), XY-DSD (n = 222), XX-DSD (excluding congenital adrenal hyperplasia (CAH) and 46,XX males) (n = 21), 46,XX-CAH (n = 226) and 45,X/46,XY (n = 45). Perceived and objective health statuses were measured and compared to European control data.

Results

In DSD, fair to very good general health was reported by 91.4% and only 8.6% reported (very) bad general health (controls 94.0% and 6.0%, P < 0.0001). Longstanding health issues other than DSD and feeling limited in daily life were reported in 51.0% and 38.6%, respectively (controls 24.5% and 13.8%, P < 0.0001 both). Any disorder except DSD was present in 84.3% (controls 24.6%, P < 0.0001). Males reported worse health than females. In the subgroup analysis, Klinefelter and 46,XX-DSD patients reported bad general health in 15.7% and 16.7%, respectively (Turner 3.2% and CAH 7.4%). Comorbidities were prevalent in all DSD subgroups but Klinefelter and Turner were most affected. Early diagnosis of DSD and a healthy lifestyle were associated with less comorbidities.

Conclusions

Overall, general health appeared to be good but a number of medical problems were reported, especially in Klinefelter and Turner. Early diagnosis of DSD and a healthy lifestyle seemed to be important. Lifelong follow-up at specialized centers is necessary.

Open access
Nicolás Crisosto Endocrinology and Metabolism Laboratory, West Division, School of Medicine, University of Chile, Santiago, Chile

Search for other papers by Nicolás Crisosto in
Google Scholar
PubMed
Close
,
Bárbara Echiburú Endocrinology and Metabolism Laboratory, West Division, School of Medicine, University of Chile, Santiago, Chile

Search for other papers by Bárbara Echiburú in
Google Scholar
PubMed
Close
,
Manuel Maliqueo Endocrinology and Metabolism Laboratory, West Division, School of Medicine, University of Chile, Santiago, Chile

Search for other papers by Manuel Maliqueo in
Google Scholar
PubMed
Close
,
Marta Luchsinger Endocrinology and Metabolism Laboratory, West Division, School of Medicine, University of Chile, Santiago, Chile

Search for other papers by Marta Luchsinger in
Google Scholar
PubMed
Close
,
Pedro Rojas Laboratory of Animal Physiology and Endocrinology, Faculty of Veterinary Sciences, University of Concepción, Chillán, Chile

Search for other papers by Pedro Rojas in
Google Scholar
PubMed
Close
,
Sergio Recabarren Laboratory of Animal Physiology and Endocrinology, Faculty of Veterinary Sciences, University of Concepción, Chillán, Chile

Search for other papers by Sergio Recabarren in
Google Scholar
PubMed
Close
, and
Teresa Sir-Petermann Endocrinology and Metabolism Laboratory, West Division, School of Medicine, University of Chile, Santiago, Chile

Search for other papers by Teresa Sir-Petermann in
Google Scholar
PubMed
Close

Context

Intrauterine life may be implicated in the origin of polycystic ovary syndrome (PCOS) modifying the endocrine and metabolic functions of children born to PCOS mothers independently of the genetic inheritance and gender. The aim of the present study was to evaluate the reproductive and metabolic functions in sons of women with PCOS during puberty.

Methods

Sixty-nine PCOS sons (PCOSs) and 84 control sons of 7–18 years old matched by the Tanner stage score were studied. A complete physical examination was conducted including anthropometric measurements (weight, height, waist, hip and body mass index). An oral glucose tolerance test was performed and circulating concentrations of luteinizing hormone, follicle-stimulating hormone (FSH), sex hormone-binding globulin, testosterone, androstenedione (A4), 17α-hydroxyprogesterone (17-OHP) and AMH were determined in the fasting sample.

Results

Waist-to-hip ratio, FSH and androstenedione levels were significantly higher in the PCOSs group compared to control boys during the Tanner stage II–III. In Tanner stages II–III and IV–V, PCOSs showed significantly higher total cholesterol and LDL levels. Propensity score analysis showed that higher LDL levels were attributable to the PCOSs condition and not to other metabolic factors. AMH levels were comparable during all stages. The rest of the parameters were comparable between both groups.

Conclusions

Sons of women with PCOS show increased total cholesterol and LDL levels during puberty, which may represent latent insulin resistance. Thus, this is a group that should be followed and studied looking for further features of insulin resistance and cardiovascular risk markers. Reproductive markers, on the other hand, are very similar to controls.

Open access
Nathalia G B P Ferreira Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil

Search for other papers by Nathalia G B P Ferreira in
Google Scholar
PubMed
Close
,
Joao L O Madeira Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil

Search for other papers by Joao L O Madeira in
Google Scholar
PubMed
Close
,
Peter Gergics Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil

Search for other papers by Peter Gergics in
Google Scholar
PubMed
Close
,
Renata Kertsz Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil

Search for other papers by Renata Kertsz in
Google Scholar
PubMed
Close
,
Juliana M Marques Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil

Search for other papers by Juliana M Marques in
Google Scholar
PubMed
Close
,
Nicholas S S Trigueiro Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil

Search for other papers by Nicholas S S Trigueiro in
Google Scholar
PubMed
Close
,
Anna Flavia Figueredo Benedetti University of Michigan Medical School, Department of Human Genetics, Ann Arbor, Michigan, United States

Search for other papers by Anna Flavia Figueredo Benedetti in
Google Scholar
PubMed
Close
,
Bruna V Azevedo Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil

Search for other papers by Bruna V Azevedo in
Google Scholar
PubMed
Close
,
Bianca H V Fernandes Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
Universidade de São Paulo, Zebrafish Facility, São Paulo, São Paulo, Brazil

Search for other papers by Bianca H V Fernandes in
Google Scholar
PubMed
Close
,
Debora D Bissegatto Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil

Search for other papers by Debora D Bissegatto in
Google Scholar
PubMed
Close
,
Isabela P Biscotto Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil

Search for other papers by Isabela P Biscotto in
Google Scholar
PubMed
Close
,
Qing Fang Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil

Search for other papers by Qing Fang in
Google Scholar
PubMed
Close
,
Qianyi Ma Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil

Search for other papers by Qianyi Ma in
Google Scholar
PubMed
Close
,
Asye B Ozel Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil

Search for other papers by Asye B Ozel in
Google Scholar
PubMed
Close
,
Jun Li Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil

Search for other papers by Jun Li in
Google Scholar
PubMed
Close
,
Sally A Camper Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil

Search for other papers by Sally A Camper in
Google Scholar
PubMed
Close
,
Alexander A L Jorge Unidade de Endocrinologia Genética, Laboratório de Endocrinologia Celular e Molecular LIM25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil

Search for other papers by Alexander A L Jorge in
Google Scholar
PubMed
Close
,
Berenice B Mendonça Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil

Search for other papers by Berenice B Mendonça in
Google Scholar
PubMed
Close
,
Ivo J P Arnhold Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil

Search for other papers by Ivo J P Arnhold in
Google Scholar
PubMed
Close
, and
Luciani R Carvalho Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil

Search for other papers by Luciani R Carvalho in
Google Scholar
PubMed
Close

Context

Congenital hypopituitarism is a genetically heterogeneous condition. Whole exome sequencing (WES) is a promising approach for molecular diagnosis of patients with this condition.

Objectives

The aim of this study is to conduct WES in a patient with congenital hypopituitarism born to consanguineous parents, CDH2 screening in a cohort of patients with congenital hypopituitarism, and functional testing of a novel CDH2 variant.

Design

Genomic DNA from a proband and her consanguineous parents was analyzed by WES. Copy number variants were evaluated. The genetic variants were filtered for population frequency (ExAC, 1000 genomes, gnomAD, and ABraOM), in silico prediction of pathogenicity, and gene expression in the pituitary and/or hypothalamus. Genomic DNA from 145 patients was screened for CDH2 by Sanger sequencing.

Results

One female patient with deficiencies in growth hormone, thyroid-stimulating hormone, adrenocorticotropic hormone, luteinizing hormone, and follicle-stimulating hormone and ectopic posterior pituitary gland contained a rare homozygous c.865G>A (p.Val289Ile) variant in CDH2. To determine whether the p.Val289Ile variant in CDH2 affects cell adhesion properties, we stably transfected L1 fibroblast lines, labeled the cells with lipophilic dyes, and quantified aggregation. Large aggregates formed in cells expressing wildtype CDH2, but aggregation was impaired in cells transfected with variant CDH2 or non-transfected.

Conclusion

A homozygous CDH2 allelic variant was found in one hypopituitarism patient, and the variant impaired cell aggregation function in vitro. No disease-causing variants were found in 145 other patients screened for CDH2 variants. Thus, CDH2 is a candidate gene for hypopituitarism that needs to be tested in different populations.

Significance statement

A female patient with hypopituitarism was born from consanguineous parents and had a homozygous, likely pathogenic, CDH2 variant that impairs cell aggregation in vitro. No other likely pathogenic variants in CDH2 were identified in 145 hypopituitarism patients.

Open access
Eleftherios E Deiktakis Laboratory of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Greece

Search for other papers by Eleftherios E Deiktakis in
Google Scholar
PubMed
Close
,
Eleftheria Ieronymaki Laboratory of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Greece

Search for other papers by Eleftheria Ieronymaki in
Google Scholar
PubMed
Close
,
Peter Zarén Department of Translational Medicine, Lund University, Malmö, Sweden

Search for other papers by Peter Zarén in
Google Scholar
PubMed
Close
,
Agnes Hagsund Department of Translational Medicine, Lund University, Malmö, Sweden

Search for other papers by Agnes Hagsund in
Google Scholar
PubMed
Close
,
Elin Wirestrand Department of Translational Medicine, Lund University, Malmö, Sweden

Search for other papers by Elin Wirestrand in
Google Scholar
PubMed
Close
,
Johan Malm Department of Translational Medicine, Lund University, Malmö, Sweden

Search for other papers by Johan Malm in
Google Scholar
PubMed
Close
,
Christos Tsatsanis Laboratory of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Greece

Search for other papers by Christos Tsatsanis in
Google Scholar
PubMed
Close
,
Ilpo T Huhtaniemi Department of Translational Medicine, Lund University, Malmö, Sweden
Imperial College London, Institute of Reproductive and Developmental Biology, London, UK

Search for other papers by Ilpo T Huhtaniemi in
Google Scholar
PubMed
Close
,
Aleksander Giwercman Department of Translational Medicine, Lund University, Malmö, Sweden
Malmö University Hospital, Reproductive Medicine Center, Malmö, Sweden

Search for other papers by Aleksander Giwercman in
Google Scholar
PubMed
Close
, and
Yvonne Lundberg Giwercman Department of Translational Medicine, Lund University, Malmö, Sweden

Search for other papers by Yvonne Lundberg Giwercman in
Google Scholar
PubMed
Close

Objective

During androgen ablation in prostate cancer by the standard gonadotropin-releasing hormone (GnRH) agonist treatment, only luteinizing hormone (LH) is permanently suppressed while circulating follicle-stimulating hormone (FSH) rebounds. We explored direct prostatic effects of add-back FSH, after androgen ablation with GnRH antagonist, permanently suppressing both gonadotropins.

Methods

The effects of recombinant human (rFSH) were examined in mice treated with vehicle (controls), GnRH antagonist degarelix (dgx), dgx + rFSH, dgx + flutamide, or dgx + rFSH + flutamide for 4 weeks. Prostates and testes size and expression of prostate-specific and/or androgen-responsive genes were measured. Additionally, 33 young men underwent dgx-treatment. Seventeen were supplemented with rFSH (weeks 1–5), and all with testosterone (weeks 4–5). Testosterone, gondotropins, prostate-specific antigen (PSA), and inhibin B were measured.

Results

In dgx and dgx + flutamide treated mice, prostate weight/body weight was 91% lower than in controls, but 41 and 11%, respectively, was regained by rFSH treatment (P = 0.02). The levels of seminal vesicle secretion 6, Pbsn, Nkx3.1, beta-microseminoprotein, and inhibin b were elevated in dgx + rFSH-treated animals compared with only dgx treated (all P < 0.05). In men, serum inhibin B rose after dgx treatment but was subsequently suppressed by testosterone. rFSH add-back had no effect on PSA levels.

Conclusions

These data provide novel evidence for the direct effects of FSH on prostate size and gene expression in chemically castrated mice. However, in chemically castrated men, FSH had no effect on PSA production. Whether FSH effects on the prostate in humans also require suppression of the residual adrenal-derived androgens and/or a longer period of rFSH stimulation, remains to be explored.

Open access
Giuseppe Grande Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy

Search for other papers by Giuseppe Grande in
Google Scholar
PubMed
Close
,
Andrea Graziani Department of Medicine, University of Padova, Padova, Italy

Search for other papers by Andrea Graziani in
Google Scholar
PubMed
Close
,
Antonella Di Mambro Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy

Search for other papers by Antonella Di Mambro in
Google Scholar
PubMed
Close
,
Riccardo Selice Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy

Search for other papers by Riccardo Selice in
Google Scholar
PubMed
Close
, and
Alberto Ferlin Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy
Department of Medicine, University of Padova, Padova, Italy

Search for other papers by Alberto Ferlin in
Google Scholar
PubMed
Close

Low bone mass is common in men with Klinefelter syndrome (KS), with a prevalence of 6–15% of osteoporosis and of 25–48% of osteopenia. Reduced bone mass has been described since adolescence and it might be related to both reduced bone formation and higher bone resorption. Although reduced testosterone levels are clearly involved in the pathogenesis, this relation is not always evident. Importantly, fracture risk is increased independently from bone mineral density (BMD) and testosterone levels. Here we discuss the pathogenesis of osteoporosis in patients with KS, with a particular focus on the role of testosterone and testis function. In fact, other hormonal mechanisms, such as global Leydig cell dysfunction, causing reduced insulin-like factor 3 and 25-OH vitamin D levels, and high follicle-stimulating hormone and estradiol levels, might be involved. Furthermore, genetic aspects related to the supernumerary X chromosome might be involved, as well as androgen receptor expression and function. Notably, body composition, skeletal mass and strength, and age at diagnosis are other important aspects. Although dual-energy x-ray absorptiometry is recommended in the clinical workflow for patients with KS to measure BMD, recent evidence suggests that alterations in the microarchitecture of the bones and vertebral fractures might be present even in subjects with normal BMD. Therefore, analysis of trabecular bone score, high-resolution peripheral quantitative computed tomography and vertebral morphometry seem promising tools to better estimate the fracture risk of patients with KS. This review also summarizes the evidence on the best available treatments for osteoporosis in men with KS, with or without hypogonadism.

Open access
E Kohva Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
Faculty of Medicine, Department of Physiology, University of Helsinki, Helsinki, Finland

Search for other papers by E Kohva in
Google Scholar
PubMed
Close
,
P J Miettinen Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland

Search for other papers by P J Miettinen in
Google Scholar
PubMed
Close
,
S Taskinen Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
Department of Pediatric Surgery, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland

Search for other papers by S Taskinen in
Google Scholar
PubMed
Close
,
M Hero Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland

Search for other papers by M Hero in
Google Scholar
PubMed
Close
,
A Tarkkanen Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
Faculty of Medicine, Department of Physiology, University of Helsinki, Helsinki, Finland

Search for other papers by A Tarkkanen in
Google Scholar
PubMed
Close
, and
T Raivio Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
Faculty of Medicine, Department of Physiology, University of Helsinki, Helsinki, Finland

Search for other papers by T Raivio in
Google Scholar
PubMed
Close

Background

We describe the phenotypic spectrum and timing of diagnosis and management in a large series of patients with disorders of sexual development (DSD) treated in a single pediatric tertiary center.

Methods

DSD patients who had visited our tertiary center during the survey period (between 2004 and 2014) were identified based on an ICD-10 inquiry, and their phenotypic and molecular genetic findings were recorded from patient charts.

Results

Among the 550 DSD patients, 53.3% had 46,XY DSD; 37.1% had sex chromosome DSD and 9.6% had 46,XX DSD. The most common diagnoses were Turner syndrome (19.8%, diagnosed at the mean age of 4.7 ± 5.5 years), Klinefelter syndrome (14.5%, 6.8 ± 6.2 years) and bilateral cryptorchidism (23.1%). Very few patients with 46,XY DSD (7%) or 46,XX DSD (21%) had molecular genetic diagnosis. The yearly rate of DSD diagnoses remained stable over the survey period. After the release of the Nordic consensus on the management of undescended testes, the age at surgery for bilateral cryptorchidism declined significantly (P < 0.001).

Conclusions

Our results show that (i) Turner syndrome and Klinefelter syndrome, the most frequent single DSD diagnoses, are still diagnosed relatively late; (ii) a temporal shift was observed in the management of bilateral cryptorchidism, which may favorably influence patients’ adulthood semen quality and (iii) next-generation sequencing methods are not fully employed in the diagnostics of DSD patients.

Open access
Nathalie Ly Department of Endocrinology and Reproductive Medicine, Reference Center for Rare Endocrine Diseases of Growth and Development, Reference Center for Gynecological Rare Diseases, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris, France
EndoERN, APHP Consortium Pitie Salpetriere Hospital, Necker Hospital, Paris, France

Search for other papers by Nathalie Ly in
Google Scholar
PubMed
Close
,
Sophie Dubreuil Department of Endocrinology and Reproductive Medicine, Reference Center for Rare Endocrine Diseases of Growth and Development, Reference Center for Gynecological Rare Diseases, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris, France
EndoERN, APHP Consortium Pitie Salpetriere Hospital, Necker Hospital, Paris, France

Search for other papers by Sophie Dubreuil in
Google Scholar
PubMed
Close
, and
Philippe Touraine Department of Endocrinology and Reproductive Medicine, Reference Center for Rare Endocrine Diseases of Growth and Development, Reference Center for Gynecological Rare Diseases, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris, France
EndoERN, APHP Consortium Pitie Salpetriere Hospital, Necker Hospital, Paris, France
Sorbonne University, Paris, France

Search for other papers by Philippe Touraine in
Google Scholar
PubMed
Close

Objective

Growth hormone (GH) and insulin-like growth factors (IGFs) are not mandatory for reproductive life, but data suggest their synergistic action with follicle-stimulating hormone throughout ovarian folliculogenesis. We aimed to evaluate the association of IGF-1 level on clinical pregnancy rate after ovarian stimulation, with or without intrauterine insemination, in women with GH deficiency (GHD) treated with GH replacement therapy (GHRT) at conception.

Design and methods

Data from 19 women with both GHD and hypogonadotropic hypogonadism referred to our reproductive medicine department were retrospectively collected. IGF-1 levels were assessed in a single laboratory, and values were expressed in s.d. from the mean.

Results

Amongst the seven patients receiving GHRT during ovarian stimulation, higher IGF-1 levels were significantly associated with clinical pregnancy (+0.4 s.d. vs–1.6 s.d., P = 0.03). Amongst the 24 pregnancies obtained by the 19 infertile patients, pregnancy loss was less frequent with the addition of GHRT than without (1 miscarriage out of 8 total pregnancies vs 4 miscarriages out of 16 total pregnancies).

Conclusions

This is the first study evaluating the association of IGF-1 level on clinical pregnancy rate in GH-treated women at conception. When taking care of female infertility due to hypogonadotropic hypogonadism, practitioners should enquire about the associated GHD and IGF-1 levels. To ensure higher clinical pregnancy chances, practitioners should aim for IGF-1 values at conception, ranging from 0 s.d. to +2 s.d., and, if necessary, could discuss initiation or increase GH treatment. Prospective studies should help strengthen our results.

Open access