Search Results
You are looking at 1 - 10 of 36 items for :
- Abstract: adrenarche x
- Abstract: amenorrhoea x
- Abstract: fertility x
- Abstract: Gender x
- Abstract: Hypogonadism x
- Abstract: infertility x
- Abstract: menarche x
- Abstract: menopause x
- Abstract: testes x
- Abstract: transsexual x
- Abstract: Turner x
- Abstract: sperm* x
- Abstract: ovary x
- Abstract: follicles x
- Reproduction x
Search for other papers by Rohit Barnabas in
Google Scholar
PubMed
Search for other papers by Swati Jadhav in
Google Scholar
PubMed
Search for other papers by Anurag Ranjan Lila in
Google Scholar
PubMed
Search for other papers by Sirisha Kusuma Boddu in
Google Scholar
PubMed
Search for other papers by Saba Samad Memon in
Google Scholar
PubMed
Search for other papers by Sneha Arya in
Google Scholar
PubMed
Search for other papers by Samiksha Chandrashekhar Hegishte in
Google Scholar
PubMed
Search for other papers by Manjiri Karlekar in
Google Scholar
PubMed
Search for other papers by Virendra A Patil in
Google Scholar
PubMed
Search for other papers by Vijaya Sarathi in
Google Scholar
PubMed
Search for other papers by Nalini S Shah in
Google Scholar
PubMed
Search for other papers by Tushar Bandgar in
Google Scholar
PubMed
Background
The data on Leydig cell hypoplasia (LCH) resulting from biallelic Luteinizing hormone/chorionic gonadotropin receptor (LHCGR) inactivating variants is limited to case series.
Methods
We aim to describe our patients and perform systematic review of the patients with LHCGR inactivating variants in the literature. Detailed phenotype and genotype data of three patients from our centre and 85 (46,XY: 67; 46,XX: 18) patients from 59 families with LHCGR-inactivating variants from literature were described.
Results
Three 46,XY patients (age 6–18 years) from our center, with two reared as females, had two novel variants in LHCGR. Systematic review (including our patients) revealed 72 variants in 88 patients. 46,XY patients (n = 70, 56 raised as females) presented with pubertal delay (n = 41) or atypical genitalia (n = 17). Sinnecker score ≥3 (suggesting antenatal human chorionic gonadotropin (hCG) inaction) was seen in 80% (56/70), and hCG-stimulated testosterone was low (<1.1 ng/mL) in 77.4% (24/31), whereas puberty/postpubertal age, high luteinizing hormone (LH) (97.6%, 41/42) and low (<1.0 ng/mL) basal testosterone (94.9%, 37/39) was observed in most. Follicle stimulating hormone was elevated in 21/51 of these patients. Variants with <10% receptor function were exclusively seen in cohorts with Sinnecker 4/5 (10/15 vs 0/5, P = 0.033). 46,XX patients (n = 18) presented with oligo/amenorrhea and/or anovulatory infertility and had polycystic ovaries (7/9) with median LH of 10 IU/L (1.2–38).
Conclusion
In summary, this study comprehensively characterizes LHCGR variants, revealing genotype-phenotype correlations and informing clinical management of LCH. In 46,XY LCH patients, pubertal LH inaction is uniform with variable severity of antenatal hCG inaction. Few mutant LHCGR have differential actions for LH and hCG.
Search for other papers by Zheng Chen in
Google Scholar
PubMed
Search for other papers by Haixia Zeng in
Google Scholar
PubMed
Search for other papers by Qiulan Huang in
Google Scholar
PubMed
Search for other papers by Cuiping Lin in
Google Scholar
PubMed
Search for other papers by Xuan Li in
Google Scholar
PubMed
Search for other papers by Shaohua Sun in
Google Scholar
PubMed
Search for other papers by Jian-ping Liu in
Google Scholar
PubMed
The aim of the study was to investigate the changes in serum glypican 4 (GPC4) and clusterin (CLU) levels in patients with polycystic ovary syndrome (PCOS) as well as their correlation with sex hormones and metabolic parameters. A total of 40 PCOS patients and 40 age-matched healthy women were selected. Serum GPC4 and CLU levels were compared between the PCOS and control groups, and binary logistic regression was used to analyze the relative risk of PCOS at different tertiles of serum GPC4 and CLU concentrations. Stepwise linear regression was used to identify the factors influencing serum GPC4 and CLU levels in PCOS patients. Serum GPC4 (1.82 ± 0.49 vs 1.30 ± 0.61 ng/mL, P < 0.001) and CLU (468.79 ± 92.85 vs 228.59 ± 82.42 µg/mL, P < 0.001) were significantly higher in PCOS patients than in healthy women after adjustment for body mass index (BMI). In the PCOS group, serum GPC4 was positively correlated with follicle-stimulating hormone, fasting plasma glucose (FPG), fasting insulin (FINS), homeostatic model assessment of insulin resistance (HOMA-IR), triglyceride, and CLU (P < 0.05), whereas serum CLU was positively correlated with BMI, FPG, FINS, and HOMA-IR (P < 0.05). Multiple stepwise linear regression analysis showed that HOMA-IR was independently associated with serum GPC4, and BMI and HOMA-IR were independently associated with CLU (P < 0.05). Serum GPC4 and CLU levels were significantly higher in PCOS patients than in healthy women, suggesting that GPC4 and CLU may be markers associated with insulin resistance in women with PCOS.
School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
Search for other papers by Xinyuan Zhang in
Google Scholar
PubMed
Search for other papers by Suiyan Li in
Google Scholar
PubMed
Search for other papers by Hongwei Liu in
Google Scholar
PubMed
Search for other papers by Huai Bai in
Google Scholar
PubMed
Search for other papers by Qingqing Liu in
Google Scholar
PubMed
Search for other papers by Chunyi Yang in
Google Scholar
PubMed
Search for other papers by Ping Fan in
Google Scholar
PubMed
Oxidative stress and metabolic disorders are involved in the pathogenesis of polycystic ovary syndrome (PCOS). Heme oxygenase 2 (HMOX2) plays a critical role in preserving heme metabolism as well as in modulating glycolipid metabolism, oxidative stress, and inflammation. This study examined the correlation between HMOX2 G554A (rs1051308) and A-42G (rs2270363) genetic variants with the risk of PCOS and assessed the effects of these genotypes on clinical, hormonal, metabolic, and oxidative stress indices using a case–control design that included 1014 patients with PCOS and 806 control participants. We found that the allelic and genotypic frequencies of the HMOX2 G554A and A-42G polymorphisms were comparable between the PCOS and control groups in Chinese women (P > 0.05). Nevertheless, it was discovered that patients with the AA or AG genotype of A-42G polymorphism had notably elevated levels of estradiol (E2), follicle-stimulating hormone (FSH), luteinizing hormone (LH), LH/FSH ratio, high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), apolipoprotein (apo)B, and/or apoB/apoA1 ratio than those with the GG genotypes (P < 0.05). Patients with the GG or AG genotype of G554A polymorphism had elevated serum levels of LH, FSH, E2, LH/FSH ratio, TC, HDL-C, LDL-C, apoB, and/or apoB/apoA1 ratio and lower 2-h glucose concentration compared with those with the AA genotype (P < 0.05). Our findings indicate a potential association between the genetic variants and endocrine abnormalities in the reproductive system and metabolic irregularities in glycolipid levels in patients, thus suggesting their potential role in the pathogenesis of PCOS.
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Hans Valdemar López Krabbe in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Jørgen Holm Petersen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Department of Fertility, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
Search for other papers by Louise Laub Asserhøj in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Trine Holm Johannsen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Peter Christiansen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Rikke Beck Jensen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Line Hartvig Cleemann in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Casper P Hagen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Lærke Priskorn in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Niels Jørgensen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Katharina M Main in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Anders Juul in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Lise Aksglaede in
Google Scholar
PubMed
Adult patients with Klinefelter syndrome (KS) are characterized by a highly variable phenotype, including tall stature, obesity, and hypergonadotropic hypogonadism, as well as an increased risk of developing insulin resistance, metabolic syndrome, and osteoporosis. Most adults need testosterone replacement therapy (TRT), whereas the use of TRT during puberty has been debated. In this retrospective, observational study, reproductive hormones and whole-body dual-energy x-ray absorptiometry-derived body composition and bone mineral content were standardized to age-related standard deviation scores in 62 patients with KS aged 5.9–20.6 years. Serum concentrations of total testosterone and inhibin B were low, whereas luteinizing hormone and follicle-stimulating hormone were high in patients before TRT. Despite normal body mass index, body fat percentage and the ratio between android fat percentage and gynoid fat percentage were significantly higher in the entire group irrespective of treatment status. In patients evaluated before and during TRT, a tendency toward a more beneficial body composition with a significant reduction in the ratio between android fat percentage and gynoid fat percentage during TRT was found. Bone mineral content (BMC) did not differ from the reference, but BMC corrected for bone area was significantly lower when compared to the reference. This study confirms that patients with KS have an unfavorable body composition and an impaired bone mineral status already during childhood and adolescence. Systematic studies are needed to evaluate whether TRT during puberty will improve these parameters.
K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway
Search for other papers by Elinor Chelsom Vogt in
Google Scholar
PubMed
Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
Search for other papers by Francisco Gómez Real in
Google Scholar
PubMed
K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway
Search for other papers by Eystein Sverre Husebye in
Google Scholar
PubMed
Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
Search for other papers by Sigridur Björnsdottir in
Google Scholar
PubMed
Department of Sleep, Landspitali University Hospital Reykjavík, Reykjavik, Iceland
Search for other papers by Bryndis Benediktsdottir in
Google Scholar
PubMed
Search for other papers by Randi Jacobsen Bertelsen in
Google Scholar
PubMed
Search for other papers by Pascal Demoly in
Google Scholar
PubMed
Search for other papers by Karl Anders Franklin in
Google Scholar
PubMed
Search for other papers by Leire Sainz de Aja Gallastegui in
Google Scholar
PubMed
Search for other papers by Francisco Javier Callejas González in
Google Scholar
PubMed
Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
Search for other papers by Joachim Heinrich in
Google Scholar
PubMed
Search for other papers by Mathias Holm in
Google Scholar
PubMed
Search for other papers by Nils Oscar Jogi in
Google Scholar
PubMed
Search for other papers by Benedicte Leynaert in
Google Scholar
PubMed
Search for other papers by Eva Lindberg in
Google Scholar
PubMed
Search for other papers by Andrei Malinovschi in
Google Scholar
PubMed
Albacete Faculty of Medicine, Castilla-La Mancha University, Albacete, Spain
Search for other papers by Jesús Martínez-Moratalla in
Google Scholar
PubMed
Search for other papers by Raúl Godoy Mayoral in
Google Scholar
PubMed
Search for other papers by Anna Oudin in
Google Scholar
PubMed
Search for other papers by Antonio Pereira-Vega in
Google Scholar
PubMed
Search for other papers by Chantal Raherison Semjen in
Google Scholar
PubMed
The National Research Center for the Working Environment, Copenhagen, Denmark
Search for other papers by Vivi Schlünssen in
Google Scholar
PubMed
Search for other papers by Kai Triebner in
Google Scholar
PubMed
K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway
Search for other papers by Marianne Øksnes in
Google Scholar
PubMed
Objective
To investigate markers of premature menopause (<40 years) and specifically the prevalence of autoimmune primary ovarian insufficiency (POI) in European women.
Design
Postmenopausal women were categorized according to age at menopause and self-reported reason for menopause in a cross-sectional analysis of 6870 women.
Methods
Variables associated with the timing of menopause and hormone measurements of 17β-estradiol and follicle-stimulating hormone were explored using multivariable logistic regression analysis. Specific immunoprecipitating assays of steroidogenic autoantibodies against 21-hydroxylase (21-OH), side-chain cleavage enzyme (anti-SCC) and 17alpha-hydroxylase (17 OH), as well as NACHT leucine-rich-repeat protein 5 were used to identify women with likely autoimmune POI.
Results
Premature menopause was identified in 2.8% of women, and these women had higher frequencies of nulliparity (37.4% vs 19.7%), obesity (28.7% vs 21.4%), osteoporosis (17.1% vs 11.6%), hormone replacement therapy (59.1% vs 36.9%) and never smokers (60.1% vs 50.9%) (P < 0.05), compared to women with menopause ≥40 years. Iatrogenic causes were found in 91 (47%) and non-ovarian causes in 27 (14%) women, while 77 (39%) women were classified as POI of unknown cause, resulting in a 1.1% prevalence of idiopathic POI. After adjustments nulliparity was the only variable significantly associated with POI (odds ratio 2.46; 95% CI 1.63–3.42). Based on the presence of autoantibodies against 21 OH and SCC, 4.5% of POI cases were of likely autoimmune origin.
Conclusion
Idiopathic POI affects 1.1% of all women and almost half of the women with premature menopause. Autoimmunity explains 4.5% of these cases judged by positive steroidogenic autoantibodies.
Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Andre Madsen in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Anders Juul in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Lise Aksglaede in
Google Scholar
PubMed
Objective
Klinefelter syndrome (KS) is the most common sex chromosome disorder and genetic cause of infertility in males. A highly variable phenotype contributes to the fact that a large proportion of cases are never diagnosed. Typical hallmarks in adults include small testes and azoospermia which may prompt biochemical evaluation that typically shows extremely high follicle-stimulating hormone and low/undetectable inhibin B serum concentrations. However, in prepubertal KS individuals, biochemical parameters are largely overlapping those of prepubertal controls. We aimed to characterize clinical profiles of prepubertal boys with KS in relation to controls and to develop a novel biochemical classification model to identify KS before puberty.
Methods
Retrospective, longitudinal data from 15 prepubertal boys with KS and data from 1475 controls were used to calculate age- and sex-adjusted standard deviation scores (SDS) for height and serum concentrations of reproductive hormones and used to infer a decision tree classification model for KS.
Results
Individual reproductive hormones were low but within reference ranges and did not discriminate KS from controls. Clinical and biochemical profiles including age- and sex-adjusted SDS from multiple reference curves provided input data to train a ‘random forest’ machine learning (ML) model for the detection of KS. Applied to unseen data, the ML model achieved a classification accuracy of 78% (95% CI, 61–94%).
Conclusions
Supervised ML applied to clinically relevant variables enabled computational classification of control and KS profiles. The application of age- and sex-adjusted SDS provided robust predictions irrespective of age. Specialized ML models applied to combined reproductive hormone concentrations may be useful diagnostic tools to improve the identification of prepubertal boys with KS.
EndoERN, APHP Consortium Pitie Salpetriere Hospital, Necker Hospital, Paris, France
Search for other papers by Nathalie Ly in
Google Scholar
PubMed
EndoERN, APHP Consortium Pitie Salpetriere Hospital, Necker Hospital, Paris, France
Search for other papers by Sophie Dubreuil in
Google Scholar
PubMed
EndoERN, APHP Consortium Pitie Salpetriere Hospital, Necker Hospital, Paris, France
Sorbonne University, Paris, France
Search for other papers by Philippe Touraine in
Google Scholar
PubMed
Objective
Growth hormone (GH) and insulin-like growth factors (IGFs) are not mandatory for reproductive life, but data suggest their synergistic action with follicle-stimulating hormone throughout ovarian folliculogenesis. We aimed to evaluate the association of IGF-1 level on clinical pregnancy rate after ovarian stimulation, with or without intrauterine insemination, in women with GH deficiency (GHD) treated with GH replacement therapy (GHRT) at conception.
Design and methods
Data from 19 women with both GHD and hypogonadotropic hypogonadism referred to our reproductive medicine department were retrospectively collected. IGF-1 levels were assessed in a single laboratory, and values were expressed in s.d. from the mean.
Results
Amongst the seven patients receiving GHRT during ovarian stimulation, higher IGF-1 levels were significantly associated with clinical pregnancy (+0.4 s.d. vs–1.6 s.d., P = 0.03). Amongst the 24 pregnancies obtained by the 19 infertile patients, pregnancy loss was less frequent with the addition of GHRT than without (1 miscarriage out of 8 total pregnancies vs 4 miscarriages out of 16 total pregnancies).
Conclusions
This is the first study evaluating the association of IGF-1 level on clinical pregnancy rate in GH-treated women at conception. When taking care of female infertility due to hypogonadotropic hypogonadism, practitioners should enquire about the associated GHD and IGF-1 levels. To ensure higher clinical pregnancy chances, practitioners should aim for IGF-1 values at conception, ranging from 0 s.d. to +2 s.d., and, if necessary, could discuss initiation or increase GH treatment. Prospective studies should help strengthen our results.
Search for other papers by Jennifer K Y Ko in
Google Scholar
PubMed
Search for other papers by Jinghua Shi in
Google Scholar
PubMed
Search for other papers by Raymond H W Li in
Google Scholar
PubMed
Search for other papers by William S B Yeung in
Google Scholar
PubMed
Search for other papers by Ernest H Y Ng in
Google Scholar
PubMed
Objective
Vitamin D receptors are present in the female reproductive tract. Studies on the association between serum vitamin D level and pregnancy rate of in vitro fertilization (IVF) showed inconsistent results and focused on a single fresh or frozen embryo transfer cycle. The objective of our study was to evaluate if serum vitamin D level before ovarian stimulation was associated with the cumulative live birth rate (CLBR) of the first IVF cycle.
Design
Retrospective cohort study.
Methods
Women who underwent the first IVF cycle from 2012 to 2016 at a university-affiliated reproductive medicine center were included. Archived serum samples taken before ovarian stimulation were analyzed for 25(OH)D levels using liquid chromatography-mass spectrometry.
Results
In total, 1113 had pregnancy outcome from the completed IVF cycle. The median age (25th–75th percentile) of the women was 36 (34–38) years and serum 25(OH)D level was 53.4 (41.9–66.6) nmol/L. The prevalence of vitamin D deficiency (less than 50 nmol/L) was 42.2%. The CLBR in the vitamin D-deficient group was significantly lower compared to the non-deficient group (43.9%, 208/474 vs 50.9%, 325/639, P = 0.021, unadjusted), and after controlling for women’s age, BMI, antral follicle count, type and duration of infertility. There were no differences in the clinical/ongoing pregnancy rate, live birth rate and miscarriage rate in the fresh cycle between the vitamin D deficient and non-deficient groups.
Conclusions
Vitamin D deficiency was prevalent in infertile women in subtropical Hong Kong. The CLBR of the first IVF cycle in the vitamin D-deficient group was significantly lower compared to the non-deficient group.
Search for other papers by Giuseppe Grande in
Google Scholar
PubMed
Search for other papers by Andrea Graziani in
Google Scholar
PubMed
Search for other papers by Antonella Di Mambro in
Google Scholar
PubMed
Search for other papers by Riccardo Selice in
Google Scholar
PubMed
Department of Medicine, University of Padova, Padova, Italy
Search for other papers by Alberto Ferlin in
Google Scholar
PubMed
Low bone mass is common in men with Klinefelter syndrome (KS), with a prevalence of 6–15% of osteoporosis and of 25–48% of osteopenia. Reduced bone mass has been described since adolescence and it might be related to both reduced bone formation and higher bone resorption. Although reduced testosterone levels are clearly involved in the pathogenesis, this relation is not always evident. Importantly, fracture risk is increased independently from bone mineral density (BMD) and testosterone levels. Here we discuss the pathogenesis of osteoporosis in patients with KS, with a particular focus on the role of testosterone and testis function. In fact, other hormonal mechanisms, such as global Leydig cell dysfunction, causing reduced insulin-like factor 3 and 25-OH vitamin D levels, and high follicle-stimulating hormone and estradiol levels, might be involved. Furthermore, genetic aspects related to the supernumerary X chromosome might be involved, as well as androgen receptor expression and function. Notably, body composition, skeletal mass and strength, and age at diagnosis are other important aspects. Although dual-energy x-ray absorptiometry is recommended in the clinical workflow for patients with KS to measure BMD, recent evidence suggests that alterations in the microarchitecture of the bones and vertebral fractures might be present even in subjects with normal BMD. Therefore, analysis of trabecular bone score, high-resolution peripheral quantitative computed tomography and vertebral morphometry seem promising tools to better estimate the fracture risk of patients with KS. This review also summarizes the evidence on the best available treatments for osteoporosis in men with KS, with or without hypogonadism.
Search for other papers by Alan D Rogol in
Google Scholar
PubMed
The overall incidence of sex chromosome aneuploidies is approximately 1 per 500 live-born infants, but far more common at conception. I shall review the fertility aspects of the sex chromosome trisomies, XXY, XYY, and XXX, with special reference to the karyotype 45,X/47,XXX. Each has a ‘specific’ (but variable) phenotype but may be modified by mosaicism. Although the alterations in the hypothalamic–pituitary–gonadal axis are important (and discussed), the emphasis here is on potential fertility and if one might predict that at various epochs within an individual’s life span: fetal, ‘mini’-puberty, childhood, puberty, and adulthood. The reproductive axis is often affected in females with the 47,XXX karyotype with diminished ovarian reserve and accelerated loss of ovarian function. Fewer than 5% of females with Turner syndrome have the 45,X/47,XXX karyotype. They have taller stature and less severe fertility issues compared to females with the 45,X or other forms of Turner syndrome mosaicism. For the 47,XXY karyotype, non-obstructive azoospermia is almost universal with sperm retrieval by micro-testicular sperm extraction possible in slightly fewer than half of the men. Men with the 47,XYY karyotype have normal to large testes and much less testicular dysfunction than those with the 47,XXY karyotype. They do have a slight increase in infertility compared to the reference population but not nearly as severe as those with the 47,XXY karyotype. Assisted reproductive technology, especially micro-testicular sperm extraction, has an important role, especially for those with 47,XXY; however, more recent data show promising techniques for the in vitro maturation of spermatogonial stem cells and 3D organoids in culture. Assisted reproductive technology is more complex for the female, but vitrification of oocytes has shown promising advances.