Search Results
You are looking at 41 - 50 of 460 items for
- Abstract: adrenarche x
- Abstract: amenorrhoea x
- Abstract: fertility x
- Abstract: Gender x
- Abstract: Hypogonadism x
- Abstract: infertility x
- Abstract: Klinefelter x
- Abstract: menarche x
- Abstract: menopause x
- Abstract: testes x
- Abstract: transsexual x
- Abstract: Turner x
- Abstract: sperm* x
- Abstract: ovary x
- Abstract: follicles x
Faculty of Medicine, Department of Physiology, University of Helsinki, Helsinki, Finland
Search for other papers by E Kohva in
Google Scholar
PubMed
Search for other papers by P J Miettinen in
Google Scholar
PubMed
Department of Pediatric Surgery, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
Search for other papers by S Taskinen in
Google Scholar
PubMed
Search for other papers by M Hero in
Google Scholar
PubMed
Faculty of Medicine, Department of Physiology, University of Helsinki, Helsinki, Finland
Search for other papers by A Tarkkanen in
Google Scholar
PubMed
Faculty of Medicine, Department of Physiology, University of Helsinki, Helsinki, Finland
Search for other papers by T Raivio in
Google Scholar
PubMed
Background
We describe the phenotypic spectrum and timing of diagnosis and management in a large series of patients with disorders of sexual development (DSD) treated in a single pediatric tertiary center.
Methods
DSD patients who had visited our tertiary center during the survey period (between 2004 and 2014) were identified based on an ICD-10 inquiry, and their phenotypic and molecular genetic findings were recorded from patient charts.
Results
Among the 550 DSD patients, 53.3% had 46,XY DSD; 37.1% had sex chromosome DSD and 9.6% had 46,XX DSD. The most common diagnoses were Turner syndrome (19.8%, diagnosed at the mean age of 4.7 ± 5.5 years), Klinefelter syndrome (14.5%, 6.8 ± 6.2 years) and bilateral cryptorchidism (23.1%). Very few patients with 46,XY DSD (7%) or 46,XX DSD (21%) had molecular genetic diagnosis. The yearly rate of DSD diagnoses remained stable over the survey period. After the release of the Nordic consensus on the management of undescended testes, the age at surgery for bilateral cryptorchidism declined significantly (P < 0.001).
Conclusions
Our results show that (i) Turner syndrome and Klinefelter syndrome, the most frequent single DSD diagnoses, are still diagnosed relatively late; (ii) a temporal shift was observed in the management of bilateral cryptorchidism, which may favorably influence patients’ adulthood semen quality and (iii) next-generation sequencing methods are not fully employed in the diagnostics of DSD patients.
Search for other papers by Valentina Guarnotta in
Google Scholar
PubMed
Search for other papers by Silvia Lucchese in
Google Scholar
PubMed
Search for other papers by Mariagrazia Irene Mineo in
Google Scholar
PubMed
Search for other papers by Donatella Mangione in
Google Scholar
PubMed
Search for other papers by Renato Venezia in
Google Scholar
PubMed
Search for other papers by Piero Luigi Almasio in
Google Scholar
PubMed
Search for other papers by Carla Giordano in
Google Scholar
PubMed
Objective
The aim of this study is to clarify, in girls with premature pubarche (PP), the influence of premature androgenization on the prevalence of polycystic ovary syndrome (PCOS).
Design and patients
Ninety-nine PP girls, 63 who developed PCOS and 36 who did not develop PCOS, were retrospectively included. Clinical, anthropometric, and metabolic parameters were evaluated at the time of diagnosis of PP and after 10 years from menarche to find predictive factors of PCOS.
Results
Young females with PP showed a PCOS prevalence of 64% and showed a higher prevalence of familial history of diabetes (P = 0.004) and a lower prevalence of underweight (P = 0.025) than PP-NO-PCOS. In addition, girls with PP-PCOS showed higher BMI (P < 0.001), waist circumference (P < 0.001), total testosterone (P = 0.026), visceral adiposity index (VAI) (P = 0.013), total cholesterol (P < 0.001), LDL-cholesterol (P < 0.001), non-HDL cholesterol (P < 0.001) and lower age of menarche (P = 0.015), ISI-Matsuda (P < 0.001), DIo (P = 0.002), HDL cholesterol (P = 0.026) than PP-NO-PCOS. Multivariate analysis showed that WC (P = 0.049), ISI-Matsuda (P < 0.001), oral disposition index (DIo) (P < 0.001), VAI (P < 0.001), total testosterone (P < 0.001) and LDL-cholesterol (P < 0.001) are independent predictive factors for PCOS in girls with PP.
Conclusions
Our study established a strong association between multiple risk factors and development of PCOS in PP girls. These risk factors are predominantly related to the regulation of glucose, lipid, and androgen metabolism. Among these factors, WC, ISI-Matsuda, DIo, VAI, total testosterone, and LDL-cholesterol predict PCOS.
Search for other papers by Feifei Cheng in
Google Scholar
PubMed
Search for other papers by Noel Yat Hey Ng in
Google Scholar
PubMed
Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, Hong Kong
Search for other papers by Claudia Ha Ting Tam in
Google Scholar
PubMed
Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, Hong Kong
Search for other papers by Yuying Zhang in
Google Scholar
PubMed
Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
Search for other papers by Cadmon King Poo Lim in
Google Scholar
PubMed
Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, Hong Kong
Search for other papers by Guozhi Jiang in
Google Scholar
PubMed
Search for other papers by Alex Chi Wai Ng in
Google Scholar
PubMed
Search for other papers by Tiffany Tse Ling Yau in
Google Scholar
PubMed
Search for other papers by Lai Ping Cheung in
Google Scholar
PubMed
State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, Hong Kong
Department of Pharmacy and Pharmacology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
Search for other papers by Aimin Xu in
Google Scholar
PubMed
Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, Hong Kong
Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong, Hong Kong
Search for other papers by Juliana C N Chan in
Google Scholar
PubMed
Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, Hong Kong
Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong, Hong Kong
Search for other papers by Ronald C W Ma in
Google Scholar
PubMed
Women with polycystic ovary syndrome (PCOS) have an increased risk of developing type 2 diabetes. FGF19, FGF21 and lipocalin-2 have emerged as important markers of metabolic risk. This study aims to compare the levels of FGF19, FGF21 and lipocalin-2 between subjects with or without PCOS, and to investigate the relationship between proteins and diabetes progression. In this nested case–control cohort study, 128 Chinese PCOS women and 128 controls were recruited and followed-up. All subjects underwent the oral glucose tolerance test for the evaluation of glycaemic status. Baseline serum protein levels were measured using ELISA. Compared with controls, PCOS subjects had higher levels of FGF19 (P < 0.001) and FGF21 (P = 0.022), but had lower lipocalin-2 (P < 0.001). In total, 20.8% of PCOS and 9.2% of controls developed diabetes over a mean duration of 10.4 ± 1.2 and 11.3 ± 0.5 years, respectively. Logistic regression analyses suggested FGF19 was positively associated with diabetes progression in controls, after adjusting for age, follow-up duration, waist and fasting glucose (P = 0.026, odds ratio (OR) (95% CI): 7.4 (1.3–43.6)), and the positive relationship between FGF21 and diabetes progression in controls was attenuated by adjusting for age and follow-up duration (P = 0.183). Lipocalin-2 was positively correlated with diabetes progression in PCOS group (P = 0.026, OR (95% CI)): 2.5 (1.1–5.6)); however, this became attenuated after adjusting for waist and fasting glucose (P = 0.081). In conclusion, there is differential expression of FGF19, FGF21, and lipocalin-2 in PCOS. The serum level of FGF19, and FGF21 is associated with diabetes progression in women without PCOS, while lipocalin-2 was related to diabetes progression in PCOS women.
Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Malin Nylander in
Google Scholar
PubMed
Department of Internal Medicine, Endocrine Unit, Herlev Gentofte Hospital, Herlev, Denmark
Search for other papers by Signe Frøssing in
Google Scholar
PubMed
Department of Internal Medicine, Endocrine Unit, Herlev Gentofte Hospital, Herlev, Denmark
Search for other papers by Caroline Kistorp in
Google Scholar
PubMed
Department of Internal Medicine, Endocrine Unit, Herlev Gentofte Hospital, Herlev, Denmark
Search for other papers by Jens Faber in
Google Scholar
PubMed
Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Sven O Skouby in
Google Scholar
PubMed
Polycystic ovary syndrome (PCOS) is associated with increased risk of venous thromboembolism (VTE) and cardiovascular disease (CVD) in later life. We aimed to study the effect of liraglutide intervention on markers of VTE and CVD risk, in PCOS. In a double-blind, placebo-controlled, randomized trial, 72 overweight and/or insulin-resistant women with PCOS were randomized, in a 2:1 ratio, to liraglutide or placebo 1.8 mg/day. Endpoints included between-group difference in change (baseline to follow-up) in plasminogen activator inhibitor-1 levels and in thrombin generation test parameters: endogenous thrombin potential, peak thrombin concentration, lag time and time to peak. Mean weight loss was 5.2 kg (95% CI 3.0–7.5 kg, P < 0.001) in the liraglutide group compared with placebo. We detected no effect on endogenous thrombin potential in either group. In the liraglutide group, peak thrombin concentration decreased by 16.71 nmol/L (95% CI 2.32–31.11, P < 0.05) and lag time and time to peak increased by 0.13 min (95% CI 0.01–0.25, P < 0.05) and 0.38 min (95% CI 0.09–0.68, P < 0.05), respectively, but there were no between-group differences. There was a trend toward 12% (95% CI 0–23, P = 0.05) decreased plasminogen activator inhibitor-1 in the liraglutide group, and there was a trend toward 16% (95% CI −4 to 32, P = 0.10) reduction, compared with placebo. In overweight women with PCOS, liraglutide intervention caused an approximate 5% weight loss. In addition, liraglutide affected thrombin generation, although not significantly differently from placebo. A concomitant trend toward improved fibrinolysis indicates a possible reduction of the baseline thrombogenic potential. The findings point toward beneficial effects of liraglutide on markers of VTE and CVD risk, which should be further pursued in larger studies.
Search for other papers by Dorte Glintborg in
Google Scholar
PubMed
Search for other papers by Hanne Mumm in
Google Scholar
PubMed
Search for other papers by Jens Juul Holst in
Google Scholar
PubMed
Search for other papers by Marianne Andersen in
Google Scholar
PubMed
Context
Insulin resistance in polycystic ovary syndrome (PCOS) may increase the risk of reactive hypoglycaemia (RH) and decrease glucagon-like peptide-1 (GLP-1) secretion. The possible effects of treatment with oral contraceptives (OCP) and/or metformin on GLP-1 secretion and risk of RH in PCOS is undetermined.
Setting
Outpatient clinic.
Patients and interventions
Randomized, controlled clinical trial. Ninety women with PCOS were randomized to 12-month treatment with OCP (150 mg desogestrel + 30 mg ethinylestradiol), metformin (2 g/day) or metformin + OCP. Five-hour oral glucose tolerance tests (5-h OGTT) measuring fasting and area under the curve (AUC) for GLP-1, glucose, insulin and C-peptide were performed before and after the intervention period. Sixty-five women completed the study and 34 weight-matched healthy women were included as controls.
Main outcome measures
Changes in GLP-1, glucose, insulin and C-peptide during 5-h OGTT.
Results
Fasting GLP-1 levels increased during metformin + OCP vs OCP treatment, whereas AUC GLP-1 levels were unchanged during medical treatment. The prevalence of reactive hypoglycemia increased from 9/65 to 14/65 after intervention (P < 0.01) and was more common after treatment with metformin + OCP (increase from 3/23 to 6/23, P = 0.01). Reactive hypoglycaemia was associated with higher insulin and C-peptide levels during 5-h OGTT, but was unassociated with BMI and AUC GLP-1. GLP-1 levels were comparable in PCOS vs controls. AUC GLP-1 levels were significantly lower in obese vs lean patients and were inversely associated with BMI.
Conclusions
AUC GLP-1 levels were unchanged during treatment. Increased risk of hypoglycemia during metformin + OCP could be associated with increased insulin secretion.
Search for other papers by Sarantis Livadas in
Google Scholar
PubMed
Search for other papers by Christina Bothou in
Google Scholar
PubMed
Search for other papers by Justyna Kuliczkowska-Płaksej in
Google Scholar
PubMed
Search for other papers by Ralitsa Robeva in
Google Scholar
PubMed
Search for other papers by Andromahi Vryonidou in
Google Scholar
PubMed
Search for other papers by Jelica Bjekic Macut in
Google Scholar
PubMed
Search for other papers by Ioannis Androulakis in
Google Scholar
PubMed
Search for other papers by Milica Opalic in
Google Scholar
PubMed
Search for other papers by Zadalla Mouslech in
Google Scholar
PubMed
Search for other papers by Andrej Milewicz in
Google Scholar
PubMed
Search for other papers by Alessandra Gambineri in
Google Scholar
PubMed
Search for other papers by Dimitrios Panidis in
Google Scholar
PubMed
Search for other papers by Djuro Macut in
Google Scholar
PubMed
Background
Polycystic ovary syndrome (PCOS) is considered a risk factor for the development of type 2 diabetes mellitus (T2DM). However, which is the most appropriate way to evaluate dysglycemia in women with PCOS and who are at increased risk are as yet unclear.
Aim of the study
To determine the prevalence of T2DM, impaired glucose tolerance (IGT), and impaired fasting glucose (IFG) in PCOS women and potential factors to identify those at risk.
Subjects and methods
The oral glucose tolerance test (OGTT), biochemical/hormonal profile, and ovarian ultrasound data from 1614 Caucasian women with PCOS and 362 controls were analyzed in this cross-sectional multicenter study. The data were categorized according to age and BMI.
Results
Dysglycemia (T2DM, IGT, and IFG according to World Health Organization criteria) was more frequent in the PCOS group compared to controls: 2.2% vs 0.8%, P = 0.04; 9.5% vs 7.4%, P = 0.038; 14.2% vs 9.1%, P = 0.002, respectively. OGTT was essential for T2DM diagnosis, since in 88% of them basal glucose values were inconclusive for diagnosis. The presence of either T2DM or IFG was irrespective of age (P = 0.54) and BMI (P = 0.32), although the latter was associated with IGT (P = 0.021). There was no impact of age and BMI status on the prevalence of T2DM or IFG. Regression analysis revealed a role for age, BMI, fat deposition, androgens, and insulin resistance for dysglycemia. However, none of the factors prevailed as a useful marker employed in clinical practice.
Conclusions
One-third of our cohort of PCOS women with either T2DM or IGT displayed normal fasting glucose values but without confirming any specific predictor for dysglycemic condition. Hence, the evaluation of glycemic status using OGTT in all women with PCOS is strongly supported.
Search for other papers by M von Wolff in
Google Scholar
PubMed
Laboratory of Biometry, University of Thessaly, Volos, Greece
Search for other papers by C T Nakas in
Google Scholar
PubMed
Division of Pneumology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
Search for other papers by M Tobler in
Google Scholar
PubMed
Search for other papers by T M Merz in
Google Scholar
PubMed
Search for other papers by M P Hilty in
Google Scholar
PubMed
Search for other papers by J D Veldhuis in
Google Scholar
PubMed
Search for other papers by A R Huber in
Google Scholar
PubMed
Search for other papers by J Pichler Hefti in
Google Scholar
PubMed
Humans cannot live at very high altitude for reasons, which are not completely understood. Since these reasons are not restricted to cardiorespiratory changes alone, changes in the endocrine system might also be involved. Therefore, hormonal changes during prolonged hypobaric hypoxia were comprehensively assessed to determine effects of altitude and hypoxia on stress, thyroid and gonadal hypothalamus–pituitary hormone axes. Twenty-one male and 19 female participants were examined repetitively during a high-altitude expedition. Cortisol, prolactin, thyroid-stimulating hormone (TSH), fT4 and fT3 and in males follicle-stimulating hormone (FSH), luteinizing hormone (LH) and total testosterone were analysed as well as parameters of hypoxemia, such as SaO2 and paO2 at 550 m (baseline) (n = 40), during ascent at 4844 m (n = 38), 6022 m (n = 31) and 7050 m (n = 13), at 4844 m (n = 29) after acclimatization and after the expedition (n = 38). Correlation analysis of hormone concentrations with oxygen parameters and with altitude revealed statistical association in most cases only with altitude. Adrenal, thyroid and gonadal axes were affected by increasing altitude. Adrenal axis and prolactin were first supressed at 4844 m and then activated with increasing altitude; thyroid and gonadal axes were directly activated or suppressed respectively with increasing altitude. Acclimatisation at 4844 m led to normalization of adrenal and gonadal but not of thyroid axes. In conclusion, acclimatization partly leads to a normalization of the adrenal, thyroid and gonadal axes at around 5000 m. However, at higher altitude, endocrine dysregulation is pronounced and might contribute to the physical degradation found at high altitude.
Search for other papers by M Boering in
Google Scholar
PubMed
Isala, Department of Internal Medicine, Zwolle, The Netherlands
Search for other papers by P R van Dijk in
Google Scholar
PubMed
Langerhans Medical Research group, Zwolle, The Netherlands
Search for other papers by S J J Logtenberg in
Google Scholar
PubMed
Department of General Practice, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
Search for other papers by K H Groenier in
Google Scholar
PubMed
Search for other papers by B H R Wolffenbuttel in
Google Scholar
PubMed
Search for other papers by R O B Gans in
Google Scholar
PubMed
Langerhans Medical Research group, Zwolle, The Netherlands
Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
Search for other papers by N Kleefstra in
Google Scholar
PubMed
Isala, Department of Internal Medicine, Zwolle, The Netherlands
Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
Search for other papers by H J G Bilo in
Google Scholar
PubMed
Aims
Elevated sex hormone-binding globulin (SHBG) concentrations have been described in patients with type 1 diabetes mellitus (T1DM), probably due to low portal insulin concentrations. We aimed to investigate whether the route of insulin administration, continuous intraperitoneal insulin infusion (CIPII), or subcutaneous (SC), influences SHBG concentrations among T1DM patients.
Methods
Post hoc analysis of SHBG in samples derived from a randomized, open-labeled crossover trial was carried out in 20 T1DM patients: 50% males, mean age 43 (±13) years, diabetes duration 23 (±11) years, and hemoglobin A1c (HbA1c) 8.7 (±1.1) (72 (±12) mmol/mol). As secondary outcomes, testosterone, 17-β-estradiol, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) were analyzed.
Results
Estimated mean change in SHBG was −10.3nmol/L (95% CI: −17.4, −3.2) during CIPII and 3.7nmol/L (95% CI: −12.0, 4.6) during SC insulin treatment. Taking the effect of treatment order into account, the difference in SHBG between therapies was −6.6nmol/L (95% CI: −17.5, 4.3); −12.7nmol/L (95% CI: −25.1, −0.4) for males and −1.7nmol/L (95% CI: −24.6, 21.1) for females, respectively. Among males, SHBG and testosterone concentrations changed significantly during CIPII; −15.8nmol/L (95% CI: −24.2, −7.5) and −8.3nmol/L (95% CI: −14.4, −2.2), respectively. The difference between CIPII and SC insulin treatment was also significant for change in FSH 1.2U/L (95% CI: 0.1, 2.2) among males.
Conclusions
SHBG concentrations decreased significantly during CIPII treatment. Moreover, the difference in change between CIPII and SC insulin therapy was significant for SHBG and FSH among males. These findings support the hypothesis that portal insulin administration influences circulating SHBG and sex steroids.
Search for other papers by Liza Haqq in
Google Scholar
PubMed
Search for other papers by James McFarlane in
Google Scholar
PubMed
Search for other papers by Gudrun Dieberg in
Google Scholar
PubMed
Search for other papers by Neil Smart in
Google Scholar
PubMed
Polycystic ovarian syndrome (PCOS) affects 18–22% of women at reproductive age. We conducted a systematic review and meta-analysis evaluating the expected benefits of lifestyle (exercise plus diet) interventions on the reproductive endocrine profile in women with PCOS. Potential studies were identified by systematically searching PubMed, CINAHL and the Cochrane Controlled Trials Registry (1966–April 30, 2013) systematically using key concepts of PCOS. Significant improvements were seen in women receiving lifestyle intervention vs usual care in follicle-stimulating hormone (FSH) levels, mean difference (MD) 0.39 IU/l (95% CI 0.09 to 0.70, P=0.01), sex hormone-binding globulin (SHBG) levels, MD 2.37 nmol/l (95% CI 1.27 to 3.47, P<0.0001), total testosterone levels, MD −0.13 nmol/l (95% CI −0.22 to −0.03, P=0.008), androstenedione levels, MD −0.09 ng/dl (95% CI −0.15 to −0.03, P=0.005), free androgen index (FAI) levels, MD −1.64 (95% CI −2.94 to −0.35, P=0.01) and Ferriman–Gallwey (FG) score, MD −1.01 (95% CI −1.54 to −0.48, P=0.0002). Significant improvements were also observed in women who received exercise-alone intervention vs usual care in FSH levels, MD 0.42 IU/l (95% CI 0.11 to 0.73, P=0.009), SHBG levels, MD 3.42 nmol/l (95% CI 0.11 to 6.73, P=0.04), total testosterone levels, MD −0.16 nmol/l (95% CI −0.29 to −0.04, P=0.01), androstenedione levels, MD −0.09 ng/dl (95% CI −0.16 to −0.03, P=0.004) and FG score, MD −1.13 (95% CI −1.88 to −0.38, P=0.003). Our analyses suggest that lifestyle (diet and exercise) intervention improves levels of FSH, SHBG, total testosterone, androstenedione and FAI, and FG score in women with PCOS.
Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
Search for other papers by Tao Mei in
Google Scholar
PubMed
Search for other papers by Jianhe Zhang in
Google Scholar
PubMed
Search for other papers by Liangfeng Wei in
Google Scholar
PubMed
Search for other papers by Xingfeng Qi in
Google Scholar
PubMed
Search for other papers by Yiming Ma in
Google Scholar
PubMed
Search for other papers by Xianhua Liu in
Google Scholar
PubMed
Search for other papers by Shaohua Chen in
Google Scholar
PubMed
Search for other papers by Songyuan Li in
Google Scholar
PubMed
Search for other papers by Jianwu Wu in
Google Scholar
PubMed
Search for other papers by Shousen Wang in
Google Scholar
PubMed
Tumor cells require large amounts of energy to sustain growth. Through the mediated transport of glucose transporters, the uptake and utilization of glucose by tumor cells are significantly enhanced in the hypoxic microenvironment. Pituitary adenomas are benign tumors with high-energy metabolisms. We aimed to investigate the role of expression of glucose transporter 3 (GLUT3) and glucose transporter 1 (GLUT1) in pituitary adenomas, including effects on size, cystic change and hormone type. Pituitary adenomas from 203 patients were collected from January 2013 to April 2017, and immunohistochemical analysis was used to detect the expression of GLUT3 and GLUT1 in tumor specimens. GLUT3-positive expression in the cystic change group was higher than that in the non-cystic change group (P = 0.018). Proportions of GLUT3-positive staining of microadenomas, macroadenomas, and giant adenomas were 22.7 (5/22), 50.4 (66/131) and 54.0% (27/50), respectively (P = 0.022). In cases of prolactin adenoma, GLUT3-positive staining was predominant in cell membranes (P = 0.000006), while in cases of follicle-stimulating hormone or luteotropic hormone adenoma, we found mainly paranuclear dot-like GLUT3 staining (P = 0.025). In other hormonal adenomas, GLUT3 was only partially expressed, and the intensity of cell membrane or paranuclear punctate staining was weak. In contrast to GLUT3, GLUT1 expression was not associated with pituitary adenomas. Thus, our results indicate that the expression of GLUT3 in pituitary adenomas is closely related to cystic change and hormonal type. This study is the first to report a unique paranuclear dot-like GLUT3 staining pattern in pituitary adenomas.