Search Results
Search for other papers by Kristin Viste in
Google Scholar
PubMed
Hormone Laboratory, Department of Medicine, Department of Clinical Science, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway
Search for other papers by Marianne A Grytaas in
Google Scholar
PubMed
Search for other papers by Melissa D Jørstad in
Google Scholar
PubMed
Search for other papers by Dag E Jøssang in
Google Scholar
PubMed
Search for other papers by Eivind N Høyden in
Google Scholar
PubMed
Search for other papers by Solveig S Fotland in
Google Scholar
PubMed
Search for other papers by Dag K Jensen in
Google Scholar
PubMed
Hormone Laboratory, Department of Medicine, Department of Clinical Science, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway
Search for other papers by Kristian Løvås in
Google Scholar
PubMed
Search for other papers by Hrafnkell Thordarson in
Google Scholar
PubMed
Search for other papers by Bjørg Almås in
Google Scholar
PubMed
Hormone Laboratory, Department of Medicine, Department of Clinical Science, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway
Search for other papers by Gunnar Mellgren in
Google Scholar
PubMed
Primary aldosteronism (PA) is a common cause of secondary hypertension and is caused by unilateral or bilateral adrenal disease. Treatment options depend on whether the disease is lateralized or not, which is preferably evaluated with selective adrenal venous sampling (AVS). This procedure is technically challenging, and obtaining representative samples from the adrenal veins can prove difficult. Unsuccessful AVS procedures often require reexamination. Analysis of cortisol during the procedure may enhance the success rate. We invited 21 consecutive patients to participate in a study with intra-procedural point of care cortisol analysis. When this assay showed nonrepresentative sampling, new samples were drawn after redirection of the catheter. The study patients were compared using the 21 previous procedures. The intra-procedural cortisol assay increased the success rate from 10/21 patients in the historical cohort to 17/21 patients in the study group. In four of the 17 successful procedures, repeated samples needed to be drawn. Successful sampling at first attempt improved from the first seven to the last seven study patients. Point of care cortisol analysis during AVS improves success rate and reduces the need for reexaminations, in accordance with previous studies. Successful AVS is crucial when deciding which patients with PA will benefit from surgical treatment.
Search for other papers by Henri Honka in
Google Scholar
PubMed
Department of Gastroenterology, Turku University Hospital, Turku, Finland
Search for other papers by Jukka Koffert in
Google Scholar
PubMed
Search for other papers by Saila Kauhanen in
Google Scholar
PubMed
Search for other papers by Nobuyuki Kudomi in
Google Scholar
PubMed
Search for other papers by Saija Hurme in
Google Scholar
PubMed
Search for other papers by Andrea Mari in
Google Scholar
PubMed
Search for other papers by Andreas Lindqvist in
Google Scholar
PubMed
Search for other papers by Nils Wierup in
Google Scholar
PubMed
Search for other papers by Riitta Parkkola in
Google Scholar
PubMed
Search for other papers by Leif Groop in
Google Scholar
PubMed
Department of Endocrinology, Turku University Hospital, Turku, Finland
Search for other papers by Pirjo Nuutila in
Google Scholar
PubMed
Aims/hypothesis
The mechanisms for improved glycemic control after bariatric surgery in subjects with type 2 diabetes (T2D) are not fully known. We hypothesized that dynamic hepatic blood responses to a mixed-meal are changed after bariatric surgery in parallel with an improvement in glucose tolerance.
Methods
A total of ten morbidly obese subjects with T2D were recruited to receive a mixed-meal and a glucose-dependent insulinotropic polypeptide (GIP) infusion before and early after (within a median of less than three months) bariatric surgery, and hepatic blood flow and volume (HBV) were measured repeatedly with combined positron emission tomography/MRI. Ten lean non-diabetic individuals served as controls.
Results
Bariatric surgery leads to a significant decrease in weight, accompanied with an improved β-cell function and glucagon-like peptide 1 (GLP-1) secretion, and a reduction in liver volume. Blood flow in portal vein (PV) was increased by 1.65-fold (P = 0.026) in response to a mixed-meal in subjects after surgery, while HBV decreased in all groups (P < 0.001). When the effect of GIP infusion was tested separately, no change in hepatic arterial and PV flow was observed, but HBV decreased as seen during the mixed-meal test.
Conclusions/interpretation
Early after bariatric surgery, PV flow response to a mixed-meal is augmented, improving digestion and nutrient absorption. GIP influences the post-prandial reduction in HBV thereby diverting blood to the extrahepatic sites.
Search for other papers by Caishun Zhang in
Google Scholar
PubMed
Search for other papers by Junhua Yuan in
Google Scholar
PubMed
Search for other papers by Qian Lin in
Google Scholar
PubMed
Search for other papers by Manwen Li in
Google Scholar
PubMed
Search for other papers by Liuxin Wang in
Google Scholar
PubMed
Search for other papers by Rui Wang in
Google Scholar
PubMed
Search for other papers by Xi Chen in
Google Scholar
PubMed
Search for other papers by Zhengyao Jiang in
Google Scholar
PubMed
Search for other papers by Kun Zhu in
Google Scholar
PubMed
Search for other papers by Xiaoli Chang in
Google Scholar
PubMed
Medical Microbiology Department, College of Basic Medicine, Qingdao University, Qingdao, China
Search for other papers by Bin Wang in
Google Scholar
PubMed
Physiology Department, College of Basic Medicine, Qingdao University, Qingdao, China
Search for other papers by Jing Dong in
Google Scholar
PubMed
Ghrelin plays a pivotal role in the regulation of food intake, body weight and energy metabolism. However, these effects of ghrelin in the lateral parabrachial nucleus (LPBN) are unexplored. C57BL/6J mice and GHSR−/− mice were implanted with cannula above the right LPBN and ghrelin was microinjected via the cannula to investigate effect of ghrelin in the LPBN. In vivo electrophysiological technique was used to record LPBN glucose-sensitive neurons to explore potential udnderlying mechanisms. Microinjection of ghrelin in LPBN significantly increased food intake in the first 3 h, while such effect was blocked by [D-Lys3]-GHRP-6 and abolished in GHSR−/− mice. LPBN ghrelin microinjection also significantly increased the firing rate of glucose-excited (GE) neurons and decreased the firing rate of glucose-inhibited (GI) neurons. Additionally, LPBN ghrelin microinjection also significantly increased c-fos expression. Chronic ghrelin administration in the LPBN resulted in significantly increased body weight gain. Meanwhile, no significant changes were observed in both mRNA and protein expression levels of UCP-1 in BAT. These results demonstrated that microinjection of ghrelin in LPBN could increase food intake through the interaction with growth hormone secretagogue receptor (GHSR) in C57BL/6J mice, and its chronic administration could also increase body weight gain. These effects might be associated with altered firing rate in the GE and GI neurons.
Search for other papers by Angelo Maria Patti in
Google Scholar
PubMed
Search for other papers by Kalliopi Pafili in
Google Scholar
PubMed
Search for other papers by Nikolaos Papanas in
Google Scholar
PubMed
Search for other papers by Manfredi Rizzo in
Google Scholar
PubMed
Hormonal changes during pregnancy can trigger gestational diabetes (GDM), which is constantly increasing. Its main characteristic is pronounced insulin resistance, but it appears to be a multifactorial process involving several metabolic factors; taken together, the latter leads to silent or clinically evident cardiovascular (CV) events. Insulin resistance and central adiposity are of crucial importance in the development of metabolic syndrome, and they appear to correlate with CV risk factors, including hypertension and atherogenic dyslipidaemia. Hypertensive disease of pregnancy (HDP) is more likely to be an accompanying co-morbidity in pregnancies complicated with GDM. There is still inconsistent evidence as to whether or not co-existent GDM and HDP have a synergistic effects on postpartum risk of cardiometabolic disease; however, this synergism is becoming more accepted since both these conditions may promote endothelial inflammation and early atherosclerosis. Regardless of the presence or absence of the synergism between GDM and HDP, these conditions need to be dealt early enough, in order to reduce CV morbidity and to improve health outcomes for both women and their offspring.
Department of Endocrinology, Austin Health, Melbourne, Australia
Division of Endocrinology, Diabetes and Metabolism, Northwell, Great Neck, New York, USA
Search for other papers by Yee-Ming M Cheung in
Google Scholar
PubMed
Search for other papers by Rudolf Hoermann in
Google Scholar
PubMed
Search for other papers by Karen Van in
Google Scholar
PubMed
Search for other papers by Damian Wu in
Google Scholar
PubMed
Search for other papers by Jenny Healy in
Google Scholar
PubMed
Search for other papers by Bella Halim in
Google Scholar
PubMed
Search for other papers by Manjri Raval in
Google Scholar
PubMed
Search for other papers by Maria McGill in
Google Scholar
PubMed
Department of Cardiology, Austin Health, Melbourne Australia
Search for other papers by Ali Al-Fiadh in
Google Scholar
PubMed
Search for other papers by Michael Chao in
Google Scholar
PubMed
Search for other papers by Shane White in
Google Scholar
PubMed
Olivia Newton-John Cancer Research Institute, Austin Health, Melbourne, Australia
Search for other papers by Belinda Yeo in
Google Scholar
PubMed
Department of Endocrinology, Austin Health, Melbourne, Australia
Search for other papers by Jeffrey D Zajac in
Google Scholar
PubMed
Department of Endocrinology, Austin Health, Melbourne, Australia
Search for other papers by Mathis Grossmann in
Google Scholar
PubMed
Purpose
We previously demonstrated that 12 months of aromatase inhibitor (AI) treatment was not associated with a difference in body composition or other markers of cardiometabolic health when compared to controls. Here we report on the pre-planned extension of the study. The pre-specified primary hypothesis was that AI therapy for 24 months would lead to increased visceral adipose tissue (VAT) area when compared to controls.
Methods
We completed a 12-month extension to our prospective 12-month cohort study of 52 women commencing AI treatment (median age 64.5 years) and 52 women with breast pathology not requiring endocrine therapy (63.5 years). Our primary outcome of interest was VAT area. Secondary and exploratory outcomes included other measures of body composition, hepatic steatosis, measures of atherosclerosis and vascular reactivity. Using mixed models and the addition of a fourth time point, we increased the number of study observations by 79 and were able to rigorously determine the treatment effect.
Results
Among study completers (AI = 39, controls = 40), VAT area was comparable between groups over 24 months, the mean-adjusted difference was −1.54 cm2 (95% CI: −14.9; 11.9, P = 0.79). Both groups demonstrated parallel and continuous increases in VAT area over the observation period that did not diverge or change between groups. No statistically significant difference in our secondary and exploratory outcomes was observed between groups.
Conclusions
While these findings provide reassurance that short-to-medium-term exposure to AI therapy is not associated with metabolically adverse changes when compared to controls, risk evolution should be less focussed on the AI-associated effect and more on the general development of cardiovascular risk over time.
Search for other papers by Isabel M Abreu in
Google Scholar
PubMed
Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar S. João, Alameda Professor Hernâni Monteiro, Porto, Portugal
Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
Search for other papers by Eva Lau in
Google Scholar
PubMed
Search for other papers by Bernardo de Sousa Pinto in
Google Scholar
PubMed
Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar S. João, Alameda Professor Hernâni Monteiro, Porto, Portugal
Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
Search for other papers by Davide Carvalho in
Google Scholar
PubMed
Previous studies suggested that subclinical hypothyroidism has a detrimental effect on cardiovascular risk factors, and that its effective treatment may have a beneficial impact on overall health. The main purpose of this review and meta-analysis was to assess whether subclinical hypothyroidism treatment is of clinical relevance, based on cardiovascular risk parameters correction. A systemic research of the literature using MEDLINE tool was performed to identify the relevant studies. Only placebo-controlled randomized control trials were included. A quantitative analysis was also performed. This systematic review and meta-analysis of randomized placebo-controlled trials assess the different impact of levothyroxine vs placebo treatment. A significant decrease in serum thyroid-stimulating hormone and total and low-density lipoprotein cholesterol was obtained with levothyroxine therapy (66, 9 and 14%, respectively) and, although modest, this could be significant in terms of reduction of the incidence of coronary artery disease. Other significant results of lipid parameters were not obtained. This systematic review provides a strong evidence-based data in favour of specific changes and beneficial effects of levothyroxine treatment.
Search for other papers by Charissa van Zwol-Janssens in
Google Scholar
PubMed
Search for other papers by Aglaia Hage in
Google Scholar
PubMed
Search for other papers by Kim van der Ham in
Google Scholar
PubMed
Search for other papers by Birgitta K Velthuis in
Google Scholar
PubMed
Search for other papers by Ricardo P J Budde in
Google Scholar
PubMed
Search for other papers by Maria P H Koster in
Google Scholar
PubMed
Search for other papers by Arie Franx in
Google Scholar
PubMed
Search for other papers by Bart C J M Fauser in
Google Scholar
PubMed
Search for other papers by Eric Boersma in
Google Scholar
PubMed
Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
Search for other papers by Daniel Bos in
Google Scholar
PubMed
Search for other papers by Joop S E Laven in
Google Scholar
PubMed
Search for other papers by Yvonne V Louwers in
Google Scholar
PubMed
Search for other papers by the CREW consortium in
Google Scholar
PubMed
Besides age, estrogen exposure plays a crucial role in changes in bone density (BD) in women. Premature ovarian insufficiency (POI) and polycystic ovary syndrome (PCOS) are conditions in reproductive-aged women in which the exposure to estrogen is substantially different. Women with a history of preeclampsia (PE) are expected to have normal estrogen exposure. Within the CREw-IMAGO study, we investigated if trabecular BD is different in these women because of differences in the duration of estrogen exposure. Trabecular BD was measured in thoracic vertebrae on coronary CT scans. Women with a reduced estrogen exposure (POI) have a lower BD compared to women with an intermediate exposure (PE) (mean difference (MD) −26.8, 95% CI −37.2 to −16.3). Women with a prolonged estrogen exposure (PCOS) have the highest BD (MD 15.0, 95% CI 4.3–25.7). These results support the hypothesis that the duration of estrogen exposure in these women is associated with trabecular BD.
Significance statement
Our results suggest that middle-aged women with PCOS have a higher BD and women with POI have a lower BD. We hypothesized that this is due to either a prolonged estrogen exposure, as seen in women with PCOS, or a reduced estrogen exposure, as in women with POI. In the counseling of women with reproductive disorders on long-term health issues, coronary CT provides a unique opportunity to assess both coronary artery calcium score for cardiovascular screening as well as trabecular BD.
Search for other papers by Jiaxi Li in
Google Scholar
PubMed
Search for other papers by Pu Huang in
Google Scholar
PubMed
Search for other papers by Jing Xiong in
Google Scholar
PubMed
Search for other papers by Xinyue Liang in
Google Scholar
PubMed
Search for other papers by Mei Li in
Google Scholar
PubMed
Search for other papers by Hao Ke in
Google Scholar
PubMed
Search for other papers by Chunli Chen in
Google Scholar
PubMed
Search for other papers by Yang Han in
Google Scholar
PubMed
Search for other papers by Yanhong Huang in
Google Scholar
PubMed
Search for other papers by Yan Zhou in
Google Scholar
PubMed
Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, Hunan, China
Search for other papers by Ziqiang Luo in
Google Scholar
PubMed
Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, Hunan, China
Search for other papers by Dandan Feng in
Google Scholar
PubMed
Search for other papers by Chen Chen in
Google Scholar
PubMed
Objective
Ghrelin regulates body weight, food intake, and blood glucose. It also regulates insulin secretion from pancreatic islet cells. LEAP2 is a newly discovered endogenous ligand of the growth hormone secretagogue’s receptor (GHSR). It not only antagonizes the stimulation of GHSR by ghrelin but also inhibits the constitutive activation of GHSR as an inverse agonist. Type 2 diabetes (T2D) patients have endocrine disorders with metabolic imbalance. Plasma levels of ghrelin and LEAP2 may be changed in obese and T2D patients. However, there is no report yet on circulating LEAP2 levels or ghrelin/LEAP2 ratio in T2D patients. In this study, fasting serum ghrelin and LEAP2 levels in healthy adults and T2D patients were assessed to clarify the association of two hormones with different clinical anthropometric and metabolic parameters.
Design
A total of 16 females and 40 males, ages 23–68 years old normal (n = 27), and T2D patients (n = 29) were enrolled as a cross-sectional cohort.
Results
Serum levels of ghrelin were lower but serum levels of LEAP2 were higher in T2D patients. Ghrelin levels were positively correlated with fasting serum insulin levels and HOMA-IR in healthy adults. LEAP2 levels were positively correlated with age and hemoglobin A1c (HbA1c) in all tested samples. Ghrelin/LEAP2 ratio was negatively correlated with age, fasting blood glucose, and HbA1c.
Conclusions
This study demonstrated a decrease in serum ghrelin levels and an increase in serum LEAP2 levels in T2D patients. LEAP2 levels were positively correlated with HbA1c, suggesting that LEAP2 was associated with T2D development. The ghrelin/LEAP2 ratio was closely associated with glycemic control in T2D patients showing a negative correlation with glucose and HbA1c.
INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France
Search for other papers by Milène Tetsi Nomigni in
Google Scholar
PubMed
Search for other papers by Sophie Ouzounian in
Google Scholar
PubMed
Search for other papers by Alice Benoit in
Google Scholar
PubMed
Search for other papers by Jacqueline Vadrot in
Google Scholar
PubMed
Search for other papers by Frédérique Tissier in
Google Scholar
PubMed
INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France
Search for other papers by Sylvie Renouf in
Google Scholar
PubMed
INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France
INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France
Search for other papers by Hervé Lefebvre in
Google Scholar
PubMed
INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France
Search for other papers by Sophie Christin-Maitre in
Google Scholar
PubMed
INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France
Search for other papers by Estelle Louiset in
Google Scholar
PubMed
Hirsutism induced by hyperandrogenism can be associated with polycystic ovary syndrome, 21-hydroxylase (OH) deficiency or androgen-secreting tumors, including ovarian and adrenal tumors. Adrenal androgen-secreting tumors are frequently malignant. Adrenal oncocytomas represent rare causes of hyperandrogenism. The aim of the study was to investigate steroidogenic enzyme expression and steroid secretion in an androgen-secreting adrenal oncocytoma in a young woman presenting with hirsutism. Hyperandrogenism was diagnosed on the basis of elevated plasma Δ4-androstenedione and testosterone levels. Pelvic ultrasound was normal, CT scanning revealed a right adrenal mass. Androgens were assessed in adrenal and ovarian vein samples and proved a right adrenal origin. Adrenalectomy normalized androgen levels and the adrenal tumor was diagnosed as an oncocytoma. Real time-PCR, immunohistochemistry and cell culture studies were performed on tumor explants to investigate the steroid secretion profile. Among enzymes required for cortisol synthesis, 17α-OH and 3β-hydroxysteroid dehydrogenase 2 (3β-HSD2) were highly expressed whereas 21-OH and 11β-OH were weakly produced at the mRNA and/or protein levels. Enzymes involved in testosterone production, 17β-HSD5 and 17β-HSD3, were also detected. ACTH receptor was present in the tissue. Cortisol, Δ4-androstenedione and testosterone secretions by cultured cells were increased by ACTH. These results provide the first demonstration, to our knowledge, of abnormal expression profile of steroidogenic enzymes in an adrenocortical oncocytoma. Our results also indicate that Δ4-androstenedione hypersecretion resulted from high 17α-OH and 3β-HSD2 expression in combination with low expression of 21-OH and 11β-OH. Testosterone production was ascribed to occurrence of 17β-HSD5 and 17β-HSD3. Finally, our results indicate that androgen secretion was stimulated by ACTH.
Search for other papers by P R van Dijk in
Google Scholar
PubMed
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Search for other papers by S J J Logtenberg in
Google Scholar
PubMed
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Search for other papers by K H Groenier in
Google Scholar
PubMed
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Search for other papers by N Kleefstra in
Google Scholar
PubMed
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Search for other papers by H J G Bilo in
Google Scholar
PubMed
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Search for other papers by H J Arnqvist in
Google Scholar
PubMed
In type 1 diabetes mellitus (T1DM), low concentrations of IGF1 and high concentrations of IGF-binding protein 1 (IGFBP1) have been reported. It has been suggested that these abnormalities in the GH–IGF1 axis are due to low insulin concentrations in the portal vein. We hypothesized that the i.p. route of insulin administration increases IGF1 concentrations when compared with the s.c. route of insulin administration. IGF1 and IGFBP1 concentrations in samples derived from an open-label, randomized cross-over trial comparing the effects of s.c. and i.p. insulin delivery on glycaemia were determined. T1DM patients were randomized to receive either 6 months of continuous i.p. insulin infusion (CIPII) through an implantable pump (MIP 2007C, Medtronic) followed by 6 months of s.c. insulin infusion or vice versa with a washout phase in between. Data from 16 patients who had complete measurements during both treatment phases were analysed. The change in IGF1 concentrations during CIPII treatment was 10.4 μg/l (95% CI −0.94, 21.7 μg/l; P=0.06) and during s.c. insulin treatment was −2.2 μg/l (95% CI −13.5, 9.2 μg/l; P=0.69). When taking the effect of treatment order into account, the estimated change in IGF1 concentrations was found to be 12.6 μg/l (95% CI −3.1, 28.5 μg/l; P=0.11) with CIPII treatment compared with that with s.c. insulin treatment. IGFBP1 concentrations decreased to −100.7 μg/l (95% CI −143.0, −58.3 μg/l; P<0.01) with CIPII treatment. During CIPII treatment, parts of the GH–IGF1 axis changed compared with that observed during s.c. insulin treatment. This supports the hypothesis that the i.p. route of insulin administration is of importance in the IGF1 system.