Search Results

You are looking at 71 - 80 of 189 items for

  • Abstract: Arteries x
  • Abstract: Atherosclerosis x
  • Abstract: Carotid x
  • Abstract: Circulation x
  • Abstract: Stroke x
  • Abstract: Veins x
  • Abstract: Heart x
  • Abstract: Cardio* x
Clear All Modify Search
Milène Tetsi Nomigni INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France
INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France

Search for other papers by Milène Tetsi Nomigni in
Google Scholar
PubMed
Close
,
Sophie Ouzounian INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France

Search for other papers by Sophie Ouzounian in
Google Scholar
PubMed
Close
,
Alice Benoit INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France

Search for other papers by Alice Benoit in
Google Scholar
PubMed
Close
,
Jacqueline Vadrot INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France

Search for other papers by Jacqueline Vadrot in
Google Scholar
PubMed
Close
,
Frédérique Tissier INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France

Search for other papers by Frédérique Tissier in
Google Scholar
PubMed
Close
,
Sylvie Renouf INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France
INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France

Search for other papers by Sylvie Renouf in
Google Scholar
PubMed
Close
,
Hervé Lefebvre INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France
INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France
INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France

Search for other papers by Hervé Lefebvre in
Google Scholar
PubMed
Close
,
Sophie Christin-Maitre INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France
INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France

Search for other papers by Sophie Christin-Maitre in
Google Scholar
PubMed
Close
, and
Estelle Louiset INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France
INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France

Search for other papers by Estelle Louiset in
Google Scholar
PubMed
Close

Hirsutism induced by hyperandrogenism can be associated with polycystic ovary syndrome, 21-hydroxylase (OH) deficiency or androgen-secreting tumors, including ovarian and adrenal tumors. Adrenal androgen-secreting tumors are frequently malignant. Adrenal oncocytomas represent rare causes of hyperandrogenism. The aim of the study was to investigate steroidogenic enzyme expression and steroid secretion in an androgen-secreting adrenal oncocytoma in a young woman presenting with hirsutism. Hyperandrogenism was diagnosed on the basis of elevated plasma Δ4-androstenedione and testosterone levels. Pelvic ultrasound was normal, CT scanning revealed a right adrenal mass. Androgens were assessed in adrenal and ovarian vein samples and proved a right adrenal origin. Adrenalectomy normalized androgen levels and the adrenal tumor was diagnosed as an oncocytoma. Real time-PCR, immunohistochemistry and cell culture studies were performed on tumor explants to investigate the steroid secretion profile. Among enzymes required for cortisol synthesis, 17α-OH and 3β-hydroxysteroid dehydrogenase 2 (3β-HSD2) were highly expressed whereas 21-OH and 11β-OH were weakly produced at the mRNA and/or protein levels. Enzymes involved in testosterone production, 17β-HSD5 and 17β-HSD3, were also detected. ACTH receptor was present in the tissue. Cortisol, Δ4-androstenedione and testosterone secretions by cultured cells were increased by ACTH. These results provide the first demonstration, to our knowledge, of abnormal expression profile of steroidogenic enzymes in an adrenocortical oncocytoma. Our results also indicate that Δ4-androstenedione hypersecretion resulted from high 17α-OH and 3β-HSD2 expression in combination with low expression of 21-OH and 11β-OH. Testosterone production was ascribed to occurrence of 17β-HSD5 and 17β-HSD3. Finally, our results indicate that androgen secretion was stimulated by ACTH.

Open access
P R van Dijk Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands

Search for other papers by P R van Dijk in
Google Scholar
PubMed
Close
,
S J J Logtenberg Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands

Search for other papers by S J J Logtenberg in
Google Scholar
PubMed
Close
,
K H Groenier Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands

Search for other papers by K H Groenier in
Google Scholar
PubMed
Close
,
N Kleefstra Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands

Search for other papers by N Kleefstra in
Google Scholar
PubMed
Close
,
H J G Bilo Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands

Search for other papers by H J G Bilo in
Google Scholar
PubMed
Close
, and
H J Arnqvist Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands

Search for other papers by H J Arnqvist in
Google Scholar
PubMed
Close

In type 1 diabetes mellitus (T1DM), low concentrations of IGF1 and high concentrations of IGF-binding protein 1 (IGFBP1) have been reported. It has been suggested that these abnormalities in the GH–IGF1 axis are due to low insulin concentrations in the portal vein. We hypothesized that the i.p. route of insulin administration increases IGF1 concentrations when compared with the s.c. route of insulin administration. IGF1 and IGFBP1 concentrations in samples derived from an open-label, randomized cross-over trial comparing the effects of s.c. and i.p. insulin delivery on glycaemia were determined. T1DM patients were randomized to receive either 6 months of continuous i.p. insulin infusion (CIPII) through an implantable pump (MIP 2007C, Medtronic) followed by 6 months of s.c. insulin infusion or vice versa with a washout phase in between. Data from 16 patients who had complete measurements during both treatment phases were analysed. The change in IGF1 concentrations during CIPII treatment was 10.4 μg/l (95% CI −0.94, 21.7 μg/l; P=0.06) and during s.c. insulin treatment was −2.2 μg/l (95% CI −13.5, 9.2 μg/l; P=0.69). When taking the effect of treatment order into account, the estimated change in IGF1 concentrations was found to be 12.6 μg/l (95% CI −3.1, 28.5 μg/l; P=0.11) with CIPII treatment compared with that with s.c. insulin treatment. IGFBP1 concentrations decreased to −100.7 μg/l (95% CI −143.0, −58.3 μg/l; P<0.01) with CIPII treatment. During CIPII treatment, parts of the GH–IGF1 axis changed compared with that observed during s.c. insulin treatment. This supports the hypothesis that the i.p. route of insulin administration is of importance in the IGF1 system.

Open access
Jung Soo Lim Department of Internal Medicine, Institute of Evidence-Based Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, South Korea

Search for other papers by Jung Soo Lim in
Google Scholar
PubMed
Close
,
Seung-Eun Lee Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, South Korea

Search for other papers by Seung-Eun Lee in
Google Scholar
PubMed
Close
,
Jung Hee Kim Department of Internal Medicine, Seoul National University College of Medicine, Jongno-gu, Seoul, South Korea

Search for other papers by Jung Hee Kim in
Google Scholar
PubMed
Close
,
Jae Hyeon Kim Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, South Korea

Search for other papers by Jae Hyeon Kim in
Google Scholar
PubMed
Close
, and
The Korean Adrenal Gland and Endocrine Hypertension Study Group, Korean Endocrine Society
Search for other papers by The Korean Adrenal Gland and Endocrine Hypertension Study Group, Korean Endocrine Society in
Google Scholar
PubMed
Close

Purpose

To evaluate the clinical characteristics and prognostic factors in patients with adrenocortical carcinoma (ACC) in South Korea.

Methods

A nationwide, registry-based survey was conducted to identify pathologically proven ACC at 25 tertiary care centers in South Korea between 2000 and 2014. Cox proportional hazard model and log-rank test were adopted for survival analysis.

Results

Two hundred four patients with ACC were identified, with a median follow-up duration of 20 months (IQR 5–52 months). The median age at diagnosis was 51.5 years (IQR 40–65.8 years), and ACC was prevalent in women (n = 110, 53.9%). Abdominal pain was the most common clinical symptom (n = 70, 40.2%), and ENSAT stage 2 was most common (n = 62, 30.4%) at the time of diagnosis. One hundred sixty-nine patients underwent operation, while 17 were treated with other modalities. The remission rate was 48%, and median recurrence-free survival time was 46 months. Estimated 5-year recurrence-free rate was 44.7%. There were more women, large tumor, atypical mitosis, venous invasion, and higher mitotic count in cancer recurrence group. Estimated 5-year overall survival and disease-specific survival rates were 64.5 and 70.6%, respectively. Higher ENSAT stage and advanced pathologic characteristics were risk factors for all-cause mortality of ACC. Large tumor size and cortisol-secreting tumor were additional risk factors for ACC-specific death.

Conclusions

We report the first epidemiologic study regarding ACC in an Asian population. ENSAT stage 4; lymph node involvement; non-operative group; and invasion of vein, sinusoid, or capsule were associated with an increased risk for all-cause mortality.

Open access
Yang Lv Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China

Search for other papers by Yang Lv in
Google Scholar
PubMed
Close
,
Xu Han Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China

Search for other papers by Xu Han in
Google Scholar
PubMed
Close
,
Chunyan Zhang Department of Clinical Laboratory, Zhongshan Hospital, Fudan University, Shanghai, China

Search for other papers by Chunyan Zhang in
Google Scholar
PubMed
Close
,
Yuan Fang Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China

Search for other papers by Yuan Fang in
Google Scholar
PubMed
Close
,
Ning Pu Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China

Search for other papers by Ning Pu in
Google Scholar
PubMed
Close
,
Yuan Ji Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China

Search for other papers by Yuan Ji in
Google Scholar
PubMed
Close
,
Dansong Wang Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China

Search for other papers by Dansong Wang in
Google Scholar
PubMed
Close
,
Xu Xuefeng Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China

Search for other papers by Xu Xuefeng in
Google Scholar
PubMed
Close
, and
Wenhui Lou Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China

Search for other papers by Wenhui Lou in
Google Scholar
PubMed
Close

Purpose

Chromogranin A (CgA) and neuron-specific enolase (NSE) are important markers for neuroendocrine tumors; however, the clinical value of combining these markers has not been well studied. In this study, we investigated the utility of each marker individually and in combination for patients with nonfunctional pancreatic neuroendocrine tumors (NF-pNETs).

Patients and Methods

In this study, NF-pNET patients and controls were recruited from December 2011 to March 2016; 784 serum samples from peripheral vein were collected. The clinical characteristics and biomarker values of all the individuals were recorded and analyzed. Tumor burdens were calculated by CT/MRI scan. Receiver-operating characteristic curves were constructed to assess the diagnostic predictive values; sensitivity and specificity were calculated to determine the cut-off value. Therapeutic responses reflected on the changes of the biomarkers’ concentration were assessed by the RECIST criterion. Clinical relations between the prognosis and the biomarker values were also analyzed. Statistical significance was defined as P value less than 0.05.

Results

Among the 167 NF-pNETs patients, 82 were males (49.1%) and the mean age was 50.0 (17.4). The mean CgA values of G1, G2 and G3 NF-pNENs were 75, 121 and 134 μg/L (P < 0.05), respectively. In NF-pNETs, CgA correlated with the WHO tumor grade (WHO G1 vs G2, P < 0.05); the linear regression relationships were found between the tumor burdens (both in pancreas and liver) and CgA concentration (P < 0.001); changes in CgA and NSE concentrations also reflect treatment response (P < 0.001).

Conclusion

CgA and NSE are important diagnostic and follow-up markers in patients with NF-pNETs. The combined monitoring of CgA and NSE possesses more accuracy than individual values of CgA and NSE at predicting prognosis and disease progression.

Open access
Jesper Krogh Department of Endocrinology & Metabolism, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Jesper Krogh in
Google Scholar
PubMed
Close
,
Peter Plomgaard Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark

Search for other papers by Peter Plomgaard in
Google Scholar
PubMed
Close
,
Ruth Frikke-Schmidt Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark

Search for other papers by Ruth Frikke-Schmidt in
Google Scholar
PubMed
Close
,
Sten Velschow Fluisense ApS, Lillerød, Denmark

Search for other papers by Sten Velschow in
Google Scholar
PubMed
Close
,
Jesper Johannesen Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Department of Pediatrics, Copenhagen University Hospital - Herlev & Gentofte, Copenhagen, Denmark

Search for other papers by Jesper Johannesen in
Google Scholar
PubMed
Close
,
Linda Maria Hilsted Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark

Search for other papers by Linda Maria Hilsted in
Google Scholar
PubMed
Close
,
Malene Schrøder Fluisense ApS, Lillerød, Denmark

Search for other papers by Malene Schrøder in
Google Scholar
PubMed
Close
, and
Ulla Feldt-Rasmussen Department of Endocrinology & Metabolism, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Ulla Feldt-Rasmussen in
Google Scholar
PubMed
Close

Repeated blood sampling is required in certain clinical and research settings, which is currently performed by drawing blood from venous catheters requiring manual handling of each sample at the time of collection. A novel body-worn device for repeated serial samples, Fluispotter®, with automated extraction, collection, and storage of up to 20 venous dried blood spot samples over the course of 20 h may overcome problems with current methods for serial sampling. The purpose of this study was to assess the performance and safety of Fluispotter for the first time in healthy subjects. Fluispotter consists of a cartridge with tubing, a reservoir for flushing solution, pumps and filterpaper, and a multi-lumen catheter placed in the brachial vein. We recruited healthy subjects for testing in an in-hospital setting. Fluispotter was attached by an anesthesiologist to 22 healthy subjects of which 9/22 (40.9%) participants had all 20 samples taken, which was lower than the goal of complete sampling in 80% of the subjects (P = 0.02). The main reason for sample failure was clogging of blood flow which was observed in 11/22 (50%) of the participants. No serious adverse events occurred, and the participants rated the pain from the insertion and the removal of catheter as very low. A cortisol profile showed nadir values at midnight and highest values at 05:00 h. Although full sampling was not successful in all participants, the Fluispotter technology proved safe and highly acceptable to the participants producing the expected cortisol profile without the requirement of staff during sample collection.

Open access
Tomaž Kocjan Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia

Search for other papers by Tomaž Kocjan in
Google Scholar
PubMed
Close
,
Gaj Vidmar Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
University Rehabilitation Institute, Ljubljana, Slovenia
FAMNIT, University of Primorska, Koper, Slovenia

Search for other papers by Gaj Vidmar in
Google Scholar
PubMed
Close
,
Peter Popović Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
Clinical Institute of Radiology, University Medical Centre Ljubljana, Ljubljana, Slovenia

Search for other papers by Peter Popović in
Google Scholar
PubMed
Close
, and
Milenko Stanković Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
Clinical Institute of Radiology, University Medical Centre Ljubljana, Ljubljana, Slovenia

Search for other papers by Milenko Stanković in
Google Scholar
PubMed
Close

The 20-point clinical prediction SPACE score, the aldosterone-to-lowest potassium ratio (APR), aldosterone concentration (AC) and the AC relative reduction rate after saline infusion test (SIT) have recently been proposed for primary aldosteronism (PA) subtyping prior to adrenal vein sampling (AVS). To validate those claims, we performed a retrospective cross-sectional study that included all patients at our center who had positive SIT to confirm PA and were diagnosed with either bilateral disease (BPA) according to AVS or with lateralized disease (LPA) if biochemically cured after adrenalectomy from November 2004 to the end of 2019. Final diagnoses were used to evaluate the diagnostic performance of proposed clinical prediction tools. Our cohort included 144 patients (40 females), aged 32–72 years (mean 54 years); 59 with LPA and 85 with BPA. The originally suggested SPACE score ≤8 and SPACE score >16 rules yielded about 80% positive predictive value (PPV) for BPA and LPA, respectively. Multivariate analyses with the predictors constituting the SPACE score highlighted post-SIT AC as the most important predictor of PA subtype for our cohort. APR-based tool of <5 for BPA and >15 for LPA yielded about 75% PPV for LPA and BPA. The proposed post-SIT AC <8.79 ng/dL criterion yielded 41% sensitivity and 90% specificity, while the relative post-SIT AC reduction rate of >33.8% criterion yielded 80% sensitivity and 51% specificity for BPA prediction. The application of any of the validated clinical prediction tools to our cohort did not predict the PA subtype with the high diagnostic performance originally reported.

Open access
Sirazum Choudhury Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Commonwealth Building, London, UK
Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK

Search for other papers by Sirazum Choudhury in
Google Scholar
PubMed
Close
,
Tricia Tan Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Commonwealth Building, London, UK
Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK

Search for other papers by Tricia Tan in
Google Scholar
PubMed
Close
,
Katharine Lazarus Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Commonwealth Building, London, UK
Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK

Search for other papers by Katharine Lazarus in
Google Scholar
PubMed
Close
, and
Karim Meeran Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Commonwealth Building, London, UK
Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK

Search for other papers by Karim Meeran in
Google Scholar
PubMed
Close

The introduction of adrenocortical extract in 1930 improved the life expectancy of hyhpoadrenal patients, with further increases seen after the introduction of cortisone acetate from 1948. Most patients are now treated with synthetic hydrocortisone, and incremental advances have been made with optimisation of daily dosing and the introduction of multidose regimens. There remains a significant mortality gap between individuals with treated hypoadrenalism and the general population. It is unclear whether this gap is a result of glucocorticoid over-replacement, under-replacement or loss of the circadian and ultradian rhythm of cortisol secretion, with the risk of detrimental excess glucocorticoid exposure at later times in the day. The way forwards will involve replacement of the diurnal cortisol rhythm with better glucocorticoid replacement regimens. The steroid profile produced by both prednisolone and dual-release hydrocortisone (Plenadren), provide a smoother glucocorticoid profile of cortisol than standard oral multidose regimens of hydrocortisone and cortisone acetate. The individualisation of prednisolone doses and lower bioavailability of Plenadren offer reductions in total steroid exposure. Although there is emerging evidence of both treatments offering better cardiometabolic outcomes than standard glucocorticoid replacement regimens, there is a paucity of evidence involving very low dose prednisolone (2–4 mg daily) compared to the larger doses (~7.5 mg) historically used. Data from upcoming clinical studies on prednisolone will therefore be of key importance in informing future practice.

Open access
Jan Roar Mellembakken Division of Gynecology and Obstetrics, Department of Reproductive Medicine, Oslo University Hospital, Oslo, Norway

Search for other papers by Jan Roar Mellembakken in
Google Scholar
PubMed
Close
,
Azita Mahmoudan Division of Gynecology and Obstetrics, Department of Reproductive Medicine, Oslo University Hospital, Oslo, Norway

Search for other papers by Azita Mahmoudan in
Google Scholar
PubMed
Close
,
Lars Mørkrid Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, Oslo, Norway

Search for other papers by Lars Mørkrid in
Google Scholar
PubMed
Close
,
Inger Sundström-Poromaa Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden

Search for other papers by Inger Sundström-Poromaa in
Google Scholar
PubMed
Close
,
Laure Morin-Papunen Department of Obstetrics and Gynecology, University Hospital of Oulu, University of Oulu, Medical Research Centre Oulu and PEDEGO Research Unit, Oulu, Finland

Search for other papers by Laure Morin-Papunen in
Google Scholar
PubMed
Close
,
Juha S Tapanainen Department of Obstetrics and Gynecology, University Hospital of Oulu, University of Oulu, Medical Research Centre Oulu and PEDEGO Research Unit, Oulu, Finland
Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Uusimaa, Finland

Search for other papers by Juha S Tapanainen in
Google Scholar
PubMed
Close
,
Terhi T Piltonen Department of Obstetrics and Gynecology, University Hospital of Oulu, University of Oulu, Medical Research Centre Oulu and PEDEGO Research Unit, Oulu, Finland

Search for other papers by Terhi T Piltonen in
Google Scholar
PubMed
Close
,
Angelica Lindén Hirschberg Department of Women’s and Children’s Health, Karolinska Institutet and Department of Gynecology and Reproductive Medicine, Stockholm, Sweden

Search for other papers by Angelica Lindén Hirschberg in
Google Scholar
PubMed
Close
,
Elisabet Stener-Victorin Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden

Search for other papers by Elisabet Stener-Victorin in
Google Scholar
PubMed
Close
,
Eszter Vanky Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, UK
Department of Gynecology and Obstetrics, St. Olav’s Hospital, Trondheim, Norway

Search for other papers by Eszter Vanky in
Google Scholar
PubMed
Close
,
Pernille Ravn Department of Gynecology and Obstetrics, Odense University Hospital, Odense, Denmark

Search for other papers by Pernille Ravn in
Google Scholar
PubMed
Close
,
Richard Christian Jensen Department of Endocrinology, Odense University Hospital, Odense, Denmark

Search for other papers by Richard Christian Jensen in
Google Scholar
PubMed
Close
,
Marianne Skovsager Andersen Department of Endocrinology, Odense University Hospital, Odense, Denmark

Search for other papers by Marianne Skovsager Andersen in
Google Scholar
PubMed
Close
, and
Dorte Glintborg Department of Endocrinology, Odense University Hospital, Odense, Denmark

Search for other papers by Dorte Glintborg in
Google Scholar
PubMed
Close

Objective

Obesity is considered to be the strongest predictive factor for cardio-metabolic risk in women with polycystic ovary syndrome (PCOS). The aim of the study was to compare blood pressure (BP) in normal weight women with PCOS and controls matched for age and BMI.

Methods

From a Nordic cross-sectional base of 2615 individuals of Nordic ethnicity, we studied a sub cohort of 793 normal weight women with BMI < 25 kg/m2 (512 women with PCOS according to Rotterdam criteria and 281 age and BMI-matched controls). Participants underwent measurement of BP and body composition (BMI, waist-hip ratio), lipid status, and fasting BG. Data were presented as median (quartiles).

Results

The median age for women with PCOS were 28 (25, 32) years and median BMI was 22.2 (20.7, 23.4) kg/m2. Systolic BP was 118 (109, 128) mmHg in women with PCOS compared to 110 (105, 120) mmHg in controls and diastolic BP was 74 (67, 81) vs 70 (64, 75) mmHg, both P < 0.001. The prevalence of women with BP ≥ 140/90 mmHg was 11.1% (57/512) in women with PCOS vs 1.8% (5/281) in controls, P < 0.001. In women ≥ 35 years the prevalence of BP ≥ 140/90 mmHg was comparable in women with PCOS and controls (12.7% vs 9.8%, P = 0.6). Using multiple regression analyses, the strongest association with BP was found for age, waist circumference, and total cholesterol in women with PCOS.

Conclusions

Normal weight women with PCOS have higher BP than controls. BP and metabolic screening are relevant also in young normal weight women with PCOS.

Open access
Stine A Holmboe Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
The International Research Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Stine A Holmboe in
Google Scholar
PubMed
Close
,
Ravi Jasuja Research Program in Men’s Health: Aging and Metabolism, Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts, USA

Search for other papers by Ravi Jasuja in
Google Scholar
PubMed
Close
,
Brian Lawney Research Program in Men’s Health: Aging and Metabolism, Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts, USA

Search for other papers by Brian Lawney in
Google Scholar
PubMed
Close
,
Lærke Priskorn Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
The International Research Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Lærke Priskorn in
Google Scholar
PubMed
Close
,
Niels Joergensen Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
The International Research Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Niels Joergensen in
Google Scholar
PubMed
Close
,
Allan Linneberg Centre for Clinical Research and Prevention, Frederiksberg Hospital, Copenhagen, Denmark
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Allan Linneberg in
Google Scholar
PubMed
Close
,
Tina Kold Jensen Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
The International Research Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark

Search for other papers by Tina Kold Jensen in
Google Scholar
PubMed
Close
,
Niels Erik Skakkebæk Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
The International Research Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Niels Erik Skakkebæk in
Google Scholar
PubMed
Close
,
Anders Juul Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
The International Research Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Anders Juul in
Google Scholar
PubMed
Close
, and
Anna-Maria Andersson Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
The International Research Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Anna-Maria Andersson in
Google Scholar
PubMed
Close

Objective

Calculating the free testosterone level has gained increasing interest and different indirect algorithms have been suggested. The objective was to compare free androgen index (FAI), free testosterone estimated using the linear binding model (Vermeulen: cFTV) and the binding framework accounting for allosterically coupled SHBG monomers (Zakharov: cFTZ) in relation to cardiometabolic conditions.

Design

A prospective cohort study including 5350 men, aged 30–70 years, participating in population-based surveys (MONICA I–III and Inter99) from 1982 to 2001 and followed until December 2012 with baseline and follow-up information on cardiometabolic parameters and vital status.

Results

Using age-standardized hormone levels, FAI was higher among men with baseline cardiometabolic conditions, whereas cFTV and cFTZ levels were lower compared to men without these conditions as also seen for total testosterone. Men in highest quartiles of cFTV or cFTZ had lower risk of developing type 2 diabetes (cFTV: HR = 0.74 (0.49–1.10), cFTZ: HR = 0.59 (0.39–0.91)) than men in lowest quartile. In contrast, men with highest levels of FAI had a 74% (1.17–2.59) increased risk of developing type 2 diabetes compared to men in lowest quartile.

Conclusion

The association of estimated free testosterone and the studied outcomes differ depending on algorithm used. cFTV and cFTZ showed similar associations to baseline and long-term cardiometabolic parameters. In contrast, an empiric ratio, FAI, showed opposite associations to several of the examined parameters and may reflect limited clinical utility.

Open access
Xiao Zong Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Institution of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Search for other papers by Xiao Zong in
Google Scholar
PubMed
Close
,
Qin Fan Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Institution of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Search for other papers by Qin Fan in
Google Scholar
PubMed
Close
,
Hang Zhang Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Institution of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Search for other papers by Hang Zhang in
Google Scholar
PubMed
Close
,
Qian Yang Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Institution of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Search for other papers by Qian Yang in
Google Scholar
PubMed
Close
,
Hongyang Xie Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Institution of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Search for other papers by Hongyang Xie in
Google Scholar
PubMed
Close
,
Qiujing Chen Institution of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Search for other papers by Qiujing Chen in
Google Scholar
PubMed
Close
,
Ruiyan Zhang Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Search for other papers by Ruiyan Zhang in
Google Scholar
PubMed
Close
, and
Rong Tao Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Search for other papers by Rong Tao in
Google Scholar
PubMed
Close

To explore the relationship between soluble ST2 (sST2) and metabolic syndrome (MetS) and determine whether sST2 levels can predict the presence and severity of MetS. We evaluated 550 consecutive subjects (58.91 ± 9.69 years, 50% male) with or without MetS from the Department of Vascular & Cardiology, Shanghai Jiao Tong University-Affiliated Ruijin Hospital. Serum sST2 concentrations were measured. The participants were divided into three groups according to the sST2 tertiles. Univariate and multivariable logistic regression models were used to evaluate the association between serum sST2 concentrations and the presence of MetS. Serum sST2 concentrations were significantly higher in the MetS group than in those in the no MetS group (14.80 ± 7.01 vs 11.58 ± 6.41 ng/mL, P < 0.01). Subjects with more MetS components showed higher levels of sST2. sST2 was associated with the occurrence of MetS after multivariable adjustment as a continuous log-transformed variable (per 1 SD, odds ratio (OR): 1.42, 95% CI: 1.13–1.80, P < 0.01). Subgroup analysis showed that individuals with MetS have significantly higher levels of sST2 than those without MetS regardless of sex and age. High serum sST2 levels were significantly and independently associated with the presence and severity of MetS. Thus, sST2 levels may be a novel biomarker and clinical predictor of MetS.

Open access