Search Results

You are looking at 31 - 40 of 191 items for

  • Abstract: Arteries x
  • Abstract: Atherosclerosis x
  • Abstract: Carotid x
  • Abstract: Circulation x
  • Abstract: Stroke x
  • Abstract: Veins x
  • Abstract: Heart x
  • Abstract: Cardio* x
Clear All Modify Search
Agnieszka Adamska Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Bialystok, Poland

Search for other papers by Agnieszka Adamska in
Google Scholar
PubMed
Close
,
Vitalii Ulychnyi Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Bialystok, Poland

Search for other papers by Vitalii Ulychnyi in
Google Scholar
PubMed
Close
,
Katarzyna Siewko Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Bialystok, Poland

Search for other papers by Katarzyna Siewko in
Google Scholar
PubMed
Close
,
Anna Popławska-Kita Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Bialystok, Poland

Search for other papers by Anna Popławska-Kita in
Google Scholar
PubMed
Close
,
Małgorzata Szelachowska Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Bialystok, Poland

Search for other papers by Małgorzata Szelachowska in
Google Scholar
PubMed
Close
,
Marcin Adamski Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland

Search for other papers by Marcin Adamski in
Google Scholar
PubMed
Close
,
Angelika Buczyńska Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland

Search for other papers by Angelika Buczyńska in
Google Scholar
PubMed
Close
, and
Adam Jacek Krętowski Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Bialystok, Poland
Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland

Search for other papers by Adam Jacek Krętowski in
Google Scholar
PubMed
Close

Cardiovascular risk factors could be present in mild adrenal autonomous cortisol secretion (MACS). However, the most frequent cardiovascular risk factors in MACS have not been established. The aim of the presseent study was to analyse the difference in cardiovascular risk factors in patients with MACS in comparison to those with non-functioning adrenal tumour (NFAT). A total of 295 patients with adrenal incidentaloma were included in this retrospective study. We divided our group into those who showed suppression in 1 mg overnight dexamethasone suppression test (DST) (NFAT) (serum cortisol level ≤1.8 μg/dL) and those who did not show suppression in the DST (MACS) (serum concentration of cortisol > 1.8 μg/dL and ≤5 μg/dL). In the studied groups, we analysed the presence of cardiovascular risk factors, such as obesity, prediabetes, type 2 diabetes mellitus (T2DM), hypertension, hyperlipidaemia, chronic kidney disease and cardiovascular events. In our study, 18.9% of patients were defined as MACS. Importantly, T2DM was diagnosed in 41% of MACS vs 23% of NFAT (P < 0.01) and higher frequency of occurrence of hyperlipidaemia in NFAT (72.4%) vs MACS (53.6%) (P = 0.01) was observed. We did not observed differences in the frequency of obesity, hypertension, chronic kidney disease, prediabetes, atrial fibrillation, stroke, ST and non-ST elevation myocardial infarction and coronary angioplasty between patients with MACS and NFAT (all P > 0.05; respectively). In MACS, T2DM is more prevalent than in NFAT; hyperlipidaemia is more prevalent in NFAT. Accordingly, no differences were found in the incidence of obesity, hypertension, prediabetes, chronic kidney disease between studied groups as well as cardiovascular events.

Open access
Richard P Steeds Department of Cardiology, University Hospitals Birmingham (Queen Elizabeth), NHS Hospitals Foundation Trust, Birmingham, UK
Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK

Search for other papers by Richard P Steeds in
Google Scholar
PubMed
Close
,
Vandana Sagar Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK

Search for other papers by Vandana Sagar in
Google Scholar
PubMed
Close
,
Shishir Shetty Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK

Search for other papers by Shishir Shetty in
Google Scholar
PubMed
Close
,
Tessa Oelofse Departments of Anaesthesia and Intensive Care, University Hospitals Birmingham (Queen Elizabeth), NHS Hospitals Foundation Trust, Birmingham, UK

Search for other papers by Tessa Oelofse in
Google Scholar
PubMed
Close
,
Harjot Singh Departments of Anaesthesia and Intensive Care, University Hospitals Birmingham (Queen Elizabeth), NHS Hospitals Foundation Trust, Birmingham, UK

Search for other papers by Harjot Singh in
Google Scholar
PubMed
Close
,
Raheel Ahmad Department of Cardiology, University Hospitals Birmingham (Queen Elizabeth), NHS Hospitals Foundation Trust, Birmingham, UK

Search for other papers by Raheel Ahmad in
Google Scholar
PubMed
Close
,
Elizabeth Bradley Therapy Services (Dietetics), University Hospitals Birmingham (Queen Elizabeth), NHS Hospitals Foundation Trust, Birmingham, UK

Search for other papers by Elizabeth Bradley in
Google Scholar
PubMed
Close
,
Rachel Moore Departments of Anaesthesia and Intensive Care, University Hospitals Birmingham (Queen Elizabeth), NHS Hospitals Foundation Trust, Birmingham, UK

Search for other papers by Rachel Moore in
Google Scholar
PubMed
Close
,
Suzanne Vickrage Birmingham Neuroendocrine Tumour Centre, University Hospitals Birmingham (Queen Elizabeth), NHS Hospitals Foundation Trust, Birmingham, UK

Search for other papers by Suzanne Vickrage in
Google Scholar
PubMed
Close
,
Stacey Smith Birmingham Neuroendocrine Tumour Centre, University Hospitals Birmingham (Queen Elizabeth), NHS Hospitals Foundation Trust, Birmingham, UK

Search for other papers by Stacey Smith in
Google Scholar
PubMed
Close
,
Ivan Yim Department of Cardiothoracic Surgery, University Hospitals Birmingham (Queen Elizabeth), NHS Hospitals Foundation Trust, Birmingham, UK

Search for other papers by Ivan Yim in
Google Scholar
PubMed
Close
,
Yasir S Elhassan Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK

Search for other papers by Yasir S Elhassan in
Google Scholar
PubMed
Close
,
Hema Venkataraman Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK

Search for other papers by Hema Venkataraman in
Google Scholar
PubMed
Close
,
John Ayuk Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK

Search for other papers by John Ayuk in
Google Scholar
PubMed
Close
,
Stephen Rooney Department of Cardiothoracic Surgery, University Hospitals Birmingham (Queen Elizabeth), NHS Hospitals Foundation Trust, Birmingham, UK

Search for other papers by Stephen Rooney in
Google Scholar
PubMed
Close
, and
Tahir Shah Birmingham Neuroendocrine Tumour Centre, University Hospitals Birmingham (Queen Elizabeth), NHS Hospitals Foundation Trust, Birmingham, UK
Department of Hepatology and Liver Transplantation, University Hospitals Birmingham (Queen Elizabeth), NHS Hospitals Foundation Trust, Birmingham, UK

Search for other papers by Tahir Shah in
Google Scholar
PubMed
Close

Carcinoid heart disease (CHD) is a consequence of valvular fibrosis triggered by vasoactive substances released from neuroendocrine tumours, classically in those with metastatic disease and resulting in tricuspid and pulmonary valve failure. CHD affects one in five patients who have carcinoid syndrome (CS). Valve leaflets become thickened, retracted and immobile, resulting most often in regurgitation that causes right ventricular dilatation and ultimately, right heart failure. The development of CHD heralds a significantly worse prognosis than those patients with CS who do not develop valvular disease. Diagnosis requires a low threshold of suspicion in all patients with CS, since symptoms occur late in the disease process and clinical signs are difficult to elicit. As a result, routine screening is recommended using the biomarker, N-terminal pro-natriuretic peptide, and regular echocardiography is then required for diagnosis and follow-up. There is no direct medical therapy for CHD, but the focus of non-surgical care is to control CS symptoms, reduce tumour load and decrease hormone levels. Valve surgery improves long-term outcome for those with severe disease compared to medical management, although peri-operative mortality remains at between 10 and 20% in experienced centres. Therefore, care needs to be multidisciplinary at all stages, with clear discussion with the patient and between teams to ensure optimum outcome for these often-complex patients.

Open access
Alexander Tacey Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
Department of Medicine-Western Health, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Alexander Tacey in
Google Scholar
PubMed
Close
,
Lewan Parker Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
Institute for Physical Activity and Nutrition, Deakin University, Geelong, Victoria, Australia

Search for other papers by Lewan Parker in
Google Scholar
PubMed
Close
,
Bu B Yeap Medical School, University of Western Australia, and Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Western Australia, Australia

Search for other papers by Bu B Yeap in
Google Scholar
PubMed
Close
,
John Joseph PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia

Search for other papers by John Joseph in
Google Scholar
PubMed
Close
,
Ee M Lim PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia

Search for other papers by Ee M Lim in
Google Scholar
PubMed
Close
,
Andrew Garnham Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia

Search for other papers by Andrew Garnham in
Google Scholar
PubMed
Close
,
David L Hare University of Melbourne and the Department of Cardiology, Austin Health, Melbourne, Victoria, Australia

Search for other papers by David L Hare in
Google Scholar
PubMed
Close
,
Tara Brennan-Speranza Department of Physiology and Bosch Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia

Search for other papers by Tara Brennan-Speranza in
Google Scholar
PubMed
Close
, and
Itamar Levinger Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
Department of Medicine-Western Health, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Itamar Levinger in
Google Scholar
PubMed
Close

The aim of this study was to investigate the effect of a single dose of prednisolone on (A) high-intensity interval cycling performance and (B) post-exercise metabolic, hormonal and haematological responses. Nine young men participated in this double-blind, randomised, cross-over study. The participants completed exercise sessions (4 × 4 min cycling bouts at 90–95% of peak heart rate), 12 h after ingesting prednisolone (20 mg) or placebo. Work load was adjusted to maintain the same relative heart rate between the sessions. Exercise performance was measured as total work performed. Blood samples were taken at rest, immediately post exercise and up to 3 h post exercise. Prednisolone ingestion decreased total work performed by 5% (P < 0.05). Baseline blood glucose was elevated following prednisolone compared to placebo (P < 0.001). Three hours post exercise, blood glucose in the prednisolone trial was reduced to a level equivalent to the baseline concentration in the placebo trial (P > 0.05). Prednisolone suppressed the increase in blood lactate immediately post exercise (P < 0.05). Total white blood cell count was elevated at all time-points with prednisolone (P < 0.01). Androgens and sex hormone-binding globulin were elevated immediately after exercise, irrespective of prednisolone or placebo. In contrast, prednisolone significantly reduced the ratio of testosterone/luteinizing hormone (P < 0.01). Acute prednisolone treatment impairs high-intensity interval cycling performance and alters metabolic and haematological parameters in healthy young men. Exercise may be an effective tool to minimise the effect of prednisolone on blood glucose levels.

Open access
Shuang Wan Adrenal Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
Department of Endocrinology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China

Search for other papers by Shuang Wan in
Google Scholar
PubMed
Close
,
Chengcheng Zheng Adrenal Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China

Search for other papers by Chengcheng Zheng in
Google Scholar
PubMed
Close
,
Tao Chen Adrenal Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China

Search for other papers by Tao Chen in
Google Scholar
PubMed
Close
,
Lu Tan Adrenal Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China

Search for other papers by Lu Tan in
Google Scholar
PubMed
Close
,
Jia Tang Adrenal Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China

Search for other papers by Jia Tang in
Google Scholar
PubMed
Close
,
Haoming Tian Adrenal Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China

Search for other papers by Haoming Tian in
Google Scholar
PubMed
Close
, and
Yan Ren Adrenal Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China

Search for other papers by Yan Ren in
Google Scholar
PubMed
Close

We applied 24-h Holter monitoring to analyze the characteristics of arrhythmias and heart rate variability in Chinese patients with primary aldosteronism (PA) and compared them with age-, sex-, and blood pressure-matched primary hypertension (PH) patients. A total of 216 PA patients and 261 PH patients were enrolled. The nonstudy data were balanced using propensity score matching (PSM), and the risk variables for developing arrhythmias were then analyzed using logistic regression analysis. Before PSM, the proportion of PA patients with combined atrial premature beats and prolonged QT interval was higher than the corresponding proportion in the PH group. After PSM, the PA group had a larger percentage of transient atrial tachycardia and frequent atrial premature beats, and it had higher heart rate variability metrics. The proportion of unilateral PA combined with multiple ventricular premature beats was higher than that of bilateral PA. Older age, grade 3 hypertension, and hypokalemia were independent risk factors for the emergence of arrhythmias in PA patients. PA patients suffer from a greater prevalence of arrhythmias than well-matched PH patients.

Open access
Dandan Hu D Hu, Department of Endocrinology, Suzhou Municipal Hospital, Suzhou, China

Search for other papers by Dandan Hu in
Google Scholar
PubMed
Close
,
Xiangguo Cong X Cong, Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, suzhou, China

Search for other papers by Xiangguo Cong in
Google Scholar
PubMed
Close
,
Beibei Gao B Gao, Department of Endocrinology, Suzhou Municipal Hospital, Suzhou, China

Search for other papers by Beibei Gao in
Google Scholar
PubMed
Close
,
Ying Wu Y Wu, Department of Endocrinology, Suzhou Municipal Hospital, Suzhou, China

Search for other papers by Ying Wu in
Google Scholar
PubMed
Close
,
Qiong Shen Q Shen, Department of Endocrinology, Suzhou Municipal Hospital, Suzhou, China

Search for other papers by Qiong Shen in
Google Scholar
PubMed
Close
, and
Lei Chen L Chen, The Affiliated Suzhou Hospital of Nanjing Medical University, 苏州, 2100000, China

Search for other papers by Lei Chen in
Google Scholar
PubMed
Close

Background:

Evidence has demonstrated that visceral fat area (VFA) and subcutaneous fat area (SFA) had different influences on cardiovascular disease (CVD) risk in patients with type 2 diabetes mellitus (T2DM). We aimed to investigate the relationship between the visceral fat area (VFA) to subcutaneous fat area (SFA) ratio (V/S) and carotid atherosclerosis (CAS) in patients with T2DM.

Methods:

From January 2018 to May 2023, 1,838 patients with T2DM admitted to the National Metabolic Management Centre in our hospital were assigned to two groups based on comorbid CAS. Dual bioelectrical impedance analysis was used to measure the VAF and SFA, and the V/S was calculated. Patient characteristics and serum biochemical indices were compared between groups. Factors influencing comorbid CAS were determined, and correlations between V/S and other clinical indices were analyzed.

Results:

The group with comorbid CAS included 858 individuals and 980 without comorbid CAS. Those with comorbid CAS were older and had a longer disease duration, more significant systolic blood pressure, and greater V/S. The proportions of patients with comorbid hypertension increased significantly with the V/S ratio. The V/S ratio positively correlated with triglyceride (TG), low-density lipoprotein cholesterol levels, and waist circumference. According to binary logistic regression analysis, V/S was an independent risk factor for CAS.

Conclusion:

Elevated V/S is an independent risk factor for CAS in patients with T2DM.

Open access
Mette Faurholdt Gude Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark

Search for other papers by Mette Faurholdt Gude in
Google Scholar
PubMed
Close
,
Rikke Hjortebjerg Department of Molecular Endocrinology, University of Southern Denmark, Odense, Denmark
Steno Diabetes Centre Odense, Odense University Hospital, Odense, Denmark

Search for other papers by Rikke Hjortebjerg in
Google Scholar
PubMed
Close
,
Mette Bjerre Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark

Search for other papers by Mette Bjerre in
Google Scholar
PubMed
Close
,
Morten Haaning Charles Department of Public Health, Aarhus University, Aarhus, Denmark
Steno Diabetes Centre Aarhus, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Morten Haaning Charles in
Google Scholar
PubMed
Close
,
Daniel R Witte Department of Public Health, Aarhus University, Aarhus, Denmark
Steno Diabetes Centre Aarhus, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Daniel R Witte in
Google Scholar
PubMed
Close
,
Annelli Sandbæk Department of Public Health, Aarhus University, Aarhus, Denmark
Steno Diabetes Centre Aarhus, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Annelli Sandbæk in
Google Scholar
PubMed
Close
, and
Jan Frystyk Endocrine Research Unit, Department of Endocrinology, Odense University Hospital & Department of Clinical Research, Faculty of Health, University of Southern Denmark, Odense, Denmark

Search for other papers by Jan Frystyk in
Google Scholar
PubMed
Close

Objective

Physiologically, pregnancy-associated plasma protein-A (PAPP-A) serves to liberate bound IGF1 by enzymatic cleavage of IGF-binding proteins (IGFBPs), IGFBP4 in particular. Clinically, PAPP-A has been linked to cardiovascular disease (CVD). Stanniocalcin-2 (STC2) is a natural inhibitor of PAPP-A enzymatic activity, but its association with CVD is unsettled. Therefore, we examined associations between the STC2–PAPP-A–IGFBP4–IGF1 axis and all-cause mortality and CVD in patients with type 2 diabetes (T2D).

Design

We followed 1284 participants with T2D from the ADDITION trial for 5 years.

Methods

Circulating concentrations of STC2, PAPP-A, total and intact IGFBP4 and IGF1 and -2 were measured at inclusion. End-points were all-cause mortality and a composite CVD event: death from CVD, myocardial infarction, stroke, revascularisation or amputation. Survival analysis was performed by Cox proportional hazards model.

Results

During follow-up, 179 subjects presented with an event. After multivariable adjustment, higher levels of STC2, PAPP-A, as well as intact and total IGFBP4, were associated with all-cause mortality; STC2: hazard ratio (HR) = 1.84 (1.09–3.12) (95% CI); P = 0.023, PAPP-A: HR = 2.81 (1.98–3.98); P < 0.001, intact IGFBP4: HR = 1.43 (1.11–1.85); P = 0.006 and total IGFBP4: HR = 3.06 (1.91–4.91); P < 0.001. Higher PAPP-A levels were also associated with CVD events: HR = 1.74 (1.16–2.62); P = 0.008, whereas lower IGF1 levels were associated with all-cause mortality: HR = 0.51 (0.34–0.76); P = 0.001.

Conclusions

This study supports that PAPP-A promotes CVD and increases mortality. However, STC2 is also associated with mortality. Given that STC2 inhibits the enzymatic effects of PAPP-A, we speculate that STC2 either serves to counteract harmful PAPP-A actions or possesses effects independently of the PAPP-A–IGF1 axis.

Significance statement

PAPP-A has pro-atherosclerotic effects and exerts these most likely through IGF1. IGF1 is regulated by the STC2–PAPP-A–IGFBP4–IGF1 axis, where STC2, an irreversible inhibitor of PAPP-A, has been shown to reduce the development of atherosclerotic lesions in mice. We examined the association of this axis to mortality and CVD in T2D. We demonstrated an association between PAPP-A and CVD. All components of the STC2–PAPP-A–IGFBP4–IGF1 axis were associated with mortality and it is novel that STC2 was associated with mortality in T2D. Our study supports that inhibition of PAPP-A may be a new approach to reducing mortality and CVD. Whether modification of STC2 could serve as potential intervention warrants further investigation.

Open access
Shenghe Luo College of Pharmacy, Yanbian University, Yanji, China

Search for other papers by Shenghe Luo in
Google Scholar
PubMed
Close
,
Yunhui Zuo Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
Department of Cardiology, Yanbian University Hospital, Yanji, China

Search for other papers by Yunhui Zuo in
Google Scholar
PubMed
Close
,
Xiaotian Cui Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China

Search for other papers by Xiaotian Cui in
Google Scholar
PubMed
Close
,
Meiping Zhang Department of Cardiology, Yanbian University Hospital, Yanji, China

Search for other papers by Meiping Zhang in
Google Scholar
PubMed
Close
,
Honghua Jin Department of Pharmacy, Yanbian University Hospital, Yanji, China

Search for other papers by Honghua Jin in
Google Scholar
PubMed
Close
, and
Lan Hong Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China

Search for other papers by Lan Hong in
Google Scholar
PubMed
Close

To observe the effects of liraglutide (analog of glucagon-like peptide 1 (GLP-1)) on atrial natriuretic peptide (ANP) secretion and atrial dynamics, an ex vivo isolated rat atrial perfusion model was used to determine atrial ANP secretion and pulse pressure. DPP-4−/− mice were also established in vivo. ANP levels were determined by radioimmunoassay; GLP-1 content was determined by Elisa. The expression levels of GLP-1 receptor (GLP-1R), PI3K/AKT/mTOR, piezo 1, and cathepsin K were analyzed by Western blot. In the clinical study, patients with acute coronary syndrome (ACS) had low levels of plasma GLP-1 but relatively high levels of plasma ANP. In ex vivo (3.2 nmol/L) and in vivo (30 μg/kg) models, liraglutide significantly decreased ANP levels and atrial pulse pressure. Exendin9–39 alone (GLP-1R antagonist) reversibly significantly increased ANP secretion, and the reduction effect of liraglutide on the secretion of ANP was significantly alleviated by Exendin9–39. Exendin9–39 demonstrated slightly decreased atrial pulse pressure; however, combined liraglutide and Exendin9–39 significantly decreased atrial pulse pressure. Ly294002 (PI3K/AKT inhibitor) inhibited the increase of ANP secretion by liraglutide for a short time, while Ly294002 didn't counteract the decrease in pulse pressure by liraglutide in atrial dynamics studies. Liraglutide increased the expression of GLP-1R and PI3K/AKT/mTOR in isolated rat atria and the hearts of mice in vivo, whereas Exendin9–39 reversibly reduced the expression of GLP-1R and PI3K/AKT/mTOR. Piezo 1 was significantly decreased in wild type and DPP-4−/− mouse heart or isolated rat atria after being treated with liraglutide. Cathepsin K expression was only decreased in in vivo model hearts. Liraglutide can inhibit ANP secretion while decreasing atrial pulse pressure mediated by GLP-1R. Liraglutide probably plays a role in the reduction of ANP secretion via the PI3K/AKT/mTOR signaling pathway. Piezo 1 and cathepsin K may be involved in the liraglutide mechanism of reduction.

Open access
Willem de Ronde Department of Internal Medicine, Spaarne Gasthuis, Haarlem, the Netherlands

Search for other papers by Willem de Ronde in
Google Scholar
PubMed
Close
and
Diederik L Smit Department of Internal Medicine, Spaarne Gasthuis, Haarlem, the Netherlands

Search for other papers by Diederik L Smit in
Google Scholar
PubMed
Close

This review summarizes 10 years experience with male abusers of anabolic androgenic steroids (AAS). The typical user of AAS is male, aged between 20 and 40 and lifting weights. Illegal AAS are cheap and easily obtained via internet or local suppliers. AAS are mostly used in cycles with a duration between 6 and 18 weeks. Most AAS cycles contain multiple agents, used simultaneously in a dose vastly exceeding a substitution dose. A variety of other performance and image-enhancing drugs are commonly used, including human growth hormone, thyroid hormone, tamoxifen, clomiphene citrate and human chorionic gonadotrophin. Short-term clinical and biochemical side effects are well established. Long-term side effects are uncertain, but may include heart failure, mood-and anxiety disorders, hypogonadism and subfertility. We share our views on the management of common health problems associated with AAS abuse.

Open access
Sahar Hossam El Hini Diabetes and Endocrinology Unit, Department of Internal Medicine, Faculty of Medicine, Minia University, Minia, Egypt

Search for other papers by Sahar Hossam El Hini in
Google Scholar
PubMed
Close
,
Yehia Zakaria Mahmoud Department of Internal Medicine, Faculty of Medicine, Minia University, Minia, Egypt

Search for other papers by Yehia Zakaria Mahmoud in
Google Scholar
PubMed
Close
,
Ahmed Abdelfadel Saedii Department of Clinical Pathology, Faculty of Medicine, Minia University, Minia, Egypt

Search for other papers by Ahmed Abdelfadel Saedii in
Google Scholar
PubMed
Close
,
Sayed Shehata Mahmoud Department of Cardiology, Faculty of Medicine, Minia University, Minia, Egypt

Search for other papers by Sayed Shehata Mahmoud in
Google Scholar
PubMed
Close
,
Mohamed Ahmed Amin Department of Radiology, Faculty of Medicine, Minia University, Minia, Egypt

Search for other papers by Mohamed Ahmed Amin in
Google Scholar
PubMed
Close
,
Shereen Riad Mahmoud Diabetes and Endocrinology Unit, Department of Internal Medicine, Faculty of Medicine, Minia University, Minia, Egypt

Search for other papers by Shereen Riad Mahmoud in
Google Scholar
PubMed
Close
, and
Ragaa Abdelshaheed Matta Diabetes and Endocrinology Unit, Department of Internal Medicine, Faculty of Medicine, Minia University, Minia, Egypt

Search for other papers by Ragaa Abdelshaheed Matta in
Google Scholar
PubMed
Close

Objective

Angiopoietin-like proteins (ANGPTL) 3, 4 and 8 are upcoming cardiovascular biomarkers. Experimental studies showed that thyroid hormones altered their levels. We assessed ANGPTL3, 4 and 8 as predictors of cardiovascular functions among naïve subclinical and naïve overt hypothyroidism (SCH and OH) and altered ANGPTL levels with levothyroxine replacement (LT4) and their association with improved cardiovascular risk factors and cardiovascular function.

Design and methods

The study was a prospective follow-up study that assessed ANGPTL3, 4 and 8 levels, vascular status (flow-mediated dilation% of brachial artery (FMD%), carotid intima-media thickness (CIMT), aortic stiffness index (ASI)), left ventricle (LV) parameters (ejection fraction (EF), myocardial performance index (MPI), and LV mass), well-known cardiovascular risk factors and homeostatic model for the assessment of insulin resistance, at two time points, that is, among naïve SCH, naïve OH, and healthy subjects groups; and at 6 months after achieving the euthyroid state with LT4 by calculating their increased or decreased delta changes (∆↑ or ∆↓) in longitudinal arm among LT4-hypothyroid groups.

Results

Significantly elevated levels of ANGPTL3, 4 and 8 among hypothyroid groups than the healthy subjects were reduced with LT4. Multivariate analysis revealed ANGPTLs as independent predictors of cardiovascular functions and the contributors for ANGPTL level included ANGPTL3 and 4 for impaired FMD%, and ANGPTL8 for LV mass among naïve SCH; ANGPTL3 for EF% and ANGPTL8 for CIMT in naïve OH; ∆↓ANGPTL3 for ∆↓ASI meanwhile ∆↑freeT4 for ∆↓ANGPTL3, ∆↓fasting glucose, ∆↓triglyceride, and ∆↓thyroid peroxidase antibody for ∆↓ANGPTL4 among LT4-SCH. ∆↓ANGPTL4 for ∆↓MPI and ∆↓LV mass, meanwhile ∆↓TSH and ∆↓triglyceride for ∆↓ANGPTL3, ∆↑free T3 and ∆↓HOMA-IR for ∆↓ANGPTL4, and systolic blood pressure and waist circumference for ∆↓ANGPTL8 among LT4-OH.

Conclusion

Elevated ANGPTL3, 4 and 8 levels are differentially independent predictors of endothelial and cardiac function and are reduced with LT4 in SCH and OH.

Open access
Ursula M M Costa Division of Cardiology, Division of Endocrinology, Division of Endocrinology, Federal University of Sergipe, Aracaju, SE 49060-100, Brazil

Search for other papers by Ursula M M Costa in
Google Scholar
PubMed
Close
,
Carla R P Oliveira Division of Cardiology, Division of Endocrinology, Division of Endocrinology, Federal University of Sergipe, Aracaju, SE 49060-100, Brazil

Search for other papers by Carla R P Oliveira in
Google Scholar
PubMed
Close
,
Roberto Salvatori Division of Cardiology, Division of Endocrinology, Division of Endocrinology, Federal University of Sergipe, Aracaju, SE 49060-100, Brazil

Search for other papers by Roberto Salvatori in
Google Scholar
PubMed
Close
,
José A S Barreto-Filho Division of Cardiology, Division of Endocrinology, Division of Endocrinology, Federal University of Sergipe, Aracaju, SE 49060-100, Brazil

Search for other papers by José A S Barreto-Filho in
Google Scholar
PubMed
Close
,
Viviane C Campos Division of Cardiology, Division of Endocrinology, Division of Endocrinology, Federal University of Sergipe, Aracaju, SE 49060-100, Brazil

Search for other papers by Viviane C Campos in
Google Scholar
PubMed
Close
,
Francielle T Oliveira Division of Cardiology, Division of Endocrinology, Division of Endocrinology, Federal University of Sergipe, Aracaju, SE 49060-100, Brazil

Search for other papers by Francielle T Oliveira in
Google Scholar
PubMed
Close
,
Ivina E S Rocha Division of Cardiology, Division of Endocrinology, Division of Endocrinology, Federal University of Sergipe, Aracaju, SE 49060-100, Brazil

Search for other papers by Ivina E S Rocha in
Google Scholar
PubMed
Close
,
Joselina L M Oliveira Division of Cardiology, Division of Endocrinology, Division of Endocrinology, Federal University of Sergipe, Aracaju, SE 49060-100, Brazil

Search for other papers by Joselina L M Oliveira in
Google Scholar
PubMed
Close
,
Wersley A Silva Division of Cardiology, Division of Endocrinology, Division of Endocrinology, Federal University of Sergipe, Aracaju, SE 49060-100, Brazil

Search for other papers by Wersley A Silva in
Google Scholar
PubMed
Close
, and
Manuel H Aguiar-Oliveira Division of Cardiology, Division of Endocrinology, Division of Endocrinology, Federal University of Sergipe, Aracaju, SE 49060-100, Brazil

Search for other papers by Manuel H Aguiar-Oliveira in
Google Scholar
PubMed
Close

Abstract

GH and its principal mediator IGF1 have important effects on metabolic and cardiovascular (CV) status. While acquired GH deficiency (GHD) is often associated with increased CV risk, the consequences of congenital GHD are not known. We have described a large group of patients with isolated GHD (IGHD) due to a homozygous mutation (c.57+1G>A) in the GH releasing hormone receptor gene, and shown that adult GH-naïve individuals have no evidence of clinically evident premature atherosclerosis. To test whether subclinical atherosclerosis is anticipated in untreated IGHD, we performed a cross-sectional study of 25 IGHD and 27 adult controls matched for age and gender. A comprehensive clinical and biochemical panel and coronary artery calcium scores were evaluated by multi-detector tomography. Height, weight, IGF1, homeostasis model assessment of insulin resistance, creatinine and creatininekinase were lower in the IGHD group. Median and interquartile range of calcium scores distribution was similar in the two groups: IGHD 0(0) and control 0(4.9). The vast majority of the calcium scores (20 of 25 IGHD (80%) and 18 of 27 controls (66.6%)) were equal to zero (difference not significant). There was no difference in the calcium scores classification. None of IGHD subjects had minimal calcification, which were present in four controls. Three IGHD and four controls had mild calcification. There were two IGHD individuals with moderate calcification and one control with severe calcification. Our study provides evidence that subjects with congenital isolated lifetime and untreated severe IGHD do not have accelerated subclinical coronary atherosclerosis.

Open access