Search Results
Departament de Cirurgia, Universitat Autònoma de Barcelona, Barcelona, Spain
Search for other papers by Leyre Lorente-Poch in
Google Scholar
PubMed
Search for other papers by Sílvia Rifà-Terricabras in
Google Scholar
PubMed
Departament de Cirurgia, Universitat Autònoma de Barcelona, Barcelona, Spain
Search for other papers by Juan José Sancho in
Google Scholar
PubMed
Search for other papers by Danilo Torselli-Valladares in
Google Scholar
PubMed
Search for other papers by Sofia González-Ortiz in
Google Scholar
PubMed
Departament de Cirurgia, Universitat Autònoma de Barcelona, Barcelona, Spain
Search for other papers by Antonio Sitges-Serra in
Google Scholar
PubMed
Objective:
Permanent hypoparathyroidism is an uncommon disease resulting most frequently from neck surgery. It has been associated with visceral calcifications but few studies have specifically this in patients with post-surgical hypoparathyroidism. The aim of the present study was to assess the prevalence of basal ganglia and carotid artery calcifications in patients with long-term post-thyroidectomy hypoparathyroidism compared with a control population.
Design:
Case–control study.
Methods:
A cross-sectional review comparing 29 consecutive patients with permanent postoperative hypoparathyroidism followed-up in a tertiary reference unit for Endocrine Surgery with a contemporary control group of 501 patients who had an emergency brain CT scan. Clinical variables and prevalence of basal ganglia and carotid artery calcifications were recorded.
Results:
From a cohort of 46 patients diagnosed with permanent hypoparathyroidism, 29 were included in the study. The mean duration of disease was 9.2 ± 7 years. Age, diabetes, hypertension, smoking and dyslipidemia were similarly distributed in case and control groups. The prevalence of carotid artery and basal ganglia calcifications was 4 and 20 times more frequent in patients with permanent hypoparathyroidism, respectively. After propensity score matching of the 28 the female patients, 68 controls were matched for age and presence of cardiovascular factors. Cases showed a four-fold prevalence of basal ganglia calcifications, whereas that of carotid calcifications was similar between cases and controls.
Conclusion:
A high prevalence of basal ganglia calcifications was observed in patients with post-surgical permanent hypoparathyroidism. It remains unclear whether carotid artery calcification may also be increased.
Search for other papers by Yueyuan Yang in
Google Scholar
PubMed
Search for other papers by Tingting Yu in
Google Scholar
PubMed
Search for other papers by Zhili Niu in
Google Scholar
PubMed
Search for other papers by Ling Gao in
Google Scholar
PubMed
Objective
Uridine might be a common link between pathological pathways in diabetes and cardiovascular diseases. This study aimed to investigate the predictive value of plasma uridine for type 2 diabetes (T2D) and T2D with atherosclerosis.
Methods
Individuals with T2D and healthy controls (n = 218) were randomly enrolled in a cross-sectional study. Patients with T2D were divided into two groups based on carotid ultrasound: patients with carotid atherosclerosis (CA) (group DCA) and patients without CA (group D). Plasma uridine was determined using HPLC-MS/MS. Correlation and logistic regression analyses were used to analyze the results.
Results
Fasting and postprandial uridine were significantly increased in patients with T2D compared with healthy individuals. Logistic regression suggested that fasting and postprandial uridine were independent risk factors for T2D. The receiver operating characteristic (ROC) curve showed that fasting uridine had a predictive value on T2D (95% CI, 0.686–0.863, sensitivity 74.3%, specificity 71.8%). Fasting uridine was positively correlated with LDL-c, FBG, and PBG and negatively correlated with fasting C-peptide (CP-0h) and HOMA-IS. The change in postprandial uridine from fasting baseline (Δuridine) was smaller in T2D patients with CA compared with those without (0.80 (0.04–2.46) vs 2.01 (0.49–3.15), P = 0.010). Δuridine was also associated with T2D with CA and negatively correlated with BMI, CP-0h, and HOMA-IR.
Conclusion
Fasting uridine has potential as a predictor of diabetes. Δuridine is closely associated with carotid atherosclerosis in patients with T2D.
Search for other papers by Karoline Winckler in
Google Scholar
PubMed
Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology
Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology
Search for other papers by Lise Tarnow in
Google Scholar
PubMed
Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology
Search for other papers by Louise Lundby-Christensen in
Google Scholar
PubMed
Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology
Search for other papers by Thomas P Almdal in
Google Scholar
PubMed
Search for other papers by Niels Wiinberg in
Google Scholar
PubMed
Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology
Search for other papers by Pia Eiken in
Google Scholar
PubMed
Search for other papers by Trine W Boesgaard in
Google Scholar
PubMed
Search for other papers by the CIMT trial group in
Google Scholar
PubMed
Despite aggressive treatment of cardiovascular disease (CVD) risk factors individuals with type 2 diabetes (T2D) still have increased risk of cardiovascular morbidity and mortality. The primary aim of this study was to examine the cross-sectional association between total (25-hydroxy vitamin D (25(OH)D)) and risk of CVD in patients with T2D. Secondary objective was to examine the association between 25(OH)D and bone health. A Danish cohort of patients with T2D participating in a randomised clinical trial were analysed. In total 415 patients (68% men, age 60±9 years (mean±s.d.), duration of diabetes 12±6 years), including 294 patients (71%) treated with insulin. Carotid intima–media thickness (IMT) and arterial stiffness (carotid artery distensibility coefficient (DC) and Young's elastic modulus (YEM)) were measured by ultrasound scan as indicators of CVD. Bone health was assessed by bone mineral density and trabecular bone score measured by dual energy X-ray absorptiometry. In this cohort, 214 patients (52%) were vitamin D deficient (25(OH)D <50 nmol/l). Carotid IMT was 0.793±0.137 mm, DC was 0.0030±0.001 mmHg, YEM was 2354±1038 mmHg and 13 (3%) of the patients were diagnosed with osteoporosis. A 25(OH)D level was not associated with carotid IMT or arterial stiffness (P>0.3) or bone health (P>0.6) after adjustment for CVD risk factors. In conclusion, 25(OH)D status was not associated with carotid IMT, arterial stiffness or bone health in this cohort of patients with T2D. To explore these associations and the association with other biomarkers further, multicentre studies with large numbers of patients are required.
Search for other papers by Ashley N Reeb in
Google Scholar
PubMed
Search for other papers by Andrea Ziegler in
Google Scholar
PubMed
Search for other papers by Reigh-Yi Lin in
Google Scholar
PubMed
Follicular thyroid cancer (FTC) is the second most common type of thyroid cancers. In order to develop more effective personalized therapies, it is necessary to thoroughly evaluate patient-derived cell lines in in vivo preclinical models before using them to test new, targeted therapies. This study evaluates the tumorigenic and metastatic potential of a panel of three human FTC cell lines (WRO, FTC-238, and TT1609-CO2) with defined genetic mutations in two in vivo murine models: an orthotopic thyroid cancer model to study tumor progression and a tail vein injection model to study metastasis. All cell lines developed tumors in the orthotopic model, with take rates of 100%. Notably, WRO-derived tumors grew two to four times faster than tumors arising from the FTC-238 and TT2609-CO2 cell lines. These results mirrored those of a tail vein injection model for lung metastasis: one hundred percent of mice injected with WRO cells in the tail vein exhibited aggressive growth of bilateral lung metastases within 35 days. In contrast, tail vein injection of FTC-238 or TT2609-CO2 cells did not result in lung metastasis. Together, our work demonstrates that these human FTC cell lines display highly varied tumorigenic and metastatic potential in vivo with WRO being the most aggressive cell line in both orthotopic and lung metastasis models. This information will be valuable when selecting cell lines for preclinical drug testing.
Search for other papers by Caishun Zhang in
Google Scholar
PubMed
Search for other papers by Junhua Yuan in
Google Scholar
PubMed
Search for other papers by Qian Lin in
Google Scholar
PubMed
Search for other papers by Manwen Li in
Google Scholar
PubMed
Search for other papers by Liuxin Wang in
Google Scholar
PubMed
Search for other papers by Rui Wang in
Google Scholar
PubMed
Search for other papers by Xi Chen in
Google Scholar
PubMed
Search for other papers by Zhengyao Jiang in
Google Scholar
PubMed
Search for other papers by Kun Zhu in
Google Scholar
PubMed
Search for other papers by Xiaoli Chang in
Google Scholar
PubMed
Medical Microbiology Department, College of Basic Medicine, Qingdao University, Qingdao, China
Search for other papers by Bin Wang in
Google Scholar
PubMed
Physiology Department, College of Basic Medicine, Qingdao University, Qingdao, China
Search for other papers by Jing Dong in
Google Scholar
PubMed
Ghrelin plays a pivotal role in the regulation of food intake, body weight and energy metabolism. However, these effects of ghrelin in the lateral parabrachial nucleus (LPBN) are unexplored. C57BL/6J mice and GHSR−/− mice were implanted with cannula above the right LPBN and ghrelin was microinjected via the cannula to investigate effect of ghrelin in the LPBN. In vivo electrophysiological technique was used to record LPBN glucose-sensitive neurons to explore potential udnderlying mechanisms. Microinjection of ghrelin in LPBN significantly increased food intake in the first 3 h, while such effect was blocked by [D-Lys3]-GHRP-6 and abolished in GHSR−/− mice. LPBN ghrelin microinjection also significantly increased the firing rate of glucose-excited (GE) neurons and decreased the firing rate of glucose-inhibited (GI) neurons. Additionally, LPBN ghrelin microinjection also significantly increased c-fos expression. Chronic ghrelin administration in the LPBN resulted in significantly increased body weight gain. Meanwhile, no significant changes were observed in both mRNA and protein expression levels of UCP-1 in BAT. These results demonstrated that microinjection of ghrelin in LPBN could increase food intake through the interaction with growth hormone secretagogue receptor (GHSR) in C57BL/6J mice, and its chronic administration could also increase body weight gain. These effects might be associated with altered firing rate in the GE and GI neurons.
Search for other papers by Ermina Bach in
Google Scholar
PubMed
Search for other papers by Niels Møller in
Google Scholar
PubMed
Search for other papers by Jens Otto L Jørgensen in
Google Scholar
PubMed
Search for other papers by Mads Buhl in
Google Scholar
PubMed
Search for other papers by Holger Jon Møller in
Google Scholar
PubMed
Aims/hypothesis
The macrophage-specific glycoprotein sCD163 has emerged as a biomarker of low-grade inflammation in the metabolic syndrome and related disorders. High sCD163 levels are seen in acute sepsis as a result of direct lipopolysaccharide-mediated shedding of the protein from macrophage surfaces including Kupffer cells. The aim of this study was to investigate if low-grade endotoxinemia in human subjects results in increasing levels of sCD163 in a cortisol-dependent manner.
Methods
We studied eight male hypopituitary patients and eight age- and gender-matched healthy controls during intravenous low-dose LPS or placebo infusion administered continuously over 360 min. Furthermore, we studied eight healthy volunteers with bilateral femoral vein and artery catheters during a 360-min infusion with saline and low-dose LPS in each leg respectively.
Results:
Systemic low-grade endotoxinemia resulted in a gradual increase in sCD163 from 1.65 ± 0.51 mg/L (placebo) to 1.92 ± 0.46 mg/L (LPS) at 220 min, P = 0.005 and from 1.66 ± 0.42 mg/L (placebo) to 2.19 ± 0.56 mg/L (LPS) at 340 min, P = 0.006. A very similar response was observed in hypopituitary patients: from 1.59 ± 0.53 mg/L (placebo) to 1.83 ± 0.45 mg/L (LPS) at 220 min, P = 0.021 and from 1.52 ± 0.53 mg/L (placebo) to 2.03 ± 0.44 mg/L (LPS) at 340 min, P < 0.001. As opposed to systemic treatment, continuous femoral artery infusion did not result in increased sCD163.
Conclusion:
Systemic low-grade endotoxinemia resulted in increased sCD163 to levels seen in the metabolic syndrome in both controls and hypopituitary patients. This suggests a direct and cortisol-independent effect of LPS on the shedding of sCD163. We observed no effect of local endotoxinemia on levels of serum sCD163.
Search for other papers by Jiaxi Li in
Google Scholar
PubMed
Search for other papers by Pu Huang in
Google Scholar
PubMed
Search for other papers by Jing Xiong in
Google Scholar
PubMed
Search for other papers by Xinyue Liang in
Google Scholar
PubMed
Search for other papers by Mei Li in
Google Scholar
PubMed
Search for other papers by Hao Ke in
Google Scholar
PubMed
Search for other papers by Chunli Chen in
Google Scholar
PubMed
Search for other papers by Yang Han in
Google Scholar
PubMed
Search for other papers by Yanhong Huang in
Google Scholar
PubMed
Search for other papers by Yan Zhou in
Google Scholar
PubMed
Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, Hunan, China
Search for other papers by Ziqiang Luo in
Google Scholar
PubMed
Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, Hunan, China
Search for other papers by Dandan Feng in
Google Scholar
PubMed
Search for other papers by Chen Chen in
Google Scholar
PubMed
Objective
Ghrelin regulates body weight, food intake, and blood glucose. It also regulates insulin secretion from pancreatic islet cells. LEAP2 is a newly discovered endogenous ligand of the growth hormone secretagogue’s receptor (GHSR). It not only antagonizes the stimulation of GHSR by ghrelin but also inhibits the constitutive activation of GHSR as an inverse agonist. Type 2 diabetes (T2D) patients have endocrine disorders with metabolic imbalance. Plasma levels of ghrelin and LEAP2 may be changed in obese and T2D patients. However, there is no report yet on circulating LEAP2 levels or ghrelin/LEAP2 ratio in T2D patients. In this study, fasting serum ghrelin and LEAP2 levels in healthy adults and T2D patients were assessed to clarify the association of two hormones with different clinical anthropometric and metabolic parameters.
Design
A total of 16 females and 40 males, ages 23–68 years old normal (n = 27), and T2D patients (n = 29) were enrolled as a cross-sectional cohort.
Results
Serum levels of ghrelin were lower but serum levels of LEAP2 were higher in T2D patients. Ghrelin levels were positively correlated with fasting serum insulin levels and HOMA-IR in healthy adults. LEAP2 levels were positively correlated with age and hemoglobin A1c (HbA1c) in all tested samples. Ghrelin/LEAP2 ratio was negatively correlated with age, fasting blood glucose, and HbA1c.
Conclusions
This study demonstrated a decrease in serum ghrelin levels and an increase in serum LEAP2 levels in T2D patients. LEAP2 levels were positively correlated with HbA1c, suggesting that LEAP2 was associated with T2D development. The ghrelin/LEAP2 ratio was closely associated with glycemic control in T2D patients showing a negative correlation with glucose and HbA1c.
Search for other papers by Richard W Carroll in
Google Scholar
PubMed
Department of Medicine, University of Otago, Wellington, New Zealand
Search for other papers by Brian Corley in
Google Scholar
PubMed
Search for other papers by Joe Feltham in
Google Scholar
PubMed
Department of Medicine, University of Otago, Wellington, New Zealand
Search for other papers by Patricia Whitfield in
Google Scholar
PubMed
Search for other papers by William Park in
Google Scholar
PubMed
Search for other papers by Rowena Howard in
Google Scholar
PubMed
Search for other papers by Melissa Yssel in
Google Scholar
PubMed
Search for other papers by Ian Phillips in
Google Scholar
PubMed
Department of General Surgery, Wellington Regional Hospital, New Zealand
Search for other papers by Simon Harper in
Google Scholar
PubMed
Department of Medicine, Monash University, Clayton, Victoria, Australia
Search for other papers by Jun Yang in
Google Scholar
PubMed
Objective
The assessment of primary aldosteronism incorporates adrenal vein sampling (AVS) to lateralize aldosterone excess. Current adrenal vein sampling protocols rely on concurrent cortisol measurements to assess successful cannulation and lateralization and may be inaccurate in the setting of autonomous cortisol secretion. We aimed to compare the measurement of plasma cortisol and metanephrine concentrations to assess cannulation and lateralization during AVS.
Design
This is a diagnostic accuracy study in a tertiary referral endocrinology department.
Methods
Forty-one consecutive patients with confirmed primary aldosteronism undergoing AVS (49 procedures) were included. None had cortisol autonomy. The use of plasma metanephrine-based ratios were compared with standard cortisol-based ratios to assess cannulation and lateralization during ACTH-stimulated AVS.
Results
There was strong agreement between a cortisol selectivity index (SI) ≥5.0 and an adrenal vein (AV) to peripheral vein (PV) plasma metanephrine ratio (AVmet–PVmet) of ≥12.0 to indicate successful cannulation of the AV (n = 117, sensitivity 98%, specificity 89%, positive predictive value (PPV) 95%, negative predictive value (NPV) 94%). There was strong agreement between the standard cortisol-based SI and an AV plasma metanephrine-to-normetanephrine ratio (AVmet–AVnormet) of ≥2.0 to indicate successful cannulation (n = 117, sensitivity 93%, specificity 86%, PPV 94%, NPV 84%). There was strong agreement between the cortisol- or metanephrine-derived lateralization index (LI) > 4.0 for determining lateralization (n = 26, sensitivity 100%, specificity 94.1%, PPV 91.6%, NPV 100%).
Conclusions
Ratios incorporating plasma metanephrines provide comparable outcomes to standard cortisol-based measurements for interpretation of AVS. Further studies are required to assess the use of metanephrine-derived ratios in the context of confirmed cortisol autonomy.
Significance statement
Primary aldosteronism is a common cause of secondary hypertension, and adrenal vein sampling remains the gold standard test to assess lateralization. Cortisol-derived ratios to assess cannulation and lateralization may be affected by concurrent cortisol dysfunction, which is not uncommon in the context of primary aldosteronism. Our study showed comparable outcomes when using accepted cortisol-derived or metanephrine-derived ratios to determine cannulation and lateralization during adrenal vein sampling. Further research is required to validate these findings and to assess the use of metanephrine-derived ratios in the context of confirmed concurrent cortisol dysfunction.
Search for other papers by Sahar Hossam El Hini in
Google Scholar
PubMed
Search for other papers by Yehia Zakaria Mahmoud in
Google Scholar
PubMed
Search for other papers by Ahmed Abdelfadel Saedii in
Google Scholar
PubMed
Search for other papers by Sayed Shehata Mahmoud in
Google Scholar
PubMed
Search for other papers by Mohamed Ahmed Amin in
Google Scholar
PubMed
Search for other papers by Shereen Riad Mahmoud in
Google Scholar
PubMed
Search for other papers by Ragaa Abdelshaheed Matta in
Google Scholar
PubMed
Objective
Angiopoietin-like proteins (ANGPTL) 3, 4 and 8 are upcoming cardiovascular biomarkers. Experimental studies showed that thyroid hormones altered their levels. We assessed ANGPTL3, 4 and 8 as predictors of cardiovascular functions among naïve subclinical and naïve overt hypothyroidism (SCH and OH) and altered ANGPTL levels with levothyroxine replacement (LT4) and their association with improved cardiovascular risk factors and cardiovascular function.
Design and methods
The study was a prospective follow-up study that assessed ANGPTL3, 4 and 8 levels, vascular status (flow-mediated dilation% of brachial artery (FMD%), carotid intima-media thickness (CIMT), aortic stiffness index (ASI)), left ventricle (LV) parameters (ejection fraction (EF), myocardial performance index (MPI), and LV mass), well-known cardiovascular risk factors and homeostatic model for the assessment of insulin resistance, at two time points, that is, among naïve SCH, naïve OH, and healthy subjects groups; and at 6 months after achieving the euthyroid state with LT4 by calculating their increased or decreased delta changes (∆↑ or ∆↓) in longitudinal arm among LT4-hypothyroid groups.
Results
Significantly elevated levels of ANGPTL3, 4 and 8 among hypothyroid groups than the healthy subjects were reduced with LT4. Multivariate analysis revealed ANGPTLs as independent predictors of cardiovascular functions and the contributors for ANGPTL level included ANGPTL3 and 4 for impaired FMD%, and ANGPTL8 for LV mass among naïve SCH; ANGPTL3 for EF% and ANGPTL8 for CIMT in naïve OH; ∆↓ANGPTL3 for ∆↓ASI meanwhile ∆↑freeT4 for ∆↓ANGPTL3, ∆↓fasting glucose, ∆↓triglyceride, and ∆↓thyroid peroxidase antibody for ∆↓ANGPTL4 among LT4-SCH. ∆↓ANGPTL4 for ∆↓MPI and ∆↓LV mass, meanwhile ∆↓TSH and ∆↓triglyceride for ∆↓ANGPTL3, ∆↑free T3 and ∆↓HOMA-IR for ∆↓ANGPTL4, and systolic blood pressure and waist circumference for ∆↓ANGPTL8 among LT4-OH.
Conclusion
Elevated ANGPTL3, 4 and 8 levels are differentially independent predictors of endothelial and cardiac function and are reduced with LT4 in SCH and OH.
Search for other papers by Peiwen Zheng in
Google Scholar
PubMed
Search for other papers by Fan Wang in
Google Scholar
PubMed
Search for other papers by Hui Li in
Google Scholar
PubMed
Search for other papers by Hanlu Chen in
Google Scholar
PubMed
Search for other papers by Mengtong Li in
Google Scholar
PubMed
Search for other papers by Haozheng Ma in
Google Scholar
PubMed
Search for other papers by Jue He in
Google Scholar
PubMed
Search for other papers by Li Chen in
Google Scholar
PubMed
Search for other papers by Yanlong Liu in
Google Scholar
PubMed
Search for other papers by Haiyun Xu in
Google Scholar
PubMed
Objective
This study aimed to reveal associations between metabolic hormones in cerebral spinal fluid (CSF) and cigarette smoking-induced weight gain and to explore the underlying mechanism.
Methods
A total of 156 adult men were included, comprising active smokers and nonsmokers. In addition to demographic information and body mass index (BMI), plasma levels of ApoA1 and ApoB, high-density lipoprotein, low-density lipoprotein, cholesterol, triglyceride, alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transferase in the participants were measured. Moreover, the metabolic hormones adiponectin, fibroblast growth factor 21 (FGF21), ghrelin, leptin, and orexin A, as well as the trace elements iron and zinc in CSF, were assessed.
Results
Compared to nonsmokers, active smokers showed higher BMI, and elevated CSF levels of FGF21, Zn, and Fe, but decreased levels of metabolic hormones adiponectin, ghrelin, leptin, and orexin A. Negative correlations existed between CSF FGF21 and ghrelin, between CSF Zn and ghrelin, as well as between CSF Fe and orexin A in active smokers. Furthermore, elevated CSF FGF21 and Zn predicted ghrelin level decrease in the smokers.
Conclusion
These data relate smoking-induced weight gain to its neurotoxic effect on the neurons that synthesize metabolic hormones such as adiponectin, ghrelin, leptin, or orexin A in the brain, by disrupting mitochondrial function and causing oxidative stress in the neurons.