Search Results

You are looking at 1 - 10 of 187 items for

  • Abstract: Arteries x
  • Abstract: Atherosclerosis x
  • Abstract: Carotid x
  • Abstract: Circulation x
  • Abstract: Ghrelin x
  • Abstract: Veins x
  • Abstract: cardiac* x
  • Abstract: Cardio* x
Clear All Modify Search
Sahar Hossam El Hini Diabetes and Endocrinology Unit, Department of Internal Medicine, Faculty of Medicine, Minia University, Minia, Egypt

Search for other papers by Sahar Hossam El Hini in
Google Scholar
PubMed
Close
,
Yehia Zakaria Mahmoud Department of Internal Medicine, Faculty of Medicine, Minia University, Minia, Egypt

Search for other papers by Yehia Zakaria Mahmoud in
Google Scholar
PubMed
Close
,
Ahmed Abdelfadel Saedii Department of Clinical Pathology, Faculty of Medicine, Minia University, Minia, Egypt

Search for other papers by Ahmed Abdelfadel Saedii in
Google Scholar
PubMed
Close
,
Sayed Shehata Mahmoud Department of Cardiology, Faculty of Medicine, Minia University, Minia, Egypt

Search for other papers by Sayed Shehata Mahmoud in
Google Scholar
PubMed
Close
,
Mohamed Ahmed Amin Department of Radiology, Faculty of Medicine, Minia University, Minia, Egypt

Search for other papers by Mohamed Ahmed Amin in
Google Scholar
PubMed
Close
,
Shereen Riad Mahmoud Diabetes and Endocrinology Unit, Department of Internal Medicine, Faculty of Medicine, Minia University, Minia, Egypt

Search for other papers by Shereen Riad Mahmoud in
Google Scholar
PubMed
Close
, and
Ragaa Abdelshaheed Matta Diabetes and Endocrinology Unit, Department of Internal Medicine, Faculty of Medicine, Minia University, Minia, Egypt

Search for other papers by Ragaa Abdelshaheed Matta in
Google Scholar
PubMed
Close

Objective

Angiopoietin-like proteins (ANGPTL) 3, 4 and 8 are upcoming cardiovascular biomarkers. Experimental studies showed that thyroid hormones altered their levels. We assessed ANGPTL3, 4 and 8 as predictors of cardiovascular functions among naïve subclinical and naïve overt hypothyroidism (SCH and OH) and altered ANGPTL levels with levothyroxine replacement (LT4) and their association with improved cardiovascular risk factors and cardiovascular function.

Design and methods

The study was a prospective follow-up study that assessed ANGPTL3, 4 and 8 levels, vascular status (flow-mediated dilation% of brachial artery (FMD%), carotid intima-media thickness (CIMT), aortic stiffness index (ASI)), left ventricle (LV) parameters (ejection fraction (EF), myocardial performance index (MPI), and LV mass), well-known cardiovascular risk factors and homeostatic model for the assessment of insulin resistance, at two time points, that is, among naïve SCH, naïve OH, and healthy subjects groups; and at 6 months after achieving the euthyroid state with LT4 by calculating their increased or decreased delta changes (∆↑ or ∆↓) in longitudinal arm among LT4-hypothyroid groups.

Results

Significantly elevated levels of ANGPTL3, 4 and 8 among hypothyroid groups than the healthy subjects were reduced with LT4. Multivariate analysis revealed ANGPTLs as independent predictors of cardiovascular functions and the contributors for ANGPTL level included ANGPTL3 and 4 for impaired FMD%, and ANGPTL8 for LV mass among naïve SCH; ANGPTL3 for EF% and ANGPTL8 for CIMT in naïve OH; ∆↓ANGPTL3 for ∆↓ASI meanwhile ∆↑freeT4 for ∆↓ANGPTL3, ∆↓fasting glucose, ∆↓triglyceride, and ∆↓thyroid peroxidase antibody for ∆↓ANGPTL4 among LT4-SCH. ∆↓ANGPTL4 for ∆↓MPI and ∆↓LV mass, meanwhile ∆↓TSH and ∆↓triglyceride for ∆↓ANGPTL3, ∆↑free T3 and ∆↓HOMA-IR for ∆↓ANGPTL4, and systolic blood pressure and waist circumference for ∆↓ANGPTL8 among LT4-OH.

Conclusion

Elevated ANGPTL3, 4 and 8 levels are differentially independent predictors of endothelial and cardiac function and are reduced with LT4 in SCH and OH.

Open access
Leyre Lorente-Poch Endocrine Surgery Unit, Hospital del Mar, Barcelona, Spain
Departament de Cirurgia, Universitat Autònoma de Barcelona, Barcelona, Spain

Search for other papers by Leyre Lorente-Poch in
Google Scholar
PubMed
Close
,
Sílvia Rifà-Terricabras Departament de Cirurgia, Universitat Autònoma de Barcelona, Barcelona, Spain

Search for other papers by Sílvia Rifà-Terricabras in
Google Scholar
PubMed
Close
,
Juan José Sancho Endocrine Surgery Unit, Hospital del Mar, Barcelona, Spain
Departament de Cirurgia, Universitat Autònoma de Barcelona, Barcelona, Spain

Search for other papers by Juan José Sancho in
Google Scholar
PubMed
Close
,
Danilo Torselli-Valladares Endocrine Surgery Unit, Hospital del Mar, Barcelona, Spain

Search for other papers by Danilo Torselli-Valladares in
Google Scholar
PubMed
Close
,
Sofia González-Ortiz Department of Radiology, Hospital del Mar, Barcelona, Spain

Search for other papers by Sofia González-Ortiz in
Google Scholar
PubMed
Close
, and
Antonio Sitges-Serra Endocrine Surgery Unit, Hospital del Mar, Barcelona, Spain
Departament de Cirurgia, Universitat Autònoma de Barcelona, Barcelona, Spain

Search for other papers by Antonio Sitges-Serra in
Google Scholar
PubMed
Close

Objective:

Permanent hypoparathyroidism is an uncommon disease resulting most frequently from neck surgery. It has been associated with visceral calcifications but few studies have specifically this in patients with post-surgical hypoparathyroidism. The aim of the present study was to assess the prevalence of basal ganglia and carotid artery calcifications in patients with long-term post-thyroidectomy hypoparathyroidism compared with a control population.

Design:

Case–control study.

Methods:

A cross-sectional review comparing 29 consecutive patients with permanent postoperative hypoparathyroidism followed-up in a tertiary reference unit for Endocrine Surgery with a contemporary control group of 501 patients who had an emergency brain CT scan. Clinical variables and prevalence of basal ganglia and carotid artery calcifications were recorded.

Results:

From a cohort of 46 patients diagnosed with permanent hypoparathyroidism, 29 were included in the study. The mean duration of disease was 9.2 ± 7 years. Age, diabetes, hypertension, smoking and dyslipidemia were similarly distributed in case and control groups. The prevalence of carotid artery and basal ganglia calcifications was 4 and 20 times more frequent in patients with permanent hypoparathyroidism, respectively. After propensity score matching of the 28 the female patients, 68 controls were matched for age and presence of cardiovascular factors. Cases showed a four-fold prevalence of basal ganglia calcifications, whereas that of carotid calcifications was similar between cases and controls.

Conclusion:

A high prevalence of basal ganglia calcifications was observed in patients with post-surgical permanent hypoparathyroidism. It remains unclear whether carotid artery calcification may also be increased.

Open access
Yueyuan Yang Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China

Search for other papers by Yueyuan Yang in
Google Scholar
PubMed
Close
,
Tingting Yu Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China

Search for other papers by Tingting Yu in
Google Scholar
PubMed
Close
,
Zhili Niu Department of Clinical Laboratory, Institute of translational medicine, Renmin Hospital of Wuhan University, Wuhan, China

Search for other papers by Zhili Niu in
Google Scholar
PubMed
Close
, and
Ling Gao Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China

Search for other papers by Ling Gao in
Google Scholar
PubMed
Close

Objective

Uridine might be a common link between pathological pathways in diabetes and cardiovascular diseases. This study aimed to investigate the predictive value of plasma uridine for type 2 diabetes (T2D) and T2D with atherosclerosis.

Methods

Individuals with T2D and healthy controls (n = 218) were randomly enrolled in a cross-sectional study. Patients with T2D were divided into two groups based on carotid ultrasound: patients with carotid atherosclerosis (CA) (group DCA) and patients without CA (group D). Plasma uridine was determined using HPLC-MS/MS. Correlation and logistic regression analyses were used to analyze the results.

Results

Fasting and postprandial uridine were significantly increased in patients with T2D compared with healthy individuals. Logistic regression suggested that fasting and postprandial uridine were independent risk factors for T2D. The receiver operating characteristic (ROC) curve showed that fasting uridine had a predictive value on T2D (95% CI, 0.686–0.863, sensitivity 74.3%, specificity 71.8%). Fasting uridine was positively correlated with LDL-c, FBG, and PBG and negatively correlated with fasting C-peptide (CP-0h) and HOMA-IS. The change in postprandial uridine from fasting baseline (Δuridine) was smaller in T2D patients with CA compared with those without (0.80 (0.04–2.46) vs 2.01 (0.49–3.15), P = 0.010). Δuridine was also associated with T2D with CA and negatively correlated with BMI, CP-0h, and HOMA-IR.

Conclusion

Fasting uridine has potential as a predictor of diabetes. Δuridine is closely associated with carotid atherosclerosis in patients with T2D.

Open access
Karoline Winckler Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology

Search for other papers by Karoline Winckler in
Google Scholar
PubMed
Close
,
Lise Tarnow Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology
Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology
Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology

Search for other papers by Lise Tarnow in
Google Scholar
PubMed
Close
,
Louise Lundby-Christensen Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology
Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology

Search for other papers by Louise Lundby-Christensen in
Google Scholar
PubMed
Close
,
Thomas P Almdal Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology
Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology

Search for other papers by Thomas P Almdal in
Google Scholar
PubMed
Close
,
Niels Wiinberg Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology

Search for other papers by Niels Wiinberg in
Google Scholar
PubMed
Close
,
Pia Eiken Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology
Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology

Search for other papers by Pia Eiken in
Google Scholar
PubMed
Close
,
Trine W Boesgaard Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology

Search for other papers by Trine W Boesgaard in
Google Scholar
PubMed
Close
, and
the CIMT trial group
Search for other papers by the CIMT trial group in
Google Scholar
PubMed
Close

Despite aggressive treatment of cardiovascular disease (CVD) risk factors individuals with type 2 diabetes (T2D) still have increased risk of cardiovascular morbidity and mortality. The primary aim of this study was to examine the cross-sectional association between total (25-hydroxy vitamin D (25(OH)D)) and risk of CVD in patients with T2D. Secondary objective was to examine the association between 25(OH)D and bone health. A Danish cohort of patients with T2D participating in a randomised clinical trial were analysed. In total 415 patients (68% men, age 60±9 years (mean±s.d.), duration of diabetes 12±6 years), including 294 patients (71%) treated with insulin. Carotid intima–media thickness (IMT) and arterial stiffness (carotid artery distensibility coefficient (DC) and Young's elastic modulus (YEM)) were measured by ultrasound scan as indicators of CVD. Bone health was assessed by bone mineral density and trabecular bone score measured by dual energy X-ray absorptiometry. In this cohort, 214 patients (52%) were vitamin D deficient (25(OH)D <50 nmol/l). Carotid IMT was 0.793±0.137 mm, DC was 0.0030±0.001 mmHg, YEM was 2354±1038 mmHg and 13 (3%) of the patients were diagnosed with osteoporosis. A 25(OH)D level was not associated with carotid IMT or arterial stiffness (P>0.3) or bone health (P>0.6) after adjustment for CVD risk factors. In conclusion, 25(OH)D status was not associated with carotid IMT, arterial stiffness or bone health in this cohort of patients with T2D. To explore these associations and the association with other biomarkers further, multicentre studies with large numbers of patients are required.

Open access
Dandan Hu D Hu, Department of Endocrinology, Suzhou Municipal Hospital, Suzhou, China

Search for other papers by Dandan Hu in
Google Scholar
PubMed
Close
,
Xiangguo Cong X Cong, Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, suzhou, China

Search for other papers by Xiangguo Cong in
Google Scholar
PubMed
Close
,
Beibei Gao B Gao, Department of Endocrinology, Suzhou Municipal Hospital, Suzhou, China

Search for other papers by Beibei Gao in
Google Scholar
PubMed
Close
,
Ying Wu Y Wu, Department of Endocrinology, Suzhou Municipal Hospital, Suzhou, China

Search for other papers by Ying Wu in
Google Scholar
PubMed
Close
,
Qiong Shen Q Shen, Department of Endocrinology, Suzhou Municipal Hospital, Suzhou, China

Search for other papers by Qiong Shen in
Google Scholar
PubMed
Close
, and
Lei Chen L Chen, The Affiliated Suzhou Hospital of Nanjing Medical University, 苏州, 2100000, China

Search for other papers by Lei Chen in
Google Scholar
PubMed
Close

Background:

Evidence has demonstrated that visceral fat area (VFA) and subcutaneous fat area (SFA) had different influences on cardiovascular disease (CVD) risk in patients with type 2 diabetes mellitus (T2DM). We aimed to investigate the relationship between the visceral fat area (VFA) to subcutaneous fat area (SFA) ratio (V/S) and carotid atherosclerosis (CAS) in patients with T2DM.

Methods:

From January 2018 to May 2023, 1,838 patients with T2DM admitted to the National Metabolic Management Centre in our hospital were assigned to two groups based on comorbid CAS. Dual bioelectrical impedance analysis was used to measure the VAF and SFA, and the V/S was calculated. Patient characteristics and serum biochemical indices were compared between groups. Factors influencing comorbid CAS were determined, and correlations between V/S and other clinical indices were analyzed.

Results:

The group with comorbid CAS included 858 individuals and 980 without comorbid CAS. Those with comorbid CAS were older and had a longer disease duration, more significant systolic blood pressure, and greater V/S. The proportions of patients with comorbid hypertension increased significantly with the V/S ratio. The V/S ratio positively correlated with triglyceride (TG), low-density lipoprotein cholesterol levels, and waist circumference. According to binary logistic regression analysis, V/S was an independent risk factor for CAS.

Conclusion:

Elevated V/S is an independent risk factor for CAS in patients with T2DM.

Open access
Elin Kahlert Clinic of Gastroenterology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany

Search for other papers by Elin Kahlert in
Google Scholar
PubMed
Close
,
Martina Blaschke Clinic of Gastroenterology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
Endokrinologikum Goettingen, Goettingen, Germany

Search for other papers by Martina Blaschke in
Google Scholar
PubMed
Close
,
Knut Brockmann Interdisciplinary Pediatric Center for Children with Developmental Disabilities and Severe Chronic Disorders, University Medical Center Goettingen, Goettingen, Germany

Search for other papers by Knut Brockmann in
Google Scholar
PubMed
Close
,
Clemens Freiberg Interdisciplinary Pediatric Center for Children with Developmental Disabilities and Severe Chronic Disorders, University Medical Center Goettingen, Goettingen, Germany

Search for other papers by Clemens Freiberg in
Google Scholar
PubMed
Close
,
Onno E Janssen Endokrinologikum Hamburg, Hamburg, Germany

Search for other papers by Onno E Janssen in
Google Scholar
PubMed
Close
,
Nikolaus Stahnke Endokrinologikum Hamburg, Hamburg, Germany

Search for other papers by Nikolaus Stahnke in
Google Scholar
PubMed
Close
,
Domenika Strik Endokrinologikum Berlin, Berlin, Germany

Search for other papers by Domenika Strik in
Google Scholar
PubMed
Close
,
Martin Merkel Endokrinologikum Hannover, Hannover, Germany

Search for other papers by Martin Merkel in
Google Scholar
PubMed
Close
,
Alexander Mann Endokrinologikum Frankfurt, Frankfurt/Main, Germany

Search for other papers by Alexander Mann in
Google Scholar
PubMed
Close
,
Klaus-Peter Liesenkötter Endokrinologikum Berlin, Berlin, Germany

Search for other papers by Klaus-Peter Liesenkötter in
Google Scholar
PubMed
Close
, and
Heide Siggelkow Clinic of Gastroenterology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
Endokrinologikum Goettingen, Goettingen, Germany

Search for other papers by Heide Siggelkow in
Google Scholar
PubMed
Close

Objective

Turner syndrome (TS) is characterized by the complete or partial loss of the second sex chromosome and associated with a wide range of clinical manifestations. We aimed to assess the medical care of adult patients with TS in Germany.

Design

Retrospective multicenter observational study.

Methods

Data were collected from medical records of 258 women with TS treated between 2001 and 2017 in five non-university endocrinologic centers in Germany.

Results

Mean age was 29.8 ± 11.6 years, mean height 152 ± 7.7 cm, and mean BMI 26.6 ± 6.3 kg/m2. The karyotype was known in 50% of patients. Information on cholesterol state, liver enzymes, and thyroid status was available in 81–98% of women with TS; autoimmune thyroiditis was diagnosed in 37%. Echocardiography was performed in 42% and cardiac MRI in 8.5%, resulting in a diagnosis of cardiovascular disorder in 28%. Data on growth hormone therapy were available for 40 patients (15%) and data concerning menarche in 157 patients (61%).

Conclusion

In 258 women with TS, retrospective analysis of healthcare data indicated that medical management was focused on endocrine manifestations. Further significant clinical features including cardiovascular disease, renal malformation, liver involvement, autoimmune diseases, hearing loss, and osteoporosis were only marginally if at all considered. Based on this evaluation and in accordance with recent guidelines, we compiled a documentation form facilitating the transition from pediatric to adult care and further medical management of TS patients. The foundation of Turner Centers in March 2019 will improve the treatment of TS women in Germany.

Open access
Madalena von Hafe Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal

Search for other papers by Madalena von Hafe in
Google Scholar
PubMed
Close
,
João Sergio Neves Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar São João, Porto, Portugal

Search for other papers by João Sergio Neves in
Google Scholar
PubMed
Close
,
Catarina Vale Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal

Search for other papers by Catarina Vale in
Google Scholar
PubMed
Close
,
Marta Borges-Canha Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar São João, Porto, Portugal

Search for other papers by Marta Borges-Canha in
Google Scholar
PubMed
Close
, and
Adelino Leite-Moreira Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal

Search for other papers by Adelino Leite-Moreira in
Google Scholar
PubMed
Close

Thyroid hormones have a central role in cardiovascular homeostasis. In myocardium, these hormones stimulate both diastolic myocardial relaxation and systolic myocardial contraction, have a pro-angiogenic effect and an important role in extracellular matrix maintenance. Thyroid hormones modulate cardiac mitochondrial function. Dysfunction of thyroid axis impairs myocardial bioenergetic status. Both overt and subclinical hypothyroidism are associated with a higher incidence of coronary events and an increased risk of heart failure progression. Endothelial function is also impaired in hypothyroid state, with decreased nitric oxide-mediated vascular relaxation. In heart disease, particularly in ischemic heart disease, abnormalities in thyroid hormone levels are common and are an important factor to be considered. In fact, low thyroid hormone levels should be interpreted as a cardiovascular risk factor. Regarding ischemic heart disease, during the late post-myocardial infarction period, thyroid hormones modulate left ventricular structure, function and geometry. Dysfunction of thyroid axis might even be more prevalent in the referred condition since there is an upregulation of type 3 deiodinase in myocardium, producing a state of local cardiac hypothyroidism. In this focused review, we summarize the central pathophysiological and clinical links between altered thyroid function and ischemic heart disease. Finally, we highlight the potential benefits of thyroid hormone supplementation as a therapeutic target in ischemic heart disease.

Open access
Marianne Aa Grytaas Department of Clinical Science, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway

Search for other papers by Marianne Aa Grytaas in
Google Scholar
PubMed
Close
,
Kjersti Sellevåg Department of Heart Disease, Haukeland University Hospital, Bergen, Norway

Search for other papers by Kjersti Sellevåg in
Google Scholar
PubMed
Close
,
Hrafnkell B Thordarson Department of Clinical Science, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway

Search for other papers by Hrafnkell B Thordarson in
Google Scholar
PubMed
Close
,
Eystein S Husebye Department of Clinical Science, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway

Search for other papers by Eystein S Husebye in
Google Scholar
PubMed
Close
,
Kristian Løvås Department of Clinical Science, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway

Search for other papers by Kristian Løvås in
Google Scholar
PubMed
Close
, and
Terje H Larsen Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
Department of Biomedicine, University of Bergen, Bergen, Norway

Search for other papers by Terje H Larsen in
Google Scholar
PubMed
Close

Background

Primary aldosteronism (PA) is associated with increased cardiovascular morbidity, presumably due to left ventricular (LV) hypertrophy and fibrosis. However, the degree of fibrosis has not been extensively studied. Cardiac magnetic resonance imaging (CMR) contrast enhancement and novel sensitive T1 mapping to estimate increased extracellular volume (ECV) are available to measure the extent of fibrosis.

Objectives

To assess LV mass and fibrosis before and after treatment of PA using CMR with contrast enhancement and T1 mapping.

Methods

Fifteen patients with newly diagnosed PA (PA1) and 24 age- and sex-matched healthy subjects (HS) were studied by CMR with contrast enhancement. Repeated imaging with a new scanner with T1 mapping was performed in 14 of the PA1 and 20 of the HS median 18 months after specific PA treatment and in additional 16 newly diagnosed PA patients (PA2).

Results

PA1 had higher baseline LV mass index than HS (69 (53–91) vs 51 (40–72) g/m2; P < 0.001), which decreased significantly after treatment (58 (40–86) g/m2; P < 0.001 vs baseline), more with adrenalectomy (n = 8; −9 g/m2; P = 0.003) than with medical treatment (n = 6; −5 g/m2; P = 0.075). No baseline difference was found in contrast enhancement between PA1 and HS. T1 mapping showed no increase in ECV as a myocardial fibrosis marker in PA. Moreover, ECV was lower in the untreated PA2 than HS 10 min post-contrast, and in both PA groups compared with HS 20 min post-contrast.

Conclusion

Specific treatment rapidly reduced LV mass in PA. Increased myocardial fibrosis was not found and may not represent a common clinical problem.

Open access
Peter Wolf Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria

Search for other papers by Peter Wolf in
Google Scholar
PubMed
Close
,
Yvonne Winhofer Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria

Search for other papers by Yvonne Winhofer in
Google Scholar
PubMed
Close
,
Martin Krššák Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria

Search for other papers by Martin Krššák in
Google Scholar
PubMed
Close
, and
Michael Krebs Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria

Search for other papers by Michael Krebs in
Google Scholar
PubMed
Close

Cardiovascular disease is the leading cause of death in general population. Besides well-known risk factors such as hypertension, impaired glucose tolerance and dyslipidemia, growing evidence suggests that hormonal changes in various endocrine diseases also impact the cardiac morphology and function. Recent studies highlight the importance of ectopic intracellular myocardial and pericardial lipid deposition, since even slight changes of these fat depots are associated with alterations in cardiac performance. In this review, we overview the effects of hormones, including insulin, thyroid hormones, growth hormone and cortisol, on heart function, focusing on their impact on myocardial lipid metabolism, cardiac substrate utilization and ectopic lipid deposition, in order to highlight the important role of even subtle hormonal changes for heart function in various endocrine and metabolic diseases.

Open access
Frans H H Leenen Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada

Search for other papers by Frans H H Leenen in
Google Scholar
PubMed
Close
,
Mordecai P Blaustein Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA

Search for other papers by Mordecai P Blaustein in
Google Scholar
PubMed
Close
, and
John M Hamlyn Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA

Search for other papers by John M Hamlyn in
Google Scholar
PubMed
Close

In the brain, angiotensinergic pathways play a major role in chronic regulation of cardiovascular and electrolyte homeostasis. Increases in plasma angiotensin II (Ang II), aldosterone, [Na+] and cytokines can directly activate these pathways. Chronically, these stimuli also activate a slow neuromodulatory pathway involving local aldosterone, mineralocorticoid receptors (MRs), epithelial sodium channels and endogenous ouabain (EO). This pathway increases AT1R and NADPH oxidase subunits and maintains/further increases the activity of angiotensinergic pathways. These brain pathways not only increase the setpoint of sympathetic activity per se, but also enhance its effectiveness by increasing plasma EO and EO-dependent reprogramming of arterial and cardiac function. Blockade of any step in this slow pathway or of AT1R prevents Ang II-, aldosterone- or salt and renal injury-induced forms of hypertension. MR/AT1R activation in the CNS also contributes to the activation of sympathetic activity, the circulatory and cardiac RAAS and increase in circulating cytokines in HF post MI. Chronic central infusion of an aldosterone synthase inhibitor, MR blocker or AT1R blocker prevents a major part of the structural remodeling of the heart and the decrease in LV function post MI, indicating that MR activation in the CNS post MI depends on aldosterone, locally produced in the CNS. Thus, Ang II, aldosterone and EO are not simply circulating hormones that act on the CNS but rather they are also paracrine neurohormones, locally produced in the CNS, that exert powerful effects in key CNS pathways involved in the long-term control of sympathetic and neuro-endocrine function and cardiovascular homeostasis.

Open access