Search Results
Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Malin Nylander in
Google Scholar
PubMed
Department of Internal Medicine, Endocrine Unit, Herlev Gentofte Hospital, Herlev, Denmark
Search for other papers by Signe Frøssing in
Google Scholar
PubMed
Department of Internal Medicine, Endocrine Unit, Herlev Gentofte Hospital, Herlev, Denmark
Search for other papers by Caroline Kistorp in
Google Scholar
PubMed
Department of Internal Medicine, Endocrine Unit, Herlev Gentofte Hospital, Herlev, Denmark
Search for other papers by Jens Faber in
Google Scholar
PubMed
Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Sven O Skouby in
Google Scholar
PubMed
Polycystic ovary syndrome (PCOS) is associated with increased risk of venous thromboembolism (VTE) and cardiovascular disease (CVD) in later life. We aimed to study the effect of liraglutide intervention on markers of VTE and CVD risk, in PCOS. In a double-blind, placebo-controlled, randomized trial, 72 overweight and/or insulin-resistant women with PCOS were randomized, in a 2:1 ratio, to liraglutide or placebo 1.8 mg/day. Endpoints included between-group difference in change (baseline to follow-up) in plasminogen activator inhibitor-1 levels and in thrombin generation test parameters: endogenous thrombin potential, peak thrombin concentration, lag time and time to peak. Mean weight loss was 5.2 kg (95% CI 3.0–7.5 kg, P < 0.001) in the liraglutide group compared with placebo. We detected no effect on endogenous thrombin potential in either group. In the liraglutide group, peak thrombin concentration decreased by 16.71 nmol/L (95% CI 2.32–31.11, P < 0.05) and lag time and time to peak increased by 0.13 min (95% CI 0.01–0.25, P < 0.05) and 0.38 min (95% CI 0.09–0.68, P < 0.05), respectively, but there were no between-group differences. There was a trend toward 12% (95% CI 0–23, P = 0.05) decreased plasminogen activator inhibitor-1 in the liraglutide group, and there was a trend toward 16% (95% CI −4 to 32, P = 0.10) reduction, compared with placebo. In overweight women with PCOS, liraglutide intervention caused an approximate 5% weight loss. In addition, liraglutide affected thrombin generation, although not significantly differently from placebo. A concomitant trend toward improved fibrinolysis indicates a possible reduction of the baseline thrombogenic potential. The findings point toward beneficial effects of liraglutide on markers of VTE and CVD risk, which should be further pursued in larger studies.
Search for other papers by Ulla Schmidt in
Google Scholar
PubMed
Search for other papers by Birte Nygaard in
Google Scholar
PubMed
Search for other papers by Ebbe Winther Jensen in
Google Scholar
PubMed
Search for other papers by Jan Kvetny in
Google Scholar
PubMed
Search for other papers by Anne Jarløv in
Google Scholar
PubMed
Endocrine Unit, Department of Medicine, Endocrine Unit, Faculty of Health Sciences, Department of Medicine O, Herlev University Hospital, Herlev Ringvej, DK-2730 Herlev, Denmark
Search for other papers by Jens Faber in
Google Scholar
PubMed
Background
A recent randomized controlled trial suggests that hypothyroid subjects may find levothyroxine (l-T4) and levotriiodothyronine combination therapy to be superior to l-T4 monotherapy in terms of quality of life, suggesting that the brain registered increased T3 availability during the combination therapy.
Hypothesis
Peripheral tissue might also be stimulated during T4/T3 combination therapy compared with T4 monotherapy.
Methods
Serum levels of sex hormone-binding globulin (SHBG), pro-collagen-1-N-terminal peptide (PINP), and N-terminal pro-brain natriuretic peptide (NT-proBNP) (representing hepatocyte, osteoblast, and cardiomyocyte stimulation respectively) were measured in 26 hypothyroid subjects in a double-blind, randomized, crossover trial, which compared the replacement therapy with T4/T3 in combination (50 μg T4 was substituted with 20 μg T3) to T4 alone (once daily regimens). This was performed to obtain unaltered serum TSH levels during the trial and between the two treatment groups. Blood sampling was performed 24 h after the last intake of thyroid hormone medication.
Results
TSH remained unaltered between the groups ((median) 0.83 vs 1.18 mU/l in T4/T3 combination and T4 monotherapy respectively; P=0.534). SHBG increased from (median) 75 nmol/l at baseline to 83 nmol/l in the T4/T3 group (P=0.015) but remained unaltered in the T4 group (67 nmol/l); thus, it was higher in the T4/T3 vs T4 group (P=0.041). PINP levels were higher in the T4/T3 therapy (48 vs 40 μg/l (P<0.001)). NT-proBNP did not differ between the groups.
Conclusions
T4/T3 combination therapy in hypothyroidism seems to have more metabolic effects than the T4 monotherapy.
Search for other papers by Alice S Ryan in
Google Scholar
PubMed
Search for other papers by John C McLenithan in
Google Scholar
PubMed
Search for other papers by Gretchen M Zietowski in
Google Scholar
PubMed
The purpose of this study is to compare central obesity, insulin sensitivity, and cardiovascular disease risk factors between premenopausal and postmenopausal women with a history of gestational diabetes mellitus (GDM), controls, and women with type 2 diabetes (T2DM). Subjects were 73 overweight/obese and sedentary women who had a history of GDM (n=31) and were either premenopausal (n=11, 44±1 years, X±s.e.m.), postmenopausal (n=20, 58±1 years), or without a history of GDM as healthy postmenopausal controls (n=27, 57±1 years) or postmenopausal with T2DM (n=16, 59±1 years). The premenopausal GDM women had higher maximal oxygen uptake and lower visceral fat than the other three groups (P<0.05). BMI, %body fat, subcutaneous abdominal fat, and intramuscular fat did not differ significantly among the four groups. Glucose utilization (M, 3 h 40 mU/m2 per min hyperinsulinemic–euglycemic clamps) was 27% higher (P=0.05) in pre- than postmenopausal GDM and was not different between premenopausal GDM and postmenopausal controls. M was 28% lower (P=0.06) in postmenopausal GDM than controls and was not significantly different between postmenopausal GDM and T2DM groups. Thus, despite being younger and more physically fit, premenopausal women with prior GDM display similar central obesity, glucose, and metabolic profiles as postmenopausal controls. Postmenopausal women with prior GDM are more insulin resistant than controls of similar age, adiposity, and fitness levels and display comparable glucose utilization rates as similar as women with T2DM suggesting that a prior history of GDM may be an early manifestation of increased risk of later T2DM.
Search for other papers by Peter Wolf in
Google Scholar
PubMed
Search for other papers by Yvonne Winhofer in
Google Scholar
PubMed
High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
Search for other papers by Martin Krššák in
Google Scholar
PubMed
Search for other papers by Michael Krebs in
Google Scholar
PubMed
Cardiovascular disease is the leading cause of death in general population. Besides well-known risk factors such as hypertension, impaired glucose tolerance and dyslipidemia, growing evidence suggests that hormonal changes in various endocrine diseases also impact the cardiac morphology and function. Recent studies highlight the importance of ectopic intracellular myocardial and pericardial lipid deposition, since even slight changes of these fat depots are associated with alterations in cardiac performance. In this review, we overview the effects of hormones, including insulin, thyroid hormones, growth hormone and cortisol, on heart function, focusing on their impact on myocardial lipid metabolism, cardiac substrate utilization and ectopic lipid deposition, in order to highlight the important role of even subtle hormonal changes for heart function in various endocrine and metabolic diseases.
Search for other papers by Nafiye Helvaci in
Google Scholar
PubMed
Search for other papers by Erdem Karabulut in
Google Scholar
PubMed
Search for other papers by Ahmet Ugur Demir in
Google Scholar
PubMed
Search for other papers by Bulent Okan Yildiz in
Google Scholar
PubMed
Background and Objective
Polycystic ovary syndrome (PCOS) has been reported to be associated with the development of obstructive sleep apnea (OSA). The objective of this meta-analysis is to assess the relationship between PCOS and OSA.
Methods
A literature search was conducted to identify studies linking PCOS with the risk of OSA. Studies in which the presence of OSA was confirmed with overnight polysomnography were included. Random effects models were used to calculate pooled relative risks.
Results
Eight studies conducted in adults and five studies conducted in adolescents were identified. The pooled OSA prevalence was 0.22 (95% confidence interval (CI): 0.08–0.40) in PCOS patients. The pooled prevalence of OSA was higher in adults (0.32, 95% CI: 0.13–0.55) than adolescents (0.08, 95% CI: 0.00–0.30). Risk of OSA was significantly increased in adult patients with PCOS (odds ratio (OR) 9.74, 95% CI: 2.76–34.41). Risk of OSA was not significantly increased in adolescents (OR: 4.54, 95% CI:0.56–36.43).
Conclusions
These findings demonstrate a significant association between PCOS and OSA in adult patients. Considering the increased risk for long-term cardiometabolic disorders associated with both PCOS and OSA, it is important to diagnose and treat OSA in patients with PCOS.
Tropical Institute of Reproductive Medicine and Menopause, Cuiabá, Mato Grosso, Brazil
Search for other papers by Sebastião Freitas de Medeiros in
Google Scholar
PubMed
Search for other papers by Cinthia Marenza Ormond in
Google Scholar
PubMed
Search for other papers by Matheus Antônio Souto de Medeiros in
Google Scholar
PubMed
Tropical Institute of Reproductive Medicine and Menopause, Cuiabá, Mato Grosso, Brazil
Search for other papers by Nayara de Souza Santos in
Google Scholar
PubMed
Tropical Institute of Reproductive Medicine and Menopause, Cuiabá, Mato Grosso, Brazil
Search for other papers by Camila Regis Banhara in
Google Scholar
PubMed
Search for other papers by Márcia Marly Winck Yamamoto in
Google Scholar
PubMed
Objective
To examine the anthropometric, and metabolic connections of 17-hydroxypregnenolone in the normo- and hyperandrogenemic polycystic ovary syndrome phenotypes.
Materials and methods
This cohort study was conducted at the Julio Muller University Hospital, Cuiabá, Brazil, between January 2014 and July 2016, and 91 normal cycling healthy women, 46 normoandrogenemic and 147 hyperandrogenemic, patients with polycystic ovary syndrome (PCOS) were enrolled according to the Rotterdam criteria. Several anthropometric, biochemical and hormonal parameters were properly verified and correlated with 17-hydroxypregnenolone (17-OHPE) concentrations.
Results
17-OHPE was higher in hyperandrogenemic PCOS than in normoandrogenemic PCOS and in control groups (P = 0.032 and P < 0.001, respectively). In healthy controls, 17-OHPE was positively associated with glucose, free estrogen index, DHEAS and negatively associated with compounds S. In normoandrogenemic PCOS patients, 17-OHPE presented positive correlations with VAI, LAP, cortisol, insulin and HOMA-IR. In the hyperandrogenemic group, 17-OHPE presented significant negative correlations with most anthropometric parameters, HOMA-IR, HOMA %B, estradiol, free estrogen index (FEI), C-peptide, and TG levels and positive correlations with HOMA-S and high-density lipoprotein cholesterol (HDL-C), sex-hormone binding globulin (SHBG), androstenedione (A4) and dehydroepiandrosterone (DHEA). Regarding hyperandrogenemic PCOS, and using a stepwise multiple regression, only HOMA-S and WHR were retained in the model (R 2 = 0.294, P < 0.001).
Conclusion
17-OHPE exhibited different relationships with anthropometric, and biochemical parameters in PCOS patients, depending on the androgen levels. In PCOS subjects with high androgen concentrations, 17-OHPE was negatively associated with most anthropometric parameters, particularly with those used as markers of adipose tissue dysfunction and frequently employed as predictors of cardiovascular disease risk; otherwise, 17-OHPE was positively associated with HDL-C and HOMA-S in this patients. Future studies are required to evaluate the clinical implications of these novel findings.
Search for other papers by Frans H H Leenen in
Google Scholar
PubMed
Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
Search for other papers by Mordecai P Blaustein in
Google Scholar
PubMed
Search for other papers by John M Hamlyn in
Google Scholar
PubMed
In the brain, angiotensinergic pathways play a major role in chronic regulation of cardiovascular and electrolyte homeostasis. Increases in plasma angiotensin II (Ang II), aldosterone, [Na+] and cytokines can directly activate these pathways. Chronically, these stimuli also activate a slow neuromodulatory pathway involving local aldosterone, mineralocorticoid receptors (MRs), epithelial sodium channels and endogenous ouabain (EO). This pathway increases AT1R and NADPH oxidase subunits and maintains/further increases the activity of angiotensinergic pathways. These brain pathways not only increase the setpoint of sympathetic activity per se, but also enhance its effectiveness by increasing plasma EO and EO-dependent reprogramming of arterial and cardiac function. Blockade of any step in this slow pathway or of AT1R prevents Ang II-, aldosterone- or salt and renal injury-induced forms of hypertension. MR/AT1R activation in the CNS also contributes to the activation of sympathetic activity, the circulatory and cardiac RAAS and increase in circulating cytokines in HF post MI. Chronic central infusion of an aldosterone synthase inhibitor, MR blocker or AT1R blocker prevents a major part of the structural remodeling of the heart and the decrease in LV function post MI, indicating that MR activation in the CNS post MI depends on aldosterone, locally produced in the CNS. Thus, Ang II, aldosterone and EO are not simply circulating hormones that act on the CNS but rather they are also paracrine neurohormones, locally produced in the CNS, that exert powerful effects in key CNS pathways involved in the long-term control of sympathetic and neuro-endocrine function and cardiovascular homeostasis.
Search for other papers by Hugo R Ramos in
Google Scholar
PubMed
Department of Internal Medicine, Section of Metabolic Vascular Medicine, Division of Diabetes and Nutritional Sciences, Cardiovascular Endocrinology Laboratory, Faculty of Medicine, Hospital de Urgencias, National University of Córdoba, X5000 Córdoba, Argentina
Search for other papers by Andreas L Birkenfeld in
Google Scholar
PubMed
Search for other papers by Adolfo J de Bold in
Google Scholar
PubMed
Since their discovery in 1981, the cardiac natriuretic peptides (cNP) atrial natriuretic peptide (also referred to as atrial natriuretic factor) and brain natriuretic peptide have been well characterised in terms of their renal and cardiovascular actions. In addition, it has been shown that cNP plasma levels are strong predictors of cardiovascular events and mortality in populations with no apparent heart disease as well as in patients with established cardiac pathology. cNP secretion from the heart is increased by humoral and mechanical stimuli. The clinical significance of cNP plasma levels has been shown to differ in obese and non-obese subjects. Recent lines of evidence suggest important metabolic effects of the cNP system, which has been shown to activate lipolysis, enhance lipid oxidation and mitochondrial respiration. Clinically, these properties lead to browning of white adipose tissue and to increased muscular oxidative capacity. In human association studies in patients without heart disease higher cNP concentrations were observed in lean, insulin-sensitive subjects. Highly elevated cNP levels are generally observed in patients with systolic heart failure or high blood pressure, while obese and type-2 diabetics display reduced cNP levels. Together, these observations suggest that the cNP system plays a role in the pathophysiology of metabolic vascular disease. Understanding this role should help define novel principles in the treatment of cardiometabolic disease.
Search for other papers by Aldo Bonaventura in
Google Scholar
PubMed
Department of Internal Medicine, Division of Cardiology, Division of Laboratory Medicine, First Clinic of Internal Medicine, University of Genoa School of Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino – IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
Department of Internal Medicine, Division of Cardiology, Division of Laboratory Medicine, First Clinic of Internal Medicine, University of Genoa School of Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino – IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
Search for other papers by Fabrizio Montecucco in
Google Scholar
PubMed
Search for other papers by Franco Dallegri in
Google Scholar
PubMed
The prevalence of type 2 diabetes mellitus (T2DM) is increasing all over the world. Targeting good glycemic control is fundamental to avoid the complications of diabetes linked to hyperglycemia. This narrative review is based on material searched for and obtained via PubMed up to April 2015. The search terms we used were: ‘hypoglycemia, diabetes, complications’ in combination with ‘iatrogenic, treatment, symptoms.’ Serious complications might occur from an inappropriate treatment of hyperglycemia. The most frequent complication is iatrogenic hypoglycemia that is often associated with autonomic and neuroglycopenic symptoms. Furthermore, hypoglycemia causes acute cardiovascular effects, which may explain some of the typical symptoms: ischemia, QT prolongation, and arrhythmia. With regards to the latter, the night represents a dangerous period because of the major increase in arrhythmias and the prolonged period of hypoglycemia; indeed, sleep has been shown to blunt the sympatho-adrenal response to hypoglycemia. Two main strategies have been implemented to reduce these effects: monitoring blood glucose values and individualized HbA1c goals. Several drugs for the treatment of T2DM are currently available and different combinations have been recommended to achieve individualized glycemic targets, considering age, comorbidities, disease duration, and life expectancy. In conclusion, according to international guidelines, hypoglycemia-avoiding therapy must reach an individualized glycemic goal, which is the lowest HbA1c not causing severe hypoglycemia and preserving awareness of hypoglycemia.
Search for other papers by Julie Smith in
Google Scholar
PubMed
Search for other papers by Jan Fahrenkrug in
Google Scholar
PubMed
Search for other papers by Henrik L Jørgensen in
Google Scholar
PubMed
Department of Clinical Biochemistry (KB3014), Department of Technology, Department of Clinical Biochemistry, Department of Biomedical Sciences, Department of Clinical Medicine, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark
Search for other papers by Christina Christoffersen in
Google Scholar
PubMed
Department of Clinical Biochemistry (KB3014), Department of Technology, Department of Clinical Biochemistry, Department of Biomedical Sciences, Department of Clinical Medicine, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark
Search for other papers by Jens P Goetze in
Google Scholar
PubMed
Disruption of the circadian rhythm can lead to obesity and cardiovascular disease. In white adipose tissue, activation of the natriuretic peptide receptors (NPRs) stimulates lipolysis. We have previously shown that natriuretic peptides are expressed in a circadian manner in the heart, but the temporal expression profile of their cognate receptors has not been examined in white adipose tissue. We therefore collected peri-renal white adipose tissue and serum from WT mice. Tissue mRNA contents of NPRs – NPR-A and NPR-C, the clock genes Per1 and Bmal1, and transcripts involved in lipid metabolism were quantified at 4-h intervals: in the diurnal study, mice were exposed to a period of 12 h light followed by 12 h darkness (n=52). In the circadian study, mice were kept in darkness for 24 h (n=47). Concomitant serum concentrations of free fatty acids, glycerol, triglycerides (TGs), and insulin were measured. Per1 and Bmal1 mRNA contents showed reciprocal circadian profiles (P<0.0001). NPR-A mRNA contents followed a temporal pattern (P=0.01), peaking in the dark (active) period. In contrast, NPR-C mRNA was expressed in an antiphase manner with nadir in the active period (P=0.007). TG concentrations in serum peaked in the active dark period (P=0.003). In conclusion, NPR-A and NPR-C gene expression is associated with the expression of clock genes in white adipose tissue. The reciprocal expression may thus contribute to regulate lipolysis and energy homeostasis in a diurnal manner.