Search Results
Search for other papers by Barbara J Boucher in
Google Scholar
PubMed
High vitamin D deficiency rates, with rickets and osteomalacia, have been common in South Asians (SAs) arriving in Britain since the 1950s with preventable infant deaths from hypocalcaemic status-epilepticus and cardiomyopathy. Vitamin D deficiency increases common SA disorders (type 2 diabetes and cardiovascular disease), recent trials and non-linear Mendelian randomisation studies having shown deficiency to be causal for both disorders. Ethnic minority, obesity, diabetes and social deprivation are recognised COVID-19 risk factors, but vitamin D deficiency is not, despite convincing mechanistic evidence of it. Adjusting analyses for obesity/ethnicity abolishes vitamin D deficiency in COVID-19 risk prediction, but both factors lower serum 25(OH)D specifically. Social deprivation inadequately explains increased ethnic minority COVID-19 risks. SA vitamin D deficiency remains uncorrected after 70 years, official bodies using ‘education’, ‘assimilation’ and ‘diet’ as ‘proxies’ for ethnic differences and increasing pressures to assimilate. Meanwhile, English rickets was abolished from ~1940 by free ‘welfare foods’ (meat, milk, eggs, cod liver oil), for all pregnant/nursing mothers and young children (<5 years old). Cod liver oil was withdrawn from antenatal clinics in 1994 (for excessive vitamin A teratogenicity), without alternative provision. The take-up of the 2006 ‘Healthy-Start’ scheme of food-vouchers for low-income families with young children (<3 years old) has been poor, being inaccessible and poorly publicised. COVID-19 pandemic advice for UK adults in ‘lockdown’ was ‘400 IU vitamin D/day’, inadequate for correcting the deficiency seen winter/summer at 17.5%/5.9% in White, 38.5%/30% in Black and 57.2%/50.8% in SA people in representative UK Biobank subjects when recruited ~14 years ago and remaining similar in 2018. Vitamin D inadequacy worsens many non-skeletal health risks. Not providing vitamin D for preventing SA rickets and osteomalacia continues to be unacceptable, as deficiency-related health risks increase ethnic health disparities, while abolishing vitamin D deficiency would be easier and more cost-effective than correcting any other factor worsening ethnic minority health in Britain.
Search for other papers by Paola Parra Ramírez in
Google Scholar
PubMed
Search for other papers by Patricia Martín Rojas-Marcos in
Google Scholar
PubMed
Medicine Department, Basque Country University, Bilbao, Spain
Search for other papers by Miguel Paja Fano in
Google Scholar
PubMed
Search for other papers by Marga González Boillos in
Google Scholar
PubMed
Instituto de Investigación Biomédica Ramón y Cajal (IRYCIS), Madrid, Spain
Search for other papers by Eider Pascual-Corrales in
Google Scholar
PubMed
Search for other papers by Ana García-Cano in
Google Scholar
PubMed
Search for other papers by Jorge Gabriel Ruiz-Sanchez in
Google Scholar
PubMed
Search for other papers by Almudena Vicente in
Google Scholar
PubMed
Search for other papers by Emilia Gómez-Hoyos in
Google Scholar
PubMed
Search for other papers by Rui Ferreira in
Google Scholar
PubMed
Search for other papers by Iñigo García Sanz in
Google Scholar
PubMed
Search for other papers by Mònica Recasens in
Google Scholar
PubMed
Search for other papers by Begoña Pla Peris in
Google Scholar
PubMed
Search for other papers by Rebeca Barahona San Millan in
Google Scholar
PubMed
CIBEROBN, Madrid, Spain
Search for other papers by María José Picón César in
Google Scholar
PubMed
Search for other papers by Patricia Díaz Guardiola in
Google Scholar
PubMed
Search for other papers by Juan Jesús García González in
Google Scholar
PubMed
Search for other papers by Carolina Perdomo in
Google Scholar
PubMed
Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
Search for other papers by Laura Manjón in
Google Scholar
PubMed
Search for other papers by Rogelio García-Centeno in
Google Scholar
PubMed
Search for other papers by Juan Carlos Percovich in
Google Scholar
PubMed
Search for other papers by Ángel Rebollo Román in
Google Scholar
PubMed
Search for other papers by Paola Gracia Gimeno in
Google Scholar
PubMed
Search for other papers by Cristina Robles Lázaro in
Google Scholar
PubMed
Search for other papers by Manuel Morales in
Google Scholar
PubMed
Search for other papers by Felicia Hanzu in
Google Scholar
PubMed
Instituto de Investigación Biomédica Ramón y Cajal (IRYCIS), Madrid, Spain
University of Alcalá, Madrid, Spain
Search for other papers by Marta Araujo-Castro in
Google Scholar
PubMed
Objective
To compare the presentation and evolution of primary aldosteronism (PA) in the elderly (≥65 years) and young patients (<65 years).
Methods
A retrospective multicenter study was performed in 20 Spanish hospitals of PA patients in follow-up between 2018 and 2021.
Results
Three hundred fifty-two patients with PA <65 years and 88 patients ≥65 years were included. Older PA patients had a two-fold higher prevalence of type 2 diabetes, dyslipidemia, and cerebrovascular disease, but these differences disappeared after adjusting for hypertension duration. At diagnosis, diastolic blood pressure was lower than in young patients (83.3 ± 11.54 vs 91.6 ± 14.46 mmHg, P < 0.0001). No differences in the rate of overall correct cannulation (56.5% vs 42.3%, P = 0.206) or the diagnosis of unilaterality (76.9% vs 62.5%, P = 0.325) in the adrenal venous sampling (AVS) was observed between the elderly and young groups. However, there was a lower proportion of PA patients who underwent adrenalectomy in the elderly group than in the younger group (22.7% (n = 20) vs 37.5% (n = 132), P = 0.009). Nevertheless, no differences in the rate of postsurgical biochemical (100% (n = 14) vs 92.8% (n = 90), P = 0.299) and hypertension cure (38.6% (n = 51) vs 25.0% (n = 5), P = 0.239) were observed between both groups.
Conclusion
Older patients with PA have a worse cardiometabolic profile than young patients with PA that it is related to a longer duration of hypertension. However, the results of the AVS, and adrenalectomy are similar in both groups. Therefore, the management of elderly patients with PA should be based not only on age, but rather on the overall medical, physical, social, and mental characteristics of the patients.
University of Alcalá, Madrid, Spain
Search for other papers by Marta Araujo-Castro in
Google Scholar
PubMed
Search for other papers by Miguel Paja Fano in
Google Scholar
PubMed
Search for other papers by Begoña Pla Peris in
Google Scholar
PubMed
Search for other papers by Marga González Boillos in
Google Scholar
PubMed
Search for other papers by Eider Pascual-Corrales in
Google Scholar
PubMed
Search for other papers by Ana María García-Cano in
Google Scholar
PubMed
Search for other papers by Paola Parra Ramírez in
Google Scholar
PubMed
Search for other papers by Patricia Martín Rojas-Marcos in
Google Scholar
PubMed
Search for other papers by Jorge Gabriel Ruiz-Sanchez in
Google Scholar
PubMed
Search for other papers by Almudena Vicente in
Google Scholar
PubMed
Search for other papers by Emilia Gómez-Hoyos in
Google Scholar
PubMed
Search for other papers by Rui Ferreira in
Google Scholar
PubMed
Search for other papers by Iñigo García Sanz in
Google Scholar
PubMed
Search for other papers by Mónica Recasens in
Google Scholar
PubMed
Search for other papers by Rebeca Barahona San Millan in
Google Scholar
PubMed
Search for other papers by María José Picón César in
Google Scholar
PubMed
Search for other papers by Patricia Díaz Guardiola in
Google Scholar
PubMed
Search for other papers by Carolina Perdomo in
Google Scholar
PubMed
Search for other papers by Laura Manjón in
Google Scholar
PubMed
Search for other papers by Rogelio García-Centeno in
Google Scholar
PubMed
Search for other papers by Juan Carlos Percovich in
Google Scholar
PubMed
Search for other papers by Ángel Rebollo Román in
Google Scholar
PubMed
Search for other papers by Paola Gracia Gimeno in
Google Scholar
PubMed
Search for other papers by Cristina Robles Lázaro in
Google Scholar
PubMed
Search for other papers by Manuel Morales in
Google Scholar
PubMed
Search for other papers by María Calatayud in
Google Scholar
PubMed
Search for other papers by Simone Andree Furio Collao in
Google Scholar
PubMed
Search for other papers by Diego Meneses in
Google Scholar
PubMed
Search for other papers by Miguel Antonio Sampedro Nuñez in
Google Scholar
PubMed
Search for other papers by Verónica Escudero Quesada in
Google Scholar
PubMed
Search for other papers by Elena Mena Ribas in
Google Scholar
PubMed
Search for other papers by Alicia Sanmartín Sánchez in
Google Scholar
PubMed
Search for other papers by Cesar Gonzalvo Diaz in
Google Scholar
PubMed
Search for other papers by Cristina Lamas in
Google Scholar
PubMed
Search for other papers by Raquel Guerrero-Vázquez in
Google Scholar
PubMed
Search for other papers by María del Castillo Tous in
Google Scholar
PubMed
Search for other papers by Joaquín Serrano in
Google Scholar
PubMed
Search for other papers by Theodora Michalopoulou in
Google Scholar
PubMed
Search for other papers by Eva María Moya Mateo in
Google Scholar
PubMed
Search for other papers by Felicia Hanzu in
Google Scholar
PubMed
Purpose
The aim of this study was to evaluate the prevalence of autonomous cortisol secretion (ACS) in patients with primary aldosteronism (PA) and its implications on cardiometabolic and surgical outcomes.
Methods
This is a retrospective multicenter study of PA patients who underwent 1 mg dexamethasone-suppression test (DST) during diagnostic workup in 21 Spanish tertiary hospitals. ACS was defined as a cortisol post-DST >1.8 µg/dL (confirmed ACS if >5 µg/dL and possible ACS if 1.8–5 µg/dL) in the absence of specific clinical features of hypercortisolism. The cardiometabolic profile was compared with a control group with ACS without PA (ACS group) matched for age and DST levels.
Results
The prevalence of ACS in the global cohort of patients with PA (n = 176) was 29% (ACS–PA; n = 51). Ten patients had confirmed ACS and 41 possible ACS. The cardiometabolic profile of ACS–PA and PA-only patients was similar, except for older age and larger tumor size of the adrenal lesion in the ACS–PA group. When comparing the ACS–PA group (n = 51) and the ACS group (n = 78), the prevalence of hypertension (OR 7.7 (2.64–22.32)) and cardiovascular events (OR 5.0 (2.29–11.07)) was higher in ACS–PA patients than in ACS patients. The coexistence of ACS in patients with PA did not affect the surgical outcomes, the proportion of biochemical cure and clinical cure being similar between ACS–PA and PA-only groups.
Conclusion
Co-secretion of cortisol and aldosterone affects almost one-third of patients with PA. Its occurrence is more frequent in patients with larger tumors and advanced age. However, the cardiometabolic and surgical outcomes of patients with ACS–PA and PA-only are similar.
Search for other papers by Philippe Jean-Luc Gradidge in
Google Scholar
PubMed
Search for other papers by Nicole G Jaff in
Google Scholar
PubMed
Global Health Research Institute, School of Human Development and Health, University of Southampton, Southampton, UK
Search for other papers by Shane A Norris in
Google Scholar
PubMed
Search for other papers by Marketa Toman in
Google Scholar
PubMed
Search for other papers by Nigel J Crowther in
Google Scholar
PubMed
Gluteofemoral fat correlates negatively with a number of cardiometabolic disease risk factors, but the mechanisms involved in these relationships are unknown. The aim of this study was to test the hypothesis that gluteofemoral fat attenuates the risk of cardiometabolic disease by increasing blood adiponectin levels. This was a cross-sectional study in which arm, leg, gluteofemoral, abdominal s.c. and visceral fat levels were measured by dual-energy X-ray absorptiometry in 648 African females. Fasting serum adiponectin, lipid, insulin and plasma glucose levels and blood pressure were measured. Relationships between variables were analysed using multivariable linear regression and structural equation modelling. Adiponectin correlated positively (β = 0.45, P < 0.0001) with gluteofemoral fat in a multivariable regression model that included age, height, and arm, s.c. and visceral fat levels. In further regression models, there was a negative correlation of gluteofemoral fat with fasting glucose (β = −0.28; P < 0.0001) and triglyceride levels (β = −0.29; P < 0.0001) and insulin resistance (HOMA; β = −0.26; P < 0.0001). Structural equation modelling demonstrated that adiponectin mediated 20.7% (P < 0.01) of the association of gluteofemoral fat with insulin resistance and 16.1% (P < 0.01) of the association with triglyceride levels but only 6.67% (P = 0.31) of the association with glucose levels. These results demonstrate that gluteofemoral and leg fat are positively associated with adiponectin levels and that the negative association of lower body fat with insulin resistance and triglyceride levels may partially be mediated by this adipokine. Further studies are required to determine other factors that mediate the effect of lower body fat on cardiometabolic disease risk factors.
Search for other papers by Małgorzata Więcek in
Google Scholar
PubMed
Search for other papers by Jakub Gawlik in
Google Scholar
PubMed
Search for other papers by Zuzanna Nowak in
Google Scholar
PubMed
Search for other papers by Aneta Gawlik in
Google Scholar
PubMed
Loss of fertility is one of the most important concerns facing Turner syndrome (TS) patients as they transition into adult health care. Due to the limited and rapidly decreasing ovarian reserve, many TS patients require fertility preservation (FP) techniques to preserve their reproductive potential until they are ready to pursue procreation. One has to also remember about the additional risks connected with pregnancy in TS patients. In order to determine the optimal time for introducing FP techniques and decrease the chance of an unnecessary intervention, markers and procedures assessing ovarian reserve have been developed. The exposure to potential cardiovascular complications should be determined before FP to avoid unnecessary procedures in patients with potential contraindications to pregnancy. The aim of the present review is to answer the following three questions important for successful preservation of fertility and safe pregnancy in TS: which markers of ovarian reserve should be used as selection criteria for FP? Which methods of FP are the safest and most effective? Are there any cardiovascular contraindications to FP? For each of those questions, separate literature searches have been conducted. A total of 86 articles have been included in this review: 34 for the first question, 35 for the second, and 17 for the third. Ovarian reserve markers and cardiovascular contraindications to pregnancy should be established before FP; hoverer, there are no unambiguous indicators as to which patients should be disqualified from the FP and more evidence is needed in this subject.
Search for other papers by Herjan J T Coelingh Bennink in
Google Scholar
PubMed
Search for other papers by Jan Krijgh in
Google Scholar
PubMed
Search for other papers by Jan F M Egberts in
Google Scholar
PubMed
Search for other papers by Maria Slootweg in
Google Scholar
PubMed
Search for other papers by Harm H E van Melick in
Google Scholar
PubMed
Search for other papers by Erik P M Roos in
Google Scholar
PubMed
Search for other papers by Diederik M Somford in
Google Scholar
PubMed
Search for other papers by Yvette Zimmerman in
Google Scholar
PubMed
Search for other papers by Iman J Schultz in
Google Scholar
PubMed
Search for other papers by Noel W Clarke in
Google Scholar
PubMed
Search for other papers by R Jeroen A van Moorselaar in
Google Scholar
PubMed
Search for other papers by Frans M J Debruyne in
Google Scholar
PubMed
The purpose of androgen deprivation therapy (ADT) in prostate cancer (PCa), using luteinizing hormone-releasing hormone agonists (LHRHa) or gonadotrophin-releasing hormone antagonists, is to suppress the levels of testosterone. Since testosterone is the precursor of estradiol (E2), one of the major undesired effects of ADT is the concomitant loss of E2, causing among others an increased bone turnover and bone loss and an increased risk of osteoporosis and fractures. Therefore, the guidelines for ADT indicate to combine ADT routinely with bone-sparing agents such as bisphosphonates, denosumab or selective estrogen receptor modulators. However, these compounds may have side effects and some require inconvenient parenteral administration. Co-treatment with estrogens is an alternative approach to prevent bone loss and at the same time, to avoid other side effects caused by the loss of estrogens, which is the topic explored in the present narrative review. Estrogens investigated in PCa patients include parenteral or transdermal E2, diethylstilbestrol (DES), and ethinylestradiol (EE) as monotherapy, or high-dose estetrol (HDE4) combined with ADT. Cardiovascular adverse events have been reported with parenteral E2, DES and EE. Encouraging effects on bone parameters have been obtained with transdermal E2 (tE2) and HDE4, in the tE2 development program (PATCH study), and in the LHRHa/HDE4 co-treatment study (PCombi), respectively. Confirmation of the beneficial effects of estrogen therapy with tE2 or HDE4 on bone health in patients with advanced PCa is needed, with special emphasis on bone mass and fracture rate.
Search for other papers by Tao Gao in
Google Scholar
PubMed
Search for other papers by Rui Liu in
Google Scholar
PubMed
Search for other papers by Chunli Li in
Google Scholar
PubMed
Search for other papers by Xinglin Chu in
Google Scholar
PubMed
Search for other papers by Qiao Guo in
Google Scholar
PubMed
Search for other papers by Dazhi Ke in
Google Scholar
PubMed
Background
Fetuin-B, a cytokine that regulates lipid metabolism, has recently been linked to cardiovascular diseases such as coronary heart disease. In this study, we discussed the relationship between fetuin-B and essential hypertension.
Method
A bioinformatics analysis of fetuin-B was performed. A total of 206 with essential hypertension and 180 age- and-sex-matched healthy subjects were enrolled. Plasma fetuin-B, endothelin 1 (ET-1), nitric oxide (NO), and adiponectin (ADI) levels were measured using ELISA kits.
Results
Bioinformatics analysis has revealed that fetuin-B plays an important role in pathways such as lipid metabolism. Compared with healthy subjects, serum fetuin-B levels in patients with essential hypertension were significantly increased. Correlation analysis showed that the serum fetuin-B level was positively correlated with systolic blood pressure (SBP), diastolic blood pressure, body mass index, fat percentage in vivo, waist–hip ratio, intima–media thickness, low-density lipoprotein cholesterol (LDL-C), glutamyltranspeptidase, alanine transaminase, albumin, fasting blood glucose (FBG), glycated hemoglobin, and ET-1 in the overall study subjects (all P < 0.05) and negatively correlated with HDL-C, ADI, and NO (all P < 0.05). Multivariate linear regression analysis showed that SBP, FBG, LDL-C, ADI, and ET-1 were independent factors affecting serum fetuin-B. A binary logistic regression analysis showed that fetuin-B was an independent risk factor for primary hypertension (odds ratio: 1.060, 95% CI: 1.034–1.086, P < 0.001). Receiver operating characteristic curve analysis was used to evaluate the predictive value of fetuin-B for primary hypertension, and the optimal cutoff point was 83.14 μg/mL (sensitivity 77.4%, specificity 63.3%) (area under the curve) = 0.7738, 95% CI 0.7276–0.8200, P < 0.001).
Conclusion
Elevated fetuin-B levels are associated with an increased risk of essential hypertension.
Search for other papers by Yang Yu in
Google Scholar
PubMed
Search for other papers by Hairong Hao in
Google Scholar
PubMed
Search for other papers by Linghui Kong in
Google Scholar
PubMed
Search for other papers by Jie Zhang in
Google Scholar
PubMed
Search for other papers by Feng Bai in
Google Scholar
PubMed
Search for other papers by Fei Guo in
Google Scholar
PubMed
Search for other papers by Pan Wei in
Google Scholar
PubMed
Search for other papers by Rui Chen in
Google Scholar
PubMed
Search for other papers by Wen Hu in
Google Scholar
PubMed
Previous studies have shown that the elevated levels of circulating branched-chain amino acids (BCAAs) are associated with the development of insulin resistance and its complications, including obesity, type 2 diabetes, cardiovascular disease and some cancers. However, animal models that can mimic the metabolic state of chronically elevated BCAAs in humans are rare. Therefore, the aim of this study was to establish the above animal model and analyse the metabolic changes associated with high BCAA levels. Sixteen 8-week-old Sprague–Dawley (SD) rats were randomly divided into two groups and given either a high fructose diet or a normal diet. BCAA levels as well as blood glucose and lipid levels were measured at different time points of feeding. The mRNA expression levels of two key enzymes of BCAA catabolism, ACAD (acyl-CoA dehydrogenase) and BCKDH (branched-chain α-keto acid dehydrogenase), were measured by qPCR, and the protein expression levels of these two enzymes were analysed by immunohistochemistry. Finally, the metabolite expression differences between the two groups were analysed by Q300 metabolomics technology. Our study confirms that defects in the catabolic pathways of BCAAs lead to increased levels of circulating BCAAs, resulting in disorders of glucose and lipid metabolism characterized by insulin resistance by affecting metabolic pathways associated with amino acids and bile acids.
Search for other papers by Nancy Martini in
Google Scholar
PubMed
Search for other papers by Lucas Streckwall in
Google Scholar
PubMed
Search for other papers by Antonio Desmond McCarthy in
Google Scholar
PubMed
In post-menopausal women, aged individuals, and patients with diabetes mellitus or chronic renal disease, bone mineral density (BMD) decreases while the vasculature accumulates arterial calcifications (ACs). AC can be found in the tunica intima and/or in the tunica media. Prospective studies have shown that patients with initially low BMD and/or the presence of fragility fractures have at follow-up a significantly increased risk for coronary and cerebrovascular events and for overall cardiovascular mortality. Similarly, patients presenting with abdominal aorta calcifications (an easily quantifiable marker of vascular pathology) show a significant decrease in the BMD (and an increase in the fragility) of bones irrigated by branches of the abdominal aorta, such as the hip and lumbar spine. AC induction is an ectopic tissue biomineralization process promoted by osteogenic transdifferentiation of vascular smooth muscle cells as well as by local and systemic secreted factors. In many cases, the same regulatory molecules modulate bone metabolism but in reverse. Investigation of animal and in vitro models has identified several potential mechanisms for this reciprocal bone–vascular regulation, such as vitamin K and D sufficiency, advanced glycation end-products–RAGE interaction, osteoprotegerin/RANKL/RANK, Fetuin A, oestrogen deficiency and phytooestrogen supplementation, microbiota and its relation to diet, among others. Complete elucidation of these potential mechanisms, as well as their clinical validation via controlled studies, will provide a basis for pharmacological intervention that could simultaneously promote bone and vascular health.
Search for other papers by Yuan Huang in
Google Scholar
PubMed
Search for other papers by Yunyun Hu in
Google Scholar
PubMed
Search for other papers by Bingshu Bao in
Google Scholar
PubMed
Background
Obesity and arterial stiffness are strongly associated with cardiovascular disease; however, their relationship remains controversial.
Methods
Body mass index was measured using anthropometric evaluation, and visceral fat area was calculated using an absorptiometry scan.
Results
The data of 5309 participants were collected from NHANES (National Health and Nutrition Examination Survey) (2011–2018). Based on the normal-weight normal visceral fat group that was considered as a reference, ePWV increased in all other groups, with the obese grade 2 visceral obesity group increasing the most by 26.35 cm/s (95% CI: 13.52, 39.18, P < 0.001), followed by normal-weight visceral obesity group 24.43 cm/s (95% CI: 1.88, 46.98, P = 0.035), which was even higher than obese grade 1 visceral obesity (β: 21.16, 95% CI: 9.24, 33.07, P = 0.001), obese grade 2 normal visceral fat group (β: 13.8; 95% CI: 0.10, 27.5, P = 0.048) and overweight visceral obesity group (β: 10.23; 95% CI: 1.89, 18.57, P = 0.018). For the 10-year cardiovascular risk, the obese grade 2 visceral obesity group had a 9.56-fold increase in compared with the control (OR: 10.56, 95% CI: 4.06, 27.51, P < 0.0001). Normal-weight visceral obesity, obese grade 1 visceral obesity, and overweight visceral obesity groups increased by 8.03-fold (OR: 9.03, 95% CI: 2.66, 30.69; P < 0.001), 7.91-fold (OR: 8.91, 95% CI: 3.82, 20.79, P < 0.001), and 7.28-fold (OR: 8.28, 95% CI: 3.19, 21.46, P < 0.001). The risk was lower in the normal visceral fat group. Except for the obese grade 2 normal visceral fat group, there was no significant difference in other groups.
Conclusions
Normal-weight visceral obesity was associated with higher arterial stiffness and 10-year cardiovascular risk.