Search Results

You are looking at 21 - 30 of 39 items for :

  • Abstract: adrenarche x
  • Abstract: amenorrhoea x
  • Abstract: fertility x
  • Abstract: Gender x
  • Abstract: Hypogonadism x
  • Abstract: infertility x
  • Abstract: Kallmann x
  • Abstract: Klinefelter x
  • Abstract: menarche x
  • Abstract: menopause x
  • Abstract: puberty x
  • Abstract: transsexual x
  • Abstract: sperm* x
  • Abstract: ovary x
  • Abstract: follicles x
  • Reproduction x
Clear All Modify Search
Tristan Avril Pediatric Endocrinology Department, CHU Bicetre, Assistance Publique-Hôpitaux de Paris, Reference Center for Rare Disease CRMR DevGen, Le Kremlin Bicêtre, Paris, France

Search for other papers by Tristan Avril in
Google Scholar
PubMed
Close
,
Quentin Hennocq Datascience platform, Imagine Institute, Université Paris Cité, Paris, France

Search for other papers by Quentin Hennocq in
Google Scholar
PubMed
Close
,
Anne-Sophie Lambert Pediatric Endocrinology Department, CHU Bicetre, Assistance Publique-Hôpitaux de Paris, Reference Center for Rare Disease CRMR DevGen, Le Kremlin Bicêtre, Paris, France

Search for other papers by Anne-Sophie Lambert in
Google Scholar
PubMed
Close
,
Juliane Leger Pediatric Endocrinology Department, CHU Robert Debré, Assistance Publique-Hôpitaux de Paris, Reference Center for Rare Disease CRMR de la Croissance et du Développement, Paris, France
Université Paris Cité, Faculté de Santé, UFR de Médecine, Paris, France

Search for other papers by Juliane Leger in
Google Scholar
PubMed
Close
,
Dominique Simon Pediatric Endocrinology Department, CHU Robert Debré, Assistance Publique-Hôpitaux de Paris, Reference Center for Rare Disease CRMR de la Croissance et du Développement, Paris, France

Search for other papers by Dominique Simon in
Google Scholar
PubMed
Close
,
Laetitia Martinerie Pediatric Endocrinology Department, CHU Robert Debré, Assistance Publique-Hôpitaux de Paris, Reference Center for Rare Disease CRMR de la Croissance et du Développement, Paris, France
Université Paris Cité, Faculté de Santé, UFR de Médecine, Paris, France
Inserm UMR1185, Le Kremlin Bicetre, Paris, France

Search for other papers by Laetitia Martinerie in
Google Scholar
PubMed
Close
, and
Claire Bouvattier Pediatric Endocrinology Department, CHU Bicetre, Assistance Publique-Hôpitaux de Paris, Reference Center for Rare Disease CRMR DevGen, Le Kremlin Bicêtre, Paris, France
Inserm UMR1185, Le Kremlin Bicetre, Paris, France
Paris-Saclay University, Paris, France

Search for other papers by Claire Bouvattier in
Google Scholar
PubMed
Close

Objective

Newborns with congenital hypogonadotropic hypogonadism (CHH) have an impaired postnatal activation of the gonadotropic axis. Substitutive therapy with recombinant gonadotropins can be proposed to mimic physiological male mini-puberty during the first months of life. The aim of this study was to compare the clinical and biological efficacy of two treatment modalities of gonadotropins administration during mini-puberty in CHH neonates.

Design

Multicenter retrospective analytical epidemiological study comparing two treatments, pump vs injection, between 2004 and 2019.

Methods

Clinical (penile size, testis size, testicular descent) and biological parameters (serum concentrations of testosterone, anti-Müllerian hormone (AMH) and Inhibin B) were compared between the two groups by multivariate analyses.

Results

Thirty-five patients were included. A significantly higher increase in penile length and testosterone level was observed in the injection group compared to the pump group (+0.16 ± 0.02 mm vs +0.10 ± 0.02 mm per day, P = 0.002; and +0.04 ± 0.007 ng/mL vs +0.01 ± 0.008 ng/mL per day, P = 0.001). In both groups, significant increases in penile length and width, testosterone, AMH, and Inhibin B levels were observed, as well as improved testicular descent (odds ratio of not being in a scrotal position at the end of treatment = 0.97 (0.96; 0.99)).

Conclusions

Early postnatal administration of recombinant gonadotropins in CHH boys is effective in stimulating penile growth, Sertoli cell proliferation, and testicular descent, with both treatment modalities.

Open access
Pravik Solanki Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
Alfred Health, Melbourne, Victoria, Australia

Search for other papers by Pravik Solanki in
Google Scholar
PubMed
Close
,
Beng Eu Prahran Market Clinic, Victoria, Australia
Department of General Practice, Melbourne Medical School, The University of Melbourne, Victoria, Australia

Search for other papers by Beng Eu in
Google Scholar
PubMed
Close
,
Jeremy Smith Faculty of Science, University of Western Australia, Perth, Australia

Search for other papers by Jeremy Smith in
Google Scholar
PubMed
Close
,
Carolyn Allan Hudson Institute of Medical Research, Melbourne, Victoria, Australia

Search for other papers by Carolyn Allan in
Google Scholar
PubMed
Close
, and
Kevin Lee Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia

Search for other papers by Kevin Lee in
Google Scholar
PubMed
Close

Hypogonadism can result following anabolic steroid abuse. The duration and degree of recovery from anabolic steroid-induced hypogonadism (ASIH) is immensely variable, and there is a paucity of prospective controlled data characterising the trajectory of natural recovery following cessation. This poses difficulties for users trying to stop androgen abuse, and clinicians wanting to assist them. The objective of this paper was to synthesise evidence on the physical, psychological and biochemical patterns of ASIH recovery. We present the pathophysiology of ASIH through a literature review of hypothalamic–pituitary–testosterone axis recovery in supraphysiological testosterone exposure. This is followed by a scoping review of relevant observational and interventional studies published on PubMed and finally, a conclusion that is an easy reference for clinicians helping patients that are recovering from AAS abuse. Results indicate that ASIH recovery depends on age and degree of androgen abuse, with physical changes like testicular atrophy expected to have near full recovery over months to years; spermatogenesis expected to achieve full recovery over months to years; libido returning to baseline over several months (typically less potent than during AAS use); and recovery from gynaecomastia being unlikely. For psychological recovery, data are insufficient and conflicting, indicating a transient withdrawal period which may be followed by persisting longer-term milder symptoms. For biochemical recovery, near complete recovery of testosterone is seen over months, and complete gonadotropin recovery is expected over 3–6 months. Further prospective studies are indicated to more closely describe patterns of recovery.

Open access
Pamela Stratton Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA

Search for other papers by Pamela Stratton in
Google Scholar
PubMed
Close
,
Neelam Giri Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA

Search for other papers by Neelam Giri in
Google Scholar
PubMed
Close
,
Sonia Bhala Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA

Search for other papers by Sonia Bhala in
Google Scholar
PubMed
Close
,
Martha M Sklavos Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA

Search for other papers by Martha M Sklavos in
Google Scholar
PubMed
Close
,
Blanche P Alter Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA

Search for other papers by Blanche P Alter in
Google Scholar
PubMed
Close
,
Sharon A Savage Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA

Search for other papers by Sharon A Savage in
Google Scholar
PubMed
Close
, and
Ligia A Pinto Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA

Search for other papers by Ligia A Pinto in
Google Scholar
PubMed
Close

Fanconi anemia (FA), dyskeratosis congenita-related telomere biology disorders (DC/TBD), and Diamond–Blackfan anemia (DBA) are inherited bone marrow failure syndromes (IBMFS) with high risks of bone marrow failure, leukemia, and solid tumors. Individuals with FA have reduced fertility. Previously, we showed low levels of anti-Müllerian hormone (AMH), a circulating marker of ovarian reserve, in females with IBMFS. In males, AMH may be a direct marker of Sertoli cell function and an indirect marker of spermatogenesis. In this study, we assessed serum AMH levels in pubertal and postpubertal males with FA, DC/TBD, or DBA and compared this with their unaffected male relatives and unrelated healthy male volunteers. Males with FA had significantly lower levels of AMH (median: 5 ng/mL, range: 1.18–6.75) compared with unaffected male relatives (median: 7.31 ng/mL, range: 3.46–18.82, P = 0.03) or healthy male volunteers (median: 7.66 ng/mL, range: 3.3–14.67, P = 0.008). Males with DC/TBD had lower levels of AMH (median: 3.76 ng/mL, range: 0–8.9) compared with unaffected relatives (median: 5.31 ng/mL, range: 1.2–17.77, P = 0.01) or healthy volunteers (median: 5.995 ng/mL, range: 1.57–14.67, P < 0.001). Males with DBA had similar levels of AMH (median: 3.46 ng/mL, range: 2.32–11.85) as unaffected relatives (median: 4.66 ng/mL, range: 0.09–13.51, P = 0.56) and healthy volunteers (median: 5.81 ng/mL, range: 1.57–14.67, P = 0.10). Our findings suggest a defect in the production of AMH in postpubertal males with FA and DC/TBD, similar to that observed in females. These findings warrant confirmation in larger prospective studies.

Open access
Yanfei Chen Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Search for other papers by Yanfei Chen in
Google Scholar
PubMed
Close
,
Mei Li Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Search for other papers by Mei Li in
Google Scholar
PubMed
Close
,
Binrong Liao Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Search for other papers by Binrong Liao in
Google Scholar
PubMed
Close
,
Jingzi Zhong Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Search for other papers by Jingzi Zhong in
Google Scholar
PubMed
Close
, and
Dan Lan Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Search for other papers by Dan Lan in
Google Scholar
PubMed
Close

Objective

The objective of this study is to investigate the role of serum irisin level in diagnosis of central precocious puberty (CPP) in girls and its major determinants.

Methods

This study was conducted in 67 girls with CPP, 19 girls with premature thelarche (PT) and 59 normal controls. The major determinants of irisin were assessed by multivariate linear regression (MLR) analysis. Propensity score matching (PSM) analysis was performed to minimize the bias that can result from BMI. A receiver operating characteristic curve was used to obtain the optimal threshold value of irisin.

Results

The girls with CPP and PT had higher irisin levels than controls (P  < 0.05). The optimal cutoff value of irisin levels for predicting CPP was 91.88 ng/mL, with a sensitivity of 70.1% and a specificity of 72.9%. MLR analysis showed that BMI was a predictor of irisin (P  < 0.05). Serum irisin levels remained higher in the CPP girls than the controls with adjustment for BMI (P  < 0.05).

Conclusions

Increased serum irisin levels with CPP suggest that irisin is involved in puberty. However, due to low sensitivity and specificity, irisin level can only be used as an auxiliary indicator rather than a single diagnostic indicator of CPP.

Open access
Shiori Minabe Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Yahaba, Japan

Search for other papers by Shiori Minabe in
Google Scholar
PubMed
Close
,
Kinuyo Iwata Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan

Search for other papers by Kinuyo Iwata in
Google Scholar
PubMed
Close
,
Youki Watanabe Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan

Search for other papers by Youki Watanabe in
Google Scholar
PubMed
Close
,
Hirotaka Ishii Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan

Search for other papers by Hirotaka Ishii in
Google Scholar
PubMed
Close
, and
Hitoshi Ozawa Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
Faculty of Health Science, Bukkyo University, Kyoto, Japan

Search for other papers by Hitoshi Ozawa in
Google Scholar
PubMed
Close

The nutritional environment during development periods induces metabolic programming, leading to metabolic disorders and detrimental influences on human reproductive health. This study aimed to determine the long-term adverse effect of intrauterine malnutrition on the reproductive center kisspeptin-neurokinin B-dynorphin A (KNDy) neurons in the hypothalamic arcuate nucleus (ARC) of female offspring. Twelve pregnant rats were divided into ad-lib-fed (control, n  = 6) and 50% undernutrition (UN, n  = 6) groups. The UN group was restricted to 50% daily food intake of the control dams from gestation day 9 until term delivery. Differences between the two groups in terms of various maternal parameters, including body weight (BW), pregnancy duration, and litter size, as well as birth weight, puberty onset, estrous cyclicity, pulsatile luteinizing hormone (LH) secretion, and hypothalamic gene expression of offspring, were determined. Female offspring of UN dams exhibited low BW from birth to 3 weeks, whereas UN offspring showed signs of precocious puberty; hypothalamic Tac3 (a neurokinin B gene) expression was increased in prepubertal UN offspring, and the BW at the virginal opening was lower in UN offspring than that in the control group. Interestingly, the UN offspring showed significant decreases in the number of KNDy gene-expressing cells after 29 weeks of age, but the number of ARC kisspeptin-immunoreactive cells, pulsatile LH secretions, and estrous cyclicity were comparable between the groups. In conclusion, intrauterine undernutrition induced various changes in KNDy gene expression depending on the life stage. Thus, intrauterine undernutrition affected hypothalamic developmental programming in female rats.

Open access
Panagiotis Anagnostis Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece

Search for other papers by Panagiotis Anagnostis in
Google Scholar
PubMed
Close
,
Irene Lambrinoudaki 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Medical School, Athens, Greece

Search for other papers by Irene Lambrinoudaki in
Google Scholar
PubMed
Close
,
John C Stevenson National Heart and Lung Institute, Imperial College London, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, UK

Search for other papers by John C Stevenson in
Google Scholar
PubMed
Close
, and
Dimitrios G Goulis Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece

Search for other papers by Dimitrios G Goulis in
Google Scholar
PubMed
Close

Cardiovascular disease (CVD) is of major concern in women entering menopause. The changing hormonal milieu predisposes them to increased CVD risk, due to a constellation of risk factors, such as visceral obesity, atherogenic dyslipidemia, dysregulation in glucose homeostasis, non-alcoholic fatty liver disease and arterial hypertension. However, an independent association of menopause per se with increased risk of CVD events has only been proven for early menopause (<45 years). Menopausal hormone therapy (MHT) ameliorates most of the CVD risk factors mentioned above. Transdermal estrogens are the preferable regimen, since they do not increase triglyceride concentrations and they are not associated with increased risk of venous thromboembolic events (VTE). Although administration of MHT should be considered on an individual basis, MHT may reduce CVD morbidity and mortality, if commenced during the early postmenopausal period (<60 years or within ten years since the last menstrual period). In women with premature ovarian insufficiency (POI), MHT should be administered at least until the average age of menopause (50–52 years). MHT is contraindicated in women with a history of VTE and is not currently recommended for the sole purpose of CVD prevention. The risk of breast cancer associated with MHT is generally low and is mainly conferred by the progestogen. Micronized progesterone and dydrogesterone are associated with lower risk compared to other progestogens.

Open access
Claus H Gravholt Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Clinical Medicine, Aarhus University, Aarhus, Denmark

Search for other papers by Claus H Gravholt in
Google Scholar
PubMed
Close
,
Alberto Ferlin Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy

Search for other papers by Alberto Ferlin in
Google Scholar
PubMed
Close
,
Joerg Gromoll Centre of Reproductive Medicine and Andrology, Münster, Germany

Search for other papers by Joerg Gromoll in
Google Scholar
PubMed
Close
,
Anders Juul Department of Growth and Reproduction Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Anders Juul in
Google Scholar
PubMed
Close
,
Armin Raznahan Section on Developmental Neurogenomics, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland, USA

Search for other papers by Armin Raznahan in
Google Scholar
PubMed
Close
,
Sophie van Rijn Clinical Neurodevelopmental Sciences, Leiden University, Leiden, The Netherlands and TRIXY Center of Expertise, Leiden University Treatment and Expertise Centre (LUBEC), Leiden, The Netherlands

Search for other papers by Sophie van Rijn in
Google Scholar
PubMed
Close
,
Alan D Rogol Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA

Search for other papers by Alan D Rogol in
Google Scholar
PubMed
Close
,
Anne Skakkebæk Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Anne Skakkebæk in
Google Scholar
PubMed
Close
,
Nicole Tartaglia Department of Pediatrics, Developmental Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA

Search for other papers by Nicole Tartaglia in
Google Scholar
PubMed
Close
, and
Hanna Swaab Clinical Neurodevelopmental Sciences, Leiden University, Leiden, The Netherlands and TRIXY Center of Expertise, Leiden University Treatment and Expertise Centre (LUBEC), Leiden, The Netherlands

Search for other papers by Hanna Swaab in
Google Scholar
PubMed
Close

The 3rd International Workshop on Klinefelter Syndrome, Trisomy X, and 47,XYY syndrome was held in Leiden, the Netherlands, on September 12–14, 2022.

Here, we review new data presented at the workshop and discuss scientific and clinical trajectories. We focus on shortcomings in knowledge and therefore point out future areas for research.

We focus on the genetics and genomics of supernumerary sex chromosome syndromes with new data being presented. Most knowledge centre specifically on Klinefelter syndrome, where aspects on testosterone deficiency and the relation to bone, muscle and fat were discussed, as was infertility and the treatment thereof. Both trisomy X and 47,XYY syndrome are frequently affected by infertility.

Transitioning of males with Klinefelter syndrome was addressed, as this seemingly simple process in practise is often difficult.

It is now realized that neurocognitive changes are pervasive in all supernumerary sex chromosome syndromes, which were extensively discussed. New intervention projects were also described, and exciting new data concerning these were presented.

Advocacy organizations were present, describing the enormous burden carried by parents when having to explain their child’s specific syndrome to most professionals whenever in contact with health care and education systems. It was also pointed out that most countries do not have health care systems that diagnose patients with supernumerary sex chromosome syndromes, thus pinpointing a clear deficiency in the current genetic testing and care models.

At the end of the workshop, a roadmap towards the development of new international clinical care guidelines for Klinefelter syndrome was decided.

Open access
Jian Gong School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China

Search for other papers by Jian Gong in
Google Scholar
PubMed
Close
,
Yinjuan Lv School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China

Search for other papers by Yinjuan Lv in
Google Scholar
PubMed
Close
,
Yuhao Meng Hubei University of Chinese Medicine, Wuhan, China

Search for other papers by Yuhao Meng in
Google Scholar
PubMed
Close
,
Weiheng Zhang Hubei University of Chinese Medicine, Wuhan, China

Search for other papers by Weiheng Zhang in
Google Scholar
PubMed
Close
,
Xiaocui Jiang Hubei University of Chinese Medicine, Wuhan, China

Search for other papers by Xiaocui Jiang in
Google Scholar
PubMed
Close
, and
Min Xiao Laboratory Animal Center, Hubei University of Chinese Medicine, Wuhan, China

Search for other papers by Min Xiao in
Google Scholar
PubMed
Close

Prenatal stress can lead to the programming of the neuroendocrine system in male offspring, disrupting the hypothalamic testicular axis and adversely affecting the reproductive health of male offspring. This study aimed to determine the long-term effects of prenatal stress on the KISS1 system in male offspring and the effects on reproductive function in male offspring. Sixteen pregnant females were divided into a prenatal control group (PC, n = 8) and a prenatal stress group (PS, n = 8). The PS group was modeled with chronic unpredictable mild stress (CUMS) from day 1 of gestation to full-term delivery. Differences between the two groups in various maternal parameters, including glucocorticoid secretion, litter size, and the effects of male offspring birth weight, the KISS1 system, and reproductive function, were determined. Male offspring of PS dams had lower birth weights compared to prenatal controls.KISS1 gene expression is reduced at birth and in adult PS offspring, and its receptor KISS1-R protein is similarly reduced in PS offspring at birth and adulthood. In adulthood, PS male offspring show significantly reduced sex hormone production, altered testicular morphology, reduced maturation of their supporting cells, and decreased expression of connexin 43 (CX43), leading to an altered sperm microenvironment and reduced sperm quality. In conclusion, prenatal stress leads to adverse changes in the KISS1 system in male offspring and decreased reproductive function.

Open access
Lukas Ochsner Ridder Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Aarhus, Denmark
Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Lukas Ochsner Ridder in
Google Scholar
PubMed
Close
,
Agnethe Berglund Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Clinical Genetics and Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Agnethe Berglund in
Google Scholar
PubMed
Close
,
Kirstine Stochholm Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Kirstine Stochholm in
Google Scholar
PubMed
Close
,
Simon Chang Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Aarhus, Denmark
Unit for Thrombosis Research, Hospital of South West Jutland and University of Southern Denmark, Esbjerg, Denmark

Search for other papers by Simon Chang in
Google Scholar
PubMed
Close
, and
Claus H Gravholt Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Aarhus, Denmark
Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Unit for Thrombosis Research, Hospital of South West Jutland and University of Southern Denmark, Esbjerg, Denmark

Search for other papers by Claus H Gravholt in
Google Scholar
PubMed
Close

Context

Klinefelter syndrome (KS, 47,XXY) and 47,XYY syndrome are genetic conditions characterized by a supernumerary sex chromosome. The conditions share many traits, but considerable phenotypic differences are seen between the two. Focusing on morbidity, mortality, and socioeconomics, this review highlights similarities and differences.

Methods

Relevant literature was identified through PubMed with the following search terms; 'Klinefelter', '47,XXY', '47,XYY', and 'Jacobs syndrome'. Included journal articles were chosen at the authors’ discretion.

Results

KS and 47,XYY are the most common sex chromosome disorders in males, with an expected prevalence of 152 and 98 per 100,000 newborn males, respectively. Non-diagnosis is extensive, as only about 38% of KS and 18% of 47,XYY are diagnosed. Both conditions are associated with an increased mortality risk and increased risk of a variety of diseases and other health-related problems affecting virtually every organ system. Early diagnosis seems to predict a lesser comorbidity burden. Neurocognitive deficits as well as social and behavioral problems are commonly described. Both syndromes are associated with poor socioeconomicfor example, lower income and educational level and higher rates of crime. Infertility is a hallmark of KS, but fertility seems also reduced in 47,XYY.

Conclusion

Being born as a boy with an extra X or Y chromosome is associated with increased mortality and excess morbidity, partially expressed in a sex chromosome-specific pattern.Both syndromes continue to be greatly underdiagnosed, even thoughearly intervention may improve the overall outcome. Earlier diagnosis to initiate timely counseling and treatment should be emphasized.

Open access
Helene Bandsholm Leere Tallaksen Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Helene Bandsholm Leere Tallaksen in
Google Scholar
PubMed
Close
,
Emma B Johannsen Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Emma B Johannsen in
Google Scholar
PubMed
Close
,
Jesper Just Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Jesper Just in
Google Scholar
PubMed
Close
,
Mette Hansen Viuff Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Gynaecology and Obstetrics, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Mette Hansen Viuff in
Google Scholar
PubMed
Close
,
Claus H Gravholt Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Claus H Gravholt in
Google Scholar
PubMed
Close
, and
Anne Skakkebæk Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Anne Skakkebæk in
Google Scholar
PubMed
Close

Sex chromosome abnormalities (SCAs) are chromosomal disorders with either a complete or partial loss or gain of sex chromosomes. The most frequent SCAs include Turner syndrome (45,X), Klinefelter syndrome (47,XXY), Trisomy X syndrome (47,XXX), and Double Y syndrome (47,XYY). The phenotype seen in SCAs is highly variable and may not merely be due to the direct genomic imbalance from altered sex chromosome gene dosage but also due to additive alterations in gene networks and regulatory pathways across the genome as well as individual genetic modifiers. This review summarizes the current insight into the genomics of SCAs. In addition, future directions of research that can contribute to decipher the genomics of SCA are discussed such as single-cell omics, spatial transcriptomics, system biology thinking, human-induced pluripotent stem cells, and animal models, and how these data may be combined to bridge the gap between genomics and the clinical phenotype.

Open access