Search Results

You are looking at 91 - 100 of 254 items for

  • Abstract: adrenarche x
  • Abstract: amenorrhoea x
  • Abstract: fertility x
  • Abstract: Gender x
  • Abstract: Hypogonadism x
  • Abstract: infertility x
  • Abstract: Kallmann x
  • Abstract: Klinefelter x
  • Abstract: menarche x
  • Abstract: menopause x
  • Abstract: puberty x
  • Abstract: transsexual x
  • Abstract: sperm* x
  • Abstract: ovary x
  • Abstract: follicles x
Clear All Modify Search
Signe Frøssing Department of Internal Medicine, Center of Endocrinology and Metabolism, Herlev Gentofte Hospital, Copenhagen, Denmark
Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark

Search for other papers by Signe Frøssing in
Google Scholar
PubMed
Close
,
Malin Nylander Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
Department of Obstetrics & Gynecology, Herlev Gentofte Hospital, Copenhagen, Denmark

Search for other papers by Malin Nylander in
Google Scholar
PubMed
Close
,
Caroline Kistorp Department of Internal Medicine, Center of Endocrinology and Metabolism, Herlev Gentofte Hospital, Copenhagen, Denmark
Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark

Search for other papers by Caroline Kistorp in
Google Scholar
PubMed
Close
,
Sven O Skouby Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
Department of Obstetrics & Gynecology, Herlev Gentofte Hospital, Copenhagen, Denmark

Search for other papers by Sven O Skouby in
Google Scholar
PubMed
Close
, and
Jens Faber Department of Internal Medicine, Center of Endocrinology and Metabolism, Herlev Gentofte Hospital, Copenhagen, Denmark
Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark

Search for other papers by Jens Faber in
Google Scholar
PubMed
Close

Context

Women with polycystic ovary syndrome (PCOS) have an increased risk of cardiovascular disease (CVD), and biomarkers can be used to detect early subclinical CVD. Midregional-pro-adrenomedullin (MR-proADM), midregional-pro-atrial natriuretic peptide (MR-proANP) and copeptin are all associated with CVD and part of the delicate system controlling fluid and hemodynamic homeostasis through vascular tonus and diuresis. The GLP-1 receptor agonist liraglutide, developed for treatment of type 2 diabetes (T2D), improves cardiovascular outcomes in patients with T2D including a decrease in particular MR-proANP.

Objective

To investigate if treatment with liraglutide in women with PCOS reduces levels of the cardiovascular biomarkers MR-proADM, MR-proANP and copeptin.

Methods

Seventy-two overweight women with PCOS were treated with 1.8 mg/day liraglutide or placebo for 26 weeks in a placebo-controlled RCT. Biomarkers, anthropometrics, insulin resistance, body composition (DXA) and visceral fat (MRI) were examined.

Results

Baseline median (IQR) levels were as follows: MR-proADM 0.52 (0.45–0.56) nmol/L, MR-proANP 44.8 (34.6–56.7) pmol/L and copeptin 4.95 (3.50–6.50) pmol/L. Mean percentage differences (95% CI) between liraglutide and placebo group after treatment were as follows: MR-proADM −6% (−11 to 2, P = 0.058), MR-proANP −25% (−37 to −11, P = 0.001) and copeptin +4% (−13 to 25, P = 0.64). Reduction in MR-proANP concentration correlated with both increased heart rate and diastolic blood pressure in the liraglutide group. Multiple regression analyses with adjustment for BMI, free testosterone, insulin resistance, visceral fat, heart rate and eGFR showed reductions in MR-proANP to be independently correlated with an increase in the heart rate.

Conclusion

In an RCT, liraglutide treatment in women with PCOS reduced levels of the cardiovascular risk biomarkers MR-proANP with 25% and MR-proADM with 6% (borderline significance) compared with placebo. The decrease in MR-proANP was independently associated with an increase in the heart rate.

Open access
Sarantis Livadas Endocrine Unit, Athens Medical Centre, Athens, Greece

Search for other papers by Sarantis Livadas in
Google Scholar
PubMed
Close
,
Christina Bothou Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Zurich, Zurich, Switzerland

Search for other papers by Christina Bothou in
Google Scholar
PubMed
Close
,
Justyna Kuliczkowska-Płaksej Department of Endocrinology, Diabetology and Isotope Therapy, University of Medicine, Wrocław, Poland

Search for other papers by Justyna Kuliczkowska-Płaksej in
Google Scholar
PubMed
Close
,
Ralitsa Robeva Ushate ‘acad. IV. Penchev’, Department of Endocrinology, Faculty of Medicine, Medical University-Sofia, Sofia, Bulgaria

Search for other papers by Ralitsa Robeva in
Google Scholar
PubMed
Close
,
Andromahi Vryonidou Department of Endocrinology and Diabetes, Hellenic Red Cross Hospital, Athens, Greece

Search for other papers by Andromahi Vryonidou in
Google Scholar
PubMed
Close
,
Jelica Bjekic Macut Department of Endocrinology, UMC Bežanijska Kosa, Faculty of Medicine, University of Belgrade, Belgrade, Serbia

Search for other papers by Jelica Bjekic Macut in
Google Scholar
PubMed
Close
,
Ioannis Androulakis Endocrine Unit, Athens Medical Centre, Athens, Greece

Search for other papers by Ioannis Androulakis in
Google Scholar
PubMed
Close
,
Milica Opalic Clinic of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, Belgrade, Serbia

Search for other papers by Milica Opalic in
Google Scholar
PubMed
Close
,
Zadalla Mouslech 1st Medical Propedeutic, Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece

Search for other papers by Zadalla Mouslech in
Google Scholar
PubMed
Close
,
Andrej Milewicz Department of Endocrinology, Diabetology and Isotope Therapy, University of Medicine, Wrocław, Poland

Search for other papers by Andrej Milewicz in
Google Scholar
PubMed
Close
,
Alessandra Gambineri Department of Medical and Surgical Science-DIMEC Endocrinology Unit, University of Bologna – S. Orsola-Mapighi Hospital, Italy

Search for other papers by Alessandra Gambineri in
Google Scholar
PubMed
Close
,
Dimitrios Panidis Gynaecological Endocrinology Infirmary of the Second Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Thessaloniki, Greece

Search for other papers by Dimitrios Panidis in
Google Scholar
PubMed
Close
, and
Djuro Macut Clinic of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, Belgrade, Serbia

Search for other papers by Djuro Macut in
Google Scholar
PubMed
Close

Background

Polycystic ovary syndrome (PCOS) is considered a risk factor for the development of type 2 diabetes mellitus (T2DM). However, which is the most appropriate way to evaluate dysglycemia in women with PCOS and who are at increased risk are as yet unclear.

Aim of the study

To determine the prevalence of T2DM, impaired glucose tolerance (IGT), and impaired fasting glucose (IFG) in PCOS women and potential factors to identify those at risk.

Subjects and methods

The oral glucose tolerance test (OGTT), biochemical/hormonal profile, and ovarian ultrasound data from 1614 Caucasian women with PCOS and 362 controls were analyzed in this cross-sectional multicenter study. The data were categorized according to age and BMI.

Results

Dysglycemia (T2DM, IGT, and IFG according to World Health Organization criteria) was more frequent in the PCOS group compared to controls: 2.2% vs 0.8%, P = 0.04; 9.5% vs 7.4%, P = 0.038; 14.2% vs 9.1%, P = 0.002, respectively. OGTT was essential for T2DM diagnosis, since in 88% of them basal glucose values were inconclusive for diagnosis. The presence of either T2DM or IFG was irrespective of age (P = 0.54) and BMI (P = 0.32), although the latter was associated with IGT (P = 0.021). There was no impact of age and BMI status on the prevalence of T2DM or IFG. Regression analysis revealed a role for age, BMI, fat deposition, androgens, and insulin resistance for dysglycemia. However, none of the factors prevailed as a useful marker employed in clinical practice.

Conclusions

One-third of our cohort of PCOS women with either T2DM or IGT displayed normal fasting glucose values but without confirming any specific predictor for dysglycemic condition. Hence, the evaluation of glycemic status using OGTT in all women with PCOS is strongly supported.

Open access
Małgorzata Kałużna Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland

Search for other papers by Małgorzata Kałużna in
Google Scholar
PubMed
Close
,
Pola Kompf Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland

Search for other papers by Pola Kompf in
Google Scholar
PubMed
Close
,
Katarzyna Wachowiak-Ochmańska Heliodor Święcicki Clinical Hospital, Poznan, Poland

Search for other papers by Katarzyna Wachowiak-Ochmańska in
Google Scholar
PubMed
Close
,
Jerzy Moczko Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland

Search for other papers by Jerzy Moczko in
Google Scholar
PubMed
Close
,
Aleksandra Królczyk Chair and Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland

Search for other papers by Aleksandra Królczyk in
Google Scholar
PubMed
Close
,
Adam Janicki Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland

Search for other papers by Adam Janicki in
Google Scholar
PubMed
Close
,
Karol Szapel Department of Physiotherapy, Poznan University of Medical Sciences, Poznan, Poland

Search for other papers by Karol Szapel in
Google Scholar
PubMed
Close
,
Marian Grzymisławski Chair and Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland

Search for other papers by Marian Grzymisławski in
Google Scholar
PubMed
Close
,
Marek Ruchała Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland

Search for other papers by Marek Ruchała in
Google Scholar
PubMed
Close
, and
Katarzyna Ziemnicka Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland

Search for other papers by Katarzyna Ziemnicka in
Google Scholar
PubMed
Close

Background

Polycystic ovary syndrome (PCOS) encompasses endocrine, reproductive and metabolic disturbances. Abdominal pain and bowel movement disturbances are common complaints of PCOS patients. It remains uncertain whether the characteristic features of PCOS are associated with an increased incidence of irritable bowel syndrome (IBS).

Methods

In the study, 133 patients with PCOS diagnosed according to international evidence-based guidelines and 72 age- and BMI-matched eumenorrheic controls were enrolled. Anthropometric measurements and biochemical and hormonal characteristics were collected. The Rome IV criteria were used for IBS diagnosis. Quality of life (QoL) and depressive symptoms were also assessed.

Results

IBS symptom prevalence in PCOS was not significantly different than in controls. Hyperandrogenism and simple and visceral obesity did not appear to affect IBS prevalence in PCOS. There were no anthropometric, hormonal or biochemical differences between IBS-PCOS and non-IBS-PCOS patients, apart from IBS-PCOS patients being slightly older and having lower thyroid-stimulating hormone. Metabolic syndrome (MS) prevalence was higher in IBS-PCOS than non-IBS-PCOS. QoL appears to be significantly lower in IBS-PCOS compared to PCOS-only patients. The occurrence of depression was higher in IBS-PCOS vs non-IBS-PCOS patients. At least one alarm symptom was reported by 87.5% of IBS-PCOS; overall, this group experienced more alarm symptoms than the IBS-only group.

Conclusions

Since a link between PCOS and IBS comorbidity and increased MS prevalence was noted, patients presenting with both conditions may benefit from early MS diagnostics and management. The high incidence of alarm symptoms in PCOS women in this study highlights the need for differential diagnosis of organic diseases that could mimic IBS symptoms.

Open access
Rachel Forfar Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Rachel Forfar in
Google Scholar
PubMed
Close
,
Mashal Hussain Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK

Search for other papers by Mashal Hussain in
Google Scholar
PubMed
Close
,
Puneet Khurana Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Puneet Khurana in
Google Scholar
PubMed
Close
,
Jennifer Cook Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Jennifer Cook in
Google Scholar
PubMed
Close
,
Steve Lewis Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Steve Lewis in
Google Scholar
PubMed
Close
,
Dillon Popat Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK

Search for other papers by Dillon Popat in
Google Scholar
PubMed
Close
,
David Jackson Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK

Search for other papers by David Jackson in
Google Scholar
PubMed
Close
,
Ed McIver Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Ed McIver in
Google Scholar
PubMed
Close
,
Jeff Jerman Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Jeff Jerman in
Google Scholar
PubMed
Close
,
Debra Taylor Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Debra Taylor in
Google Scholar
PubMed
Close
,
Adrian JL Clark Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK

Search for other papers by Adrian JL Clark in
Google Scholar
PubMed
Close
, and
Li F Chan Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK

Search for other papers by Li F Chan in
Google Scholar
PubMed
Close

The overproduction of adrenocorticotropic hormone (ACTH), in conditions such as Cushing’s disease and congenital adrenal hyperplasia (CAH), leads to significant morbidity. Current treatment with glucocorticoids does not adequately suppress plasma ACTH, resulting in excess adrenal androgen production. At present, there is no effective medical treatment in clinical use that would directly block the action of ACTH. Such a therapy would be of great clinical value. ACTH acts via a highly selective receptor, the melanocortin-2 receptor (MC2R) associated with its accessory protein MRAP. ACTH is the only known naturally occurring agonist for this receptor. This lack of redundancy and the high degree of ligand specificity suggest that antagonism of this receptor could provide a useful therapeutic strategy in the treatment of conditions of ACTH excess. To this end, we screened an extensive library of low-molecular-weight drug-like compounds for MC2R antagonist activity using a high-throughput homogeneous time-resolved fluorescence cAMP assay in Chinese hamster ovary cells stably co-expressing human MC2R and MRAP. Hits that demonstrated MC2R antagonist properties were counter-screened against the β2 adrenergic receptor and dose–response analysis undertaken. This led to the identification of a highly specific MC2R antagonist capable of antagonising ACTH-induced progesterone release in murine Y-1 adrenal cells and having selectivity for MC2R amongst the human melanocortin receptors. This work provides a foundation for the clinical investigation of small-molecule ACTH antagonists as therapeutic agents and proof of concept for the screening and discovery of such compounds.

Open access
Meghnaa Hebbar College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom

Search for other papers by Meghnaa Hebbar in
Google Scholar
PubMed
Close
,
Halimah Khalil College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom

Search for other papers by Halimah Khalil in
Google Scholar
PubMed
Close
,
Nawal Zia College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom

Search for other papers by Nawal Zia in
Google Scholar
PubMed
Close
,
Jameela Sheikh College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom

Search for other papers by Jameela Sheikh in
Google Scholar
PubMed
Close
,
Eka Melson University of Leicester, Leicester, United Kingdom

Search for other papers by Eka Melson in
Google Scholar
PubMed
Close
,
Meri Davitadze Clinic NeoLab, Tbilisi, Georgia

Search for other papers by Meri Davitadze in
Google Scholar
PubMed
Close
,
Helena Gleeson Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom

Search for other papers by Helena Gleeson in
Google Scholar
PubMed
Close
,
Tejal Lathia Apollo Hospitals, Mumbai, India

Search for other papers by Tejal Lathia in
Google Scholar
PubMed
Close
,
Chitra Selvan Department of Endocrinology, M S Ramaiah Medical College, Bengaluru, India

Search for other papers by Chitra Selvan in
Google Scholar
PubMed
Close
,
Punith Kempegowda Clinic NeoLab, Tbilisi, Georgia
Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom

Search for other papers by Punith Kempegowda in
Google Scholar
PubMed
Close
, and
PCOS SEva Working Group
Search for other papers by PCOS SEva Working Group in
Google Scholar
PubMed
Close
PCOS SEva Working Group

With increasing evidence of emotional well-being disorders associated with polycystic ovary syndrome (PCOS), effective screening processes are of utmost importance. We studied the impact of using questionnaires to screen for emotional and psychosexual well-being across different models of care for PCOS. We analysed the data from the surveys to assess the difference in the prevalence of emotional and psychosexual ill-being across ethnicity and region. In this prospective cohort study, we invited all women attending consultations for PCOS in Birmingham, UK, and Bengaluru and Navi Mumbai, India. Those who consented to participate in the study were invited to complete a pre-clinic survey about socio-demographic data, Hospital Anxiety and Depression Scale (HADS), Body Image Concern Inventory (BICI), Beliefs about Obese Person scale (BAOP), and Female Sexual Function Index score (FSFI) and a post-clinic survey on clinic experience, lifestyle advice, and specialist referral. A total of 115 women were included in this study. The rate of questionnaire completion was 98.3% (113/115), 97.4% (112/115), 93.04% (107/115), and 84.3% (97/115) for HADS, BICI, BAOP, and FSFI, respectively. In the post-clinic survey, 28.8% reported they were screened for anxiety, 27.1% for depression, and 45.8% for body image concerns. The prevalence of anxiety, depression, and body dysmorphic disorder through pre-clinic survey was 56.5% (50.0% UK vs 59.5% India, P = 0.483), 16.5% (13.9% UK vs 17.7% India, P = 0.529), and 29.6% (36.1% UK vs 26.6% India, P = 0.208), respectively. Surveys with validated questionnaires can improve screening for emotional and psychosexual well-being associated with PCOS which may be missed by ad hoc screening during consultations.

Open access
Xiying Zeng The Third Clinical Medical College, Fujian Medical University, Fuzhou, China

Search for other papers by Xiying Zeng in
Google Scholar
PubMed
Close
,
Yinxiang Huang Department of Endocrinology and Diabetes, The First Affiliated Hospital, Xiamen University, Xiamen, China

Search for other papers by Yinxiang Huang in
Google Scholar
PubMed
Close
,
Mulin Zhang Department of Endocrinology and Diabetes, The First Affiliated Hospital, Xiamen University, Xiamen, China

Search for other papers by Mulin Zhang in
Google Scholar
PubMed
Close
,
Yun Chen The Third Clinical Medical College, Fujian Medical University, Fuzhou, China

Search for other papers by Yun Chen in
Google Scholar
PubMed
Close
,
Jiawen Ye The Third Clinical Medical College, Fujian Medical University, Fuzhou, China

Search for other papers by Jiawen Ye in
Google Scholar
PubMed
Close
,
Yan Han School of Medicine, Xiamen University, Xiamen, China

Search for other papers by Yan Han in
Google Scholar
PubMed
Close
,
Danyan Ma School of Medicine, Xiamen University, Xiamen, China

Search for other papers by Danyan Ma in
Google Scholar
PubMed
Close
,
Xin Zheng Department of Endocrinology and Diabetes, The First Affiliated Hospital, Xiamen University, Xiamen, China

Search for other papers by Xin Zheng in
Google Scholar
PubMed
Close
,
Xiaohong Yan Reproductive Medicine Center, The First Affiliated Hospital of Xiamen University, Xiamen, China

Search for other papers by Xiaohong Yan in
Google Scholar
PubMed
Close
, and
Changqin Liu The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
Department of Endocrinology and Diabetes, The First Affiliated Hospital, Xiamen University, Xiamen, China
Fujian Province Key Laboratory of Diabetes Translational Medicine, Xiamen, China

Search for other papers by Changqin Liu in
Google Scholar
PubMed
Close

Objective

Anti-Müllerian hormone (AMH) is recognized as the most important biomarker for ovarian reserve. In this cross-sectional study, we aimed to explore the potential association of AMH with central obesity or general obesity in women with polycystic ovary syndrome (PCOS).

Methods

In this cross-sectional study, 179 patients with PCOS were enrolled and underwent anthropometric measurements (BMI and waist circumference (WC)) and serum AMH level detection. Pearson’s correlation and multivariable logistic regression analyses were performed to determine the associations of AMH with central obesity and general obesity.

Results

Subjects with increasing BMI showed significantly lower values of AMH (median (interquartile range (IQR)) 8.95 (6.03–13.60) ng/mL in normal weight group, 6.57 (4.18–8.77) ng/mL in overweight group, and 6.03 (4.34–9.44) ng/mL in obesity group, P = 0.001), but higher levels of systolic blood pressure, fasting insulin, total cholesterol, triglycerides, LDL-c, obesity indices (WC, hip circumferences, waist-to-hip ratio, waist-to-height ratio (WHtR), and Chinese visceral adiposity index (CVAI)). Compared with the group of PCOS women without central obesity, the group with central obesity had significantly lower value of AMH (median (IQR) 8.56 (5.29–12.96) ng/mL vs 6.22 (4.33–8.82) ng/mL; P = 0.003). Pearson’s correlation analysis showed that AMH was significantly and negatively correlated with BMI (r = −0.280; P < 0.001), WC (r = −0.263; P < 0.001), WHtR (r = −0.273; P < 0.001), and CVAI (r = −0.211; P = 0.006). Multivariate logistic regression analysis with adjustment for potential confounding factors showed that AMH was independently and negatively associated with central obesity but was not significantly associated with general obesity.

Conclusions

AMH was independently and negatively associated with central obesity. Closely monitoring the WC and AMH should be addressed in terms of assessing ovarian reserve in women with PCOS.

Open access
Srdjan Pandurevic Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy

Search for other papers by Srdjan Pandurevic in
Google Scholar
PubMed
Close
,
Ilaria Mancini Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
Unit of Gynecology and Obstetrics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy

Search for other papers by Ilaria Mancini in
Google Scholar
PubMed
Close
,
Dimitri Mitselman Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy

Search for other papers by Dimitri Mitselman in
Google Scholar
PubMed
Close
,
Matteo Magagnoli Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy

Search for other papers by Matteo Magagnoli in
Google Scholar
PubMed
Close
,
Rita Teglia Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy

Search for other papers by Rita Teglia in
Google Scholar
PubMed
Close
,
Roberta Fazzeri Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy

Search for other papers by Roberta Fazzeri in
Google Scholar
PubMed
Close
,
Paola Dionese Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy

Search for other papers by Paola Dionese in
Google Scholar
PubMed
Close
,
Carolina Cecchetti Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy

Search for other papers by Carolina Cecchetti in
Google Scholar
PubMed
Close
,
Massimiliamo Caprio Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, Rome, Italy
Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, Rome, Italy

Search for other papers by Massimiliamo Caprio in
Google Scholar
PubMed
Close
,
Costanzo Moretti Department of Systems Medicine, Unit of Endocrinology, University of Rome Tor Vergata, Rome, Italy

Search for other papers by Costanzo Moretti in
Google Scholar
PubMed
Close
,
Justyna Sicinska Dermatology Clinic of CSK MSWiA Hospital, Warsaw, Poland

Search for other papers by Justyna Sicinska in
Google Scholar
PubMed
Close
,
Alessandro Agostini Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy

Search for other papers by Alessandro Agostini in
Google Scholar
PubMed
Close
,
Domenica Gazineo Teaching Hospital, S. Orsola Hospital, Bologna, Italy

Search for other papers by Domenica Gazineo in
Google Scholar
PubMed
Close
,
Lea Godino Teaching Hospital, S. Orsola Hospital, Bologna, Italy

Search for other papers by Lea Godino in
Google Scholar
PubMed
Close
,
Ignacio Sajoux Epigenomics in Endocrinology and Nutrition Group, Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), Spain
Medical Department Pronokal Group, Barcelona, Spain

Search for other papers by Ignacio Sajoux in
Google Scholar
PubMed
Close
,
Flaminia Fanelli Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy

Search for other papers by Flaminia Fanelli in
Google Scholar
PubMed
Close
,
Cristina M Meriggiola Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
Unit of Gynecology and Obstetrics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy

Search for other papers by Cristina M Meriggiola in
Google Scholar
PubMed
Close
,
Uberto Pagotto Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy

Search for other papers by Uberto Pagotto in
Google Scholar
PubMed
Close
, and
Alessandra Gambineri Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy

Search for other papers by Alessandra Gambineri in
Google Scholar
PubMed
Close

Objective

The aim of this study isto assess the efficacy of a very low-calorie ketogenic diet (VLCKD) method vs a Mediterranean low-calorie diet (LCD) in obese polycystic ovary syndrome (PCOS) women of a reproductive age.

Design

Randomized controlled open-label trial was performed in this study. The treatment period was 16 weeks; VLCKD for 8 weeks then LCD for 8 weeks, according to the Pronokal® method (experimental group; n = 15) vs Mediterranean LCD for 16 weeks (control group; n = 15). Ovulation monitoring was carried out at baseline and after 16 weeks, while a clinical exam, bioelectrical impedance analysis (BIA), anthropometry, and biochemical analyses were performed at baseline, at week 8, and at week 16.

Results

BMI decreased significantly in both groups and to a major extent in the experimental group (−13.7% vs −5.1%, P = 0.0003). Significant differences between the experimental and the control groups were also observed in the reduction of waist circumference (−11.4% vs −2.9%), BIA-measured body fat (−24.0% vs −8.1%), and free testosterone (−30.4% vs −12.6%) after 16 weeks (P = 0.0008, P = 0.0176, and P = 0.0009, respectively). Homeostatic model assessment for insulin resistance significantly decreased only in the experimental group (P = 0.0238) but without significant differences with respect to the control group (−23% vs −13.2%, P > 0.05). At baseline, 38.5% of participants in the experimental group and 14.3% of participants in the control group had ovulation, which increased to 84.6% (P = 0.031) and 35.7% (P > 0.05) at the end of the study, respectively.

Conclusion

In obese PCOS patients, 16 weeks of VLCKD protocol with the Pronokal® method was more effective than Mediterranean LCD in reducing total and visceral fat, and in ameliorating hyperandrogenism and ovulatory dysfunction.

Significance statements

To the best of our knowledge, this is the first randomized controlled trial on the use of the VLCKD method in obese PCOS. It demonstrates the superiority of VLCKD with respect to Mediterranean LCD in reducing BMI with an almost selective reduction of fat mass and a unique effect of VLCKD in reducing visceral adiposity, insulin resistance, and in increasing SHBG with a consequent reduction of free testosterone. Interestingly, this study also demonstrates the superiority of the VLCKD protocol in improving ovulation, whose occurrence increased by 46.1% in the group treated by the VLCKD method against a rise of 21.4% in the group treated by Mediterranean LCD. This study extends the therapeutic approach possibilities in obese PCOS women.

Open access
Elena Galazzi IRCSS Istituto Auxologico Italiano, Laboratory of Endocrine and Metabolic Research and Division of Endocrine and Metabolic Diseases, Milan, Italy
Department of Clinical Sciences and Community Health, Università degli Studi, Milan, Italy

Search for other papers by Elena Galazzi in
Google Scholar
PubMed
Close
,
Paolo Duminuco IRCSS Istituto Auxologico Italiano, Laboratory of Endocrine and Metabolic Research and Division of Endocrine and Metabolic Diseases, Milan, Italy

Search for other papers by Paolo Duminuco in
Google Scholar
PubMed
Close
,
Mirella Moro IRCSS Istituto Auxologico Italiano, Laboratory of Endocrine and Metabolic Research and Division of Endocrine and Metabolic Diseases, Milan, Italy

Search for other papers by Mirella Moro in
Google Scholar
PubMed
Close
,
Fabiana Guizzardi IRCSS Istituto Auxologico Italiano, Laboratory of Endocrine and Metabolic Research and Division of Endocrine and Metabolic Diseases, Milan, Italy

Search for other papers by Fabiana Guizzardi in
Google Scholar
PubMed
Close
,
Nicoletta Marazzi IRCSS Istituto Auxologico Italiano, Laboratory for Auxo-Endocrinological Research, Milan, Italy

Search for other papers by Nicoletta Marazzi in
Google Scholar
PubMed
Close
,
Alessandro Sartorio IRCSS Istituto Auxologico Italiano, Laboratory for Auxo-Endocrinological Research, Milan, Italy
Division of Auxology and Metabolic Diseases, IRCSS Istituto Auxologico Italiano, Piancavallo (VB), Italy

Search for other papers by Alessandro Sartorio in
Google Scholar
PubMed
Close
,
Sabrina Avignone Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, U.O.C Neuroradiologia, Milan, Italy

Search for other papers by Sabrina Avignone in
Google Scholar
PubMed
Close
,
Marco Bonomi IRCSS Istituto Auxologico Italiano, Laboratory of Endocrine and Metabolic Research and Division of Endocrine and Metabolic Diseases, Milan, Italy
Department of Clinical Sciences and Community Health, Università degli Studi, Milan, Italy

Search for other papers by Marco Bonomi in
Google Scholar
PubMed
Close
,
Luca Persani IRCSS Istituto Auxologico Italiano, Laboratory of Endocrine and Metabolic Research and Division of Endocrine and Metabolic Diseases, Milan, Italy
Department of Clinical Sciences and Community Health, Università degli Studi, Milan, Italy

Search for other papers by Luca Persani in
Google Scholar
PubMed
Close
, and
Maria Teresa Bonati IRCCS Istituto Auxologico Italiano, Service of Medical Genetics, Milan, Italy

Search for other papers by Maria Teresa Bonati in
Google Scholar
PubMed
Close

Ulnar-mammary syndrome (UMS) is characterized by ulnar defects, and nipple or apocrine gland hypoplasia, caused by TBX3 haploinsufficiency. Signs of hypogonadism were repeatedly reported, but the mechanisms remain elusive. We aim to assess the origin of hypogonadism in two families with UMS. UMS was suspected in two unrelated probands referred to an academic center with delayed puberty because of the evident ulnar ray and breast defects in their parents. Clinical, biochemical and genetic investigations proved the existence of congenital normosmic IHH (nIHH) associated with pituitary hypoplasia in the two probands who were heterozygous for novel TBX3 pathogenic variants. The mutations co-segregated with delayed puberty, midline defects (nose, teeth and tongue anomalies) and other variable features of UMS in the two families (absent axillary hairs and nipple hypoplasia, asymmetrical features including unilateral ulnar or renal abnormalities). The combined analysis of these findings and of the previous UMS reports showed delayed puberty and other signs of hypogonadism in 79 and 37% of UMS males, respectively. Proband 1 was followed up to adulthood with persistence of nIHH. In conclusion, UMS should be suspected in patients with delayed puberty and midline defects, including pituitary hypoplasia, in the presence of mild cues for TBX3 mutation, even in the absence of limb malformations. In addition, TBX3 should be included among candidate genes for congenital nIHH.

Open access
Rebeca Esquivel-Zuniga Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA

Search for other papers by Rebeca Esquivel-Zuniga in
Google Scholar
PubMed
Close
and
Alan D Rogol Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA

Search for other papers by Alan D Rogol in
Google Scholar
PubMed
Close

Hypogonadism is a clinical syndrome resulting from failure to produce physiological concentrations of sex steroid hormones with accompanying symptoms, such as slowed growth and delayed pubertal maturation. Hypogonadism may arise from gonadal disease (primary hypogonadism), dysfunction of the hypothalamic–pituitary axis (secondary hypogonadism) or functional hypogonadism. Disrupted puberty (delayed or absent) leading to hypogonadism can have a significant impact on both the physical and psychosocial well-being of adolescents with lasting effects. The diagnosis of hypogonadism in teenagers can be challenging as the most common cause of delayed puberty in both sexes is self-limited, also known as constitutional delay of growth and puberty (CDGP). Although an underlying congenital cause should always be considered in a teenager with hypogonadism, acquired conditions such as obesity, diabetes mellitus, other chronic diseases and medications have all been associated with low sex steroid hormone levels. In this review, we highlight some forms of functional hypogonadism in adolescents and the clinical challenges to differentiate normal variants from pathological states.

Open access
Shenglong Le Exercise, Health and Technology Centre, Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland

Search for other papers by Shenglong Le in
Google Scholar
PubMed
Close
,
Leiting Xu Medical School, Ningbo University, Ningbo, China

Search for other papers by Leiting Xu in
Google Scholar
PubMed
Close
,
Moritz Schumann Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
The Key Laboratory of Systems Biomedicine, Ministry of Education, and Exercise Translational Medicine Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Moritz Schumann in
Google Scholar
PubMed
Close
,
Na Wu Exercise, Health and Technology Centre, Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland

Search for other papers by Na Wu in
Google Scholar
PubMed
Close
,
Timo Törmäkangas Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland

Search for other papers by Timo Törmäkangas in
Google Scholar
PubMed
Close
,
Markku Alén Department of Medical Rehabilitation, Oulu University Hospital, Oulu, Finland

Search for other papers by Markku Alén in
Google Scholar
PubMed
Close
,
Sulin Cheng Exercise, Health and Technology Centre, Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
The Key Laboratory of Systems Biomedicine, Ministry of Education, and Exercise Translational Medicine Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Sulin Cheng in
Google Scholar
PubMed
Close
, and
Petri Wiklund Exercise, Health and Technology Centre, Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
Department of Epidemiology and Biostatistics, Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland

Search for other papers by Petri Wiklund in
Google Scholar
PubMed
Close

Background

The directional influences between serum sex hormone-binding globulin (SHBG), adiposity and insulin resistance during pubertal growth remain unclear. The aim of this study was to investigate bidirectional associations between SHBG and insulin resistance (HOMA-IR) and adiposity from childhood to early adulthood.

Methods

Participants were 396 healthy girls measured at baseline (age 11.2 years) and at 1, 2, 4 and 7.5 years. Serum concentrations of estradiol, testosterone and SHBG were determined by ELISA, glucose and insulin by enzymatic photometry, insulin-like growth factor 1 (IGF-1) by time-resolved fluoroimmunoassays, whole-body fat mass by dual-energy X-ray absorptiometry and HOMA-IR were determined by homeostatic model assessment. The associations were examined using cross-lagged path models.

Results

In a cross-lagged path model, SHBG predicted HOMA-IR before menarche β = −0.320 (95% CI: −0.552 to −0.089), P = 0.007, independent of adiposity and IGF-1. After menarche, no directional effect was found between SHBG and insulin resistance or adiposity.

Conclusions

Our results suggest that in early puberty, decline in SHBG predicts development of insulin resistance, independent of adiposity. However, after menarche, no directional influences between SHBG, adiposity and insulin resistance were found, suggesting that observational associations between SHBG, adiposity and insulin resistance in pubertal children may be subject to confounding. Further research is needed to understand the underlying mechanisms of the associations between SHBG and cardiometabolic risk markers in peripubertal children.

Open access