Search Results

You are looking at 11 - 20 of 255 items for

  • Abstract: Adrenal x
  • Abstract: Addisons x
  • Abstract: Adrenaline x
  • Abstract: Androgens x
  • Abstract: Catecholamines x
  • Abstract: hyperplasia x
  • Abstract: Cushings x
  • Abstract: Glucocorticoids x
  • Abstract: Medulla x
  • Abstract: Noradrenaline x
Clear All Modify Search
Tatiana V Novoselova Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK

Search for other papers by Tatiana V Novoselova in
Google Scholar
PubMed
Close
,
Peter J King Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK

Search for other papers by Peter J King in
Google Scholar
PubMed
Close
,
Leonardo Guasti Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK

Search for other papers by Leonardo Guasti in
Google Scholar
PubMed
Close
,
Louise A Metherell Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK

Search for other papers by Louise A Metherell in
Google Scholar
PubMed
Close
,
Adrian J L Clark Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK

Search for other papers by Adrian J L Clark in
Google Scholar
PubMed
Close
, and
Li F Chan Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK

Search for other papers by Li F Chan in
Google Scholar
PubMed
Close

The melanocortin-2-receptor (MC2R), also known as the ACTH receptor, is a critical component of the hypothalamic–pituitary–adrenal axis. The importance of MC2R in adrenal physiology is exemplified by the condition familial glucocorticoid deficiency (FGD), a potentially fatal disease characterised by isolated cortisol deficiency. MC2R mutations cause ~25% of cases. The discovery of a MC2R accessory protein MRAP, mutations of which account for ~20% of FGD, has provided insight into MC2R trafficking and signalling. MRAP is a single transmembrane domain accessory protein highly expressed in the adrenal gland and essential for MC2R expression and function. Mouse models helped elucidate the action of ACTH. The Mc2r-knockout (Mc2r / ) mice was the first mouse model developed to have adrenal insufficiency with deficiencies in glucocorticoid, mineralocorticoid and catecholamines. We recently reported the generation of the Mrap / mice which better mimics the human FGD phenotype with isolated glucocorticoid deficiency alone. The adrenal glands of adult Mrap / mice were grossly dysmorphic with a thickened capsule, deranged zonation and deranged WNT4/beta-catenin and sonic hedgehog (SHH) pathway signalling. Collectively, these mouse models of FGD highlight the importance of ACTH and MRAP in adrenal progenitor cell regulation, cortex maintenance and zonation.

Open access
Johan G Beun AdrenalNET, The Netherlands

Search for other papers by Johan G Beun in
Google Scholar
PubMed
Close
,
Pia Burman Department of Endocrinology, Skåne University Hospital, Lund University, Sweden

Search for other papers by Pia Burman in
Google Scholar
PubMed
Close
,
Olle Kämpe Department of Medicine (Solna), Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
Department of Endocrinology, Diabetes and Metabolism, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Olle Kämpe in
Google Scholar
PubMed
Close
,
Eystein S Husebye Department of Clinical Science, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway

Search for other papers by Eystein S Husebye in
Google Scholar
PubMed
Close
,
Stephanie Hahner Division of Endocrinology and Diabetes, University Hospital of Wuerzburg, Germany

Search for other papers by Stephanie Hahner in
Google Scholar
PubMed
Close
,
Jette Kristensen Addison Foreningen i Danmark, Denmark

Search for other papers by Jette Kristensen in
Google Scholar
PubMed
Close
,
Alida Noordzij AdrenalNET, The Netherlands

Search for other papers by Alida Noordzij in
Google Scholar
PubMed
Close
, and
Per Dahlqvist Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden

Search for other papers by Per Dahlqvist in
Google Scholar
PubMed
Close

Adrenal insufficiency is a life-threatening condition requiring chronic glucocorticoid replacement therapy, as well as stress adaptation to prevent adrenal crises. To increase patients’ self-sustainability, education on how to tackle an adrenal crisis is crucial. All patients should carry the European Emergency Card.

Open access
Muriel Houang Laboratoire des Explorations Fonctionnelles Endocriniennes, Hôpital Armand Trousseau, AP-HP Sorbonne Université, Paris, France

Search for other papers by Muriel Houang in
Google Scholar
PubMed
Close
,
Thao Nguyen-Khoa Centre Régional de Dépistage Néonatal-Ile de France, Hôpital Necker-Enfants Malades, AP-HP Centre Université de Paris, Paris, France

Search for other papers by Thao Nguyen-Khoa in
Google Scholar
PubMed
Close
,
Thibaut Eguether Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
Département de Métabolomique Clinique, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France

Search for other papers by Thibaut Eguether in
Google Scholar
PubMed
Close
,
Bettina Ribault Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
Département de Métabolomique Clinique, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France

Search for other papers by Bettina Ribault in
Google Scholar
PubMed
Close
,
Séverine Brabant Laboratoire d’Explorations Fonctionnelles, Hôpital Necker-Enfants Malades, AP-HP Centre Université de Paris, Paris, France

Search for other papers by Séverine Brabant in
Google Scholar
PubMed
Close
,
Michel Polak Centre Régional de Dépistage Néonatal-Ile de France, Hôpital Necker-Enfants Malades, AP-HP Centre Université de Paris, Paris, France
Université de Paris, INSERM, Institut IMAGINE, Hôpital Necker-Enfants Malades, AP-HP, Paris, France

Search for other papers by Michel Polak in
Google Scholar
PubMed
Close
,
Irène Netchine Laboratoire des Explorations Fonctionnelles Endocriniennes, Hôpital Armand Trousseau, AP-HP Sorbonne Université, Paris, France
Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
Hôpital Armand Trousseau, AP-HP Sorbonne Université, Paris, France

Search for other papers by Irène Netchine in
Google Scholar
PubMed
Close
, and
Antonin Lamazière Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
Département de Métabolomique Clinique, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France

Search for other papers by Antonin Lamazière in
Google Scholar
PubMed
Close

Neonatal screening for congenital adrenal hyperplasia (CAH) faces many specific challenges. It must be done using a performant analytical approach that combines sensitivity and specificity to capture the potential causes of mortality during the first week of life, such as salt wasting and glucocorticoid deficiency. Here, we confirm that maternal inhaled corticosteroid intake during pregnancy is a possible cause of missed CAH diagnosis. Thanks to liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis, we were able to quantify endogenous steroid metabolites and also detect the presence of exogenous steroids in the dried blood spot of a newborn. Adding LC-MS/MS analysis as second-tier test, especially one that includes both 17-hydroxyprogesterone and 21-deoxycortisol measurements, would probably improve CAH diagnosis. In familial neonatal screening one could also look for maternal corticosteroid therapies that are hidden to prevent false-negative tests.

Open access
Ditte Sofie Dahl Sørensen Department of Endocrinology and Metabolism, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Ditte Sofie Dahl Sørensen in
Google Scholar
PubMed
Close
,
Jesper Krogh Department of Endocrinology and Metabolism, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Jesper Krogh in
Google Scholar
PubMed
Close
,
Åse Krogh Rasmussen Department of Endocrinology and Metabolism, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Åse Krogh Rasmussen in
Google Scholar
PubMed
Close
, and
Mikkel Andreassen Department of Endocrinology and Metabolism, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Mikkel Andreassen in
Google Scholar
PubMed
Close

Background

There is no consensus regarding markers of optimal treatment or timing between glucocorticoid intake and assessment of hormone levels in the follow-up of female 21-hydroxylase deficient patients.

Objective

To examine visit-to-visit repeatability in levels of adrenal hormones in adult female patients, to identify predictors of repeatability in hormone levels and to examine concordance between levels of different adrenal hormones.

Method

All patients with confirmed 21-hydroxylase deficiency treated with glucocorticoids, were included. The two most recent blood samples collected on a stable dose of glucocorticoid replacement were compared. Complete concordance was defined as all measured adrenal hormones either within, below or above normal range evaluated in a single-day measurement.

Results

Sixty-two patients, median age of 35 (range 18–74) years were included. All hormone levels showed moderate to excellent repeatability with an intraclass correlation coefficient between 0.80 and 0.99. Repeatability of hormone levels was not affected by the use of long-acting glucocorticoids or time of day for blood sample collection. The median difference in time between the two sample collections was 1.5 (range 0–7.5) h. Complete concordance between 17-hydroxyprogesterone, androstenedione, and testosterone was found in 21% of cases.

Conclusion

During everyday, clinical practice hormone levels in adult female patients with 21-hydroxylase deficiency showed a moderate to excellent repeatability, despite considerable variation in time of day for blood sample collection. We found no major predictors of hormone level variation. Future studies are needed to address the relationship between the timing of glucocorticoid intake vs adrenal hormone levels and clinical outcome in both adults and children.

Open access
Sophie Howarth Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, UK
Department of Endocrinology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK

Search for other papers by Sophie Howarth in
Google Scholar
PubMed
Close
,
Luca Giovanelli Department of Endocrinology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK

Search for other papers by Luca Giovanelli in
Google Scholar
PubMed
Close
,
Catherine Napier Department of Endocrinology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK

Search for other papers by Catherine Napier in
Google Scholar
PubMed
Close
, and
Simon H Pearce Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, UK
Department of Endocrinology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK

Search for other papers by Simon H Pearce in
Google Scholar
PubMed
Close

Autoimmune Addison’s disease (AAD) is defined as primary adrenal insufficiency due to immune-mediated destruction of the adrenal cortex. This destruction of steroid-producing cells has historically been thought of as an irreversible process, with linear progression from an ACTH-driven compensated phase to overt adrenal insufficiency requiring lifelong glucocorticoid replacement. However, a growing body of evidence suggests that this process may be more heterogeneous than previously thought, with potential for complete or partial recovery of glucocorticoid secretion. Although patients with persistent mineralocorticoid deficiency despite preserved or recovered glucocorticoid function are anecdotally mentioned, few well-documented cases have been reported to date. We present three patients in the United Kingdom who further challenge the long-standing hypothesis that AAD is a progressive, irreversible disease process. We describe one patient with a 4-year history of mineralocorticoid-only Addison’s disease, a patient with spontaneous recovery of adrenal function and one patient with clinical features of adrenal insufficiency despite significant residual cortisol function. All three patients show varying degrees of mineralocorticoid deficiency, suggesting that recovery of zona fasciculata function in the adrenal cortex may occur independently to that of the zona glomerulosa. We outline the current evidence for heterogeneity in the natural history of AAD and discuss possible mechanisms for the recovery of adrenal function.

Open access
Paul-Martin Holterhus Department of Pediatrics I, Pediatric Endocrinology and Diabetology, University Hospital of Schleswig-Holstein, UKSH, Campus Kiel and Christian Albrechts University, CAU, Kiel, Germany

Search for other papers by Paul-Martin Holterhus in
Google Scholar
PubMed
Close
,
Alexandra Kulle Department of Pediatrics I, Pediatric Endocrinology and Diabetology, University Hospital of Schleswig-Holstein, UKSH, Campus Kiel and Christian Albrechts University, CAU, Kiel, Germany

Search for other papers by Alexandra Kulle in
Google Scholar
PubMed
Close
,
Anne-Marie Till Department of Pediatrics, Pediatric Hematology and Oncology, University Hospital of Schleswig-Holstein, UKSH, Campus Lübeck, Germany

Search for other papers by Anne-Marie Till in
Google Scholar
PubMed
Close
,
Caroline Stille Department of Pediatrics, Pediatric Hematology and Oncology, University Hospital of Schleswig-Holstein, UKSH, Campus Lübeck, Germany

Search for other papers by Caroline Stille in
Google Scholar
PubMed
Close
,
Tabea Lamprecht Department of Pediatrics I, Pediatric Endocrinology and Diabetology, University Hospital of Schleswig-Holstein, UKSH, Campus Kiel and Christian Albrechts University, CAU, Kiel, Germany

Search for other papers by Tabea Lamprecht in
Google Scholar
PubMed
Close
,
Simon Vieth Department of Pediatrics I, Pediatric Hematology and Oncology, University Hospital of Schleswig-Holstein, UKSH, Campus Kiel and Christian-Albrechts-University, CAU, Kiel, Germany

Search for other papers by Simon Vieth in
Google Scholar
PubMed
Close
, and
Melchior Lauten Department of Pediatrics, Pediatric Hematology and Oncology, University Hospital of Schleswig-Holstein, UKSH, Campus Lübeck, Germany

Search for other papers by Melchior Lauten in
Google Scholar
PubMed
Close

Glucocorticoids represent a key element in the treatment of pediatric acute lymphoblastic leukemia (ALL) and lead to adrenal suppression. We aimed to assess the differential response profile of adrenal steroids in children with ALL during BFM (Berlin–Frankfurt–Münster) induction treatment. Therefore, we performed liquid chromatography tandem–mass spectrometry (LC–MS/MS)-based steroid profiling of up to seven consecutive leftover morning serum samples derived from 11 patients (pts) with ALL before (day 0) and during induction therapy at days 1–5, 6–12, 13–26, 27–29, 30–35 and 36–40. 17-hydroxyprogesterone (17OHP), 11-deoxycortisol (11S), cortisol, 11-deoxycorticosterone (DOC), corticosterone and aldosterone were determined in parallel. Subsequently, steroid concentrations were normalized by multiples of median (MOM) to adequately consider pediatric age- and sex-specific reference ranges. MOM-cortisol and its precursors MOM–11S and MOM–17OHP were significantly suppressed by glucocorticoid treatment until day 29 (P < 8.06 × 10−10, P < 5.102 × 10−5, P < 0.0076, respectively). Cortisol recovered in one of four pts at days 27–29 and in two of five pts at days 36–40. Among the mineralocorticoids, corticosterone was significantly suppressed (P < 3.115 × 10−6). Aldosterone and DOC showed no significant changes when comparing day 0 to the treatment time points. However, two ALL patients with ICU treatment due to the sepsis showed significantly lower MOM–DOC (P = 0.006436) during that time and almost always the lowest aldosterone compared to all other time points. Suppression of mineralocorticoid precursors under high-dose glucocorticoid therapy suggests a functional cross talk of central glucocorticoid regulation and adrenal mineralocorticoid synthesis. Our data should stimulate prospective investigation to assess potential clinical relevance.

Open access
Kathrin Zopf Department of Endocrinology, Diabetes and Nutrition, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany

Search for other papers by Kathrin Zopf in
Google Scholar
PubMed
Close
,
Kathrin R Frey Department of Medicine I, Endocrine and Diabetes Unit, University Hospital, University of Würzburg, Würzburg, Germany

Search for other papers by Kathrin R Frey in
Google Scholar
PubMed
Close
,
Tina Kienitz Department of Endocrinology, Diabetes and Nutrition, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany

Search for other papers by Tina Kienitz in
Google Scholar
PubMed
Close
,
Manfred Ventz Department of Endocrinology, Diabetes and Nutrition, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany

Search for other papers by Manfred Ventz in
Google Scholar
PubMed
Close
,
Britta Bauer Endocrinology in Charlottenburg, Berlin, Germany

Search for other papers by Britta Bauer in
Google Scholar
PubMed
Close
, and
Marcus Quinkler Endocrinology in Charlottenburg, Berlin, Germany

Search for other papers by Marcus Quinkler in
Google Scholar
PubMed
Close

Context

Patients with primary adrenal insufficiency (PAI) or congenital adrenal hyperplasia (CAH) are at a high risk of adrenal crisis (AC). Glucocorticoid sensitivity is at least partially genetically determined by polymorphisms of the glucocorticoid receptor (GR).

Objectives

To determine if a number of intercurrent illnesses and AC are associated with the GR gene polymorphism BclI in patients with PAI and CAH.

Design and patients

This prospective, longitudinal study over 37.7 ± 10.1 months included 47 PAI and 25 CAH patients. During the study period, intercurrent illness episodes and AC were documented.

Results

The study period covered 223 patient years in which 21 AC occurred (9.4 AC/100 pat years). There were no significant differences between BclI polymorphisms (CC (n = 29), CG (n = 34) and GG (n = 9)) regarding BMI, hydrocortisone equivalent daily dose and blood pressure. We did not find a difference in the number of intercurrent illnesses/patient year among BclI polymorphisms (CC (1.5 ± 1.4/pat year), CG (1.2 ± 1.2/pat year) and GG (1.6 ± 2.2/pat year)). The occurrence of AC was not significantly different among the homozygous (GG) genotype (32.5 AC/100 pat years), the CC genotype (6.7 AC/100 pat years) and the CG genotype (4.9 AC/100 pat years). Concomitant hypothyroidism was the highest in the GG genotype group (5/9), compared to others (CC (11/29) and CG (11/34)).

Conclusions

Although sample sizes were relatively small and results should be interpreted with caution, this study suggests that the GR gene polymorphism BclI may not be associated with the frequencies of intercurrent illnesses and AC.

Open access
Masatada Watanabe Laboratory of Tissue Regeneration, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa, Tokyo, Japan

Search for other papers by Masatada Watanabe in
Google Scholar
PubMed
Close
,
Shuji Ohno Division of Research for Pharmacy Students Education, Hoshi University, Shinagawa, Tokyo, Japan

Search for other papers by Shuji Ohno in
Google Scholar
PubMed
Close
, and
Hiroshi Wachi Laboratory of Tissue Regeneration, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa, Tokyo, Japan

Search for other papers by Hiroshi Wachi in
Google Scholar
PubMed
Close

Emerging evidence suggests that sex steroids are important for human skin health. In particular, estrogen improves skin thickness, elasticity and moisture of older women. The major source of circulating estrogen is the ovary; however, local estrogen synthesis and secretion have important roles in, for example, bone metabolism and breast cancer development. We hypothesized that infiltrated peripheral monocytes are one of the sources of estrogen in skin tissues. We also hypothesized that, during atopic dermatitis under stress, a decline in the hypothalamus–pituitary–adrenal axis (HPA) and facilitation of the (hypothalamus)–sympathetic–adrenomedullary system (SAM) attenuates estrogen secretion from monocytes. Based on this hypothesis, we tested aromatase expression in the human peripheral monocyte-derived cell line THP-1 in response to the synthetic glucocorticoid dexamethasone (Dex), the synthetic β-agonist isoproterenol (Iso) and the β-antagonist propranolol (Pro). Dex mimics glucocorticoid secreted during excitation of the HPA, and Iso mimics catecholamine secreted during excitation of the SAM. We found that aromatase activity and the CYP19A1 gene transcript were both upregulated in THP-1 cells in the presence of Dex. Addition of Iso induced their downregulation and further addition of Pro rescued aromatase expression. These results may suggest that attenuation of estrogen secretion from peripheral monocytes could be a part of the pathology of stress-caused deterioration of atopic dermatitis. Further examination using an in vitro human skin model including THP-1 cells might be a valuable tool for investigating the therapeutic efficacy and mechanism of estrogen treatment for skin health.

Open access
Trine Holm Johannsen Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Trine Holm Johannsen in
Google Scholar
PubMed
Close
,
Jakob Albrethsen Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Jakob Albrethsen in
Google Scholar
PubMed
Close
,
Vassos Neocleous The Cyprus Institute of Neurology and Genetics, Department of Molecular Genetics, Function and Therapy, Nicosia, Cyprus

Search for other papers by Vassos Neocleous in
Google Scholar
PubMed
Close
,
Federico Baronio S. Orsola-Malpighi University Hospital, Department of Medical and Surgical Sciences, Bologna, Italy

Search for other papers by Federico Baronio in
Google Scholar
PubMed
Close
,
Martine Cools Department of Pediatrics, Division of Pediatric Endocrinology, Ghent University Hospital and Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium

Search for other papers by Martine Cools in
Google Scholar
PubMed
Close
,
Lise Aksglaede Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Lise Aksglaede in
Google Scholar
PubMed
Close
,
Niels Jørgensen Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Niels Jørgensen in
Google Scholar
PubMed
Close
,
Peter Christiansen Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Peter Christiansen in
Google Scholar
PubMed
Close
,
Meropi Toumba The Cyprus Institute of Neurology and Genetics, Department of Molecular Genetics, Function and Therapy, Nicosia, Cyprus
Pediatric Endocrinology Clinic, Department of Pediatrics, Aretaeio Hospital, Nicosia, Cyprus

Search for other papers by Meropi Toumba in
Google Scholar
PubMed
Close
,
Pavlos Fanis The Cyprus Institute of Neurology and Genetics, Department of Molecular Genetics, Function and Therapy, Nicosia, Cyprus

Search for other papers by Pavlos Fanis in
Google Scholar
PubMed
Close
,
Marie Lindhardt Ljubicic Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Marie Lindhardt Ljubicic in
Google Scholar
PubMed
Close
, and
Anders Juul Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Denmark

Search for other papers by Anders Juul in
Google Scholar
PubMed
Close

Congenital adrenal hyperplasia (CAH) is a recessive condition that affects the adrenal glands. Despite life-long replacement therapy with glucocorticoids and mineralocorticoids, adult patients with CAH often experience impaired gonadal function. In pubertal boys and in men with CAH, circulating testosterone is produced by the adrenal glands as well as the testicular, steroidogenic cells. In this European two-center study, we evaluated the function of Leydig and Sertoli cells in 61 boys and men with CAH, primarily due to 21-hydroxylase deficiency. Despite conventional hormone replacement therapy, our results indicated a significant reduction in serum concentrations of both Leydig cell-derived hormones (i.e. insulin-like factor 3 (INSL3) and testosterone) and Sertoli cell-derived hormones (i.e. inhibin B and anti-Müllerian hormone) in adult males with CAH. Serum concentrations of INSL3 were particularly reduced in those with testicular adrenal rest tumors. To our knowledge, this is the first study to evaluate circulating INSL3 as a candidate biomarker to monitor Leydig cell function in patients with CAH.

Open access
Sandra R Dahl Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway

Search for other papers by Sandra R Dahl in
Google Scholar
PubMed
Close
,
Ingrid Nermoen Institute of Clinical Medicine, University of Oslo, Oslo, Norway
Division of Medicine, Akershus University Hospital, Lørenskog, Norway

Search for other papers by Ingrid Nermoen in
Google Scholar
PubMed
Close
,
Ingeborg Brønstad National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
Department of Clinical Medicine, University of Bergen, Bergen, Norway

Search for other papers by Ingeborg Brønstad in
Google Scholar
PubMed
Close
,
Eystein S Husebye Department of Clinical Science, University of Bergen, Bergen, Norway
K.G. Jebsen-Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway

Search for other papers by Eystein S Husebye in
Google Scholar
PubMed
Close
,
Kristian Løvås Department of Clinical Science, University of Bergen, Bergen, Norway
K.G. Jebsen-Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway

Search for other papers by Kristian Løvås in
Google Scholar
PubMed
Close
, and
Per M Thorsby Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway

Search for other papers by Per M Thorsby in
Google Scholar
PubMed
Close

Immunoassays of steroid hormones are still used in the diagnosis and monitoring of patients with congenital adrenal hyperplasia. However, cross-reactivity between steroids can give rise to falsely elevated steroid levels. Here, we compare the use of immunoassays and liquid chromatography–tandem mass spectrometry (LC–MS/MS) in the monitoring of patients with classic 21-hydroxylase deficiency (21OHD). Steroid profiles in different mutation groups (genotypes) were also compared. Fifty-five patients with classic 21OHD (38 women) were studied. Blood samples were collected in the morning after an overnight medication fast. LC–MS/MS and immunoassays were employed to assay 17-hydroxyprogesterone (17OHP), testosterone and androstenedione. In addition, 21-deoxycortisol (21DF), 11-deoxycortisol (11DF), corticosterone, deoxycorticosterone, cortisone and cortisol were analyzed by LC–MS/MS. Testosterone, androstenedione and 17OHP levels were consistently lower (by about 30–50%) when measured by LC–MS/MS compared with immunoassays, with exception of testosterone in men. There was a significant correlation between 21DF and 17OHP (r = 0.87, P < 0.001), but three patients had undetectable 21DF. Subjects with no enzyme activity had significantly lower mean 11DF concentrations than subjects with residual activity. The use of LC–MS/MS gives a more specific view of adrenal steroid levels in 21OHD compared with immunoassays, which seem to considerably overestimate the levels of 17OHP and androstenedione. Falsely elevated levels of 17OHP and androstenedione could lead to overtreatment with glucocorticoids.

Open access