Search Results

You are looking at 1 - 10 of 238 items for

  • Abstract: Adrenal x
  • Abstract: Addisons x
  • Abstract: Adrenaline x
  • Abstract: Androgens x
  • Abstract: Catecholamines x
  • Abstract: hyperplasia x
  • Abstract: Cortex x
  • Abstract: Glucocorticoids x
  • Abstract: Medulla x
  • Abstract: Noradrenaline x
Clear All Modify Search
Huifei Sophia Zheng Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama

Search for other papers by Huifei Sophia Zheng in
Google Scholar
PubMed
Close
,
Jeffrey G Daniel Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama

Search for other papers by Jeffrey G Daniel in
Google Scholar
PubMed
Close
,
Julia M Salamat Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama

Search for other papers by Julia M Salamat in
Google Scholar
PubMed
Close
,
Laci Mackay Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama

Search for other papers by Laci Mackay in
Google Scholar
PubMed
Close
,
Chad D Foradori Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama

Search for other papers by Chad D Foradori in
Google Scholar
PubMed
Close
,
Robert J Kemppainen Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama

Search for other papers by Robert J Kemppainen in
Google Scholar
PubMed
Close
,
Satyanarayana R Pondugula Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama

Search for other papers by Satyanarayana R Pondugula in
Google Scholar
PubMed
Close
,
Ya-Xiong Tao Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama

Search for other papers by Ya-Xiong Tao in
Google Scholar
PubMed
Close
, and
Chen-Che Jeff Huang Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama

Search for other papers by Chen-Che Jeff Huang in
Google Scholar
PubMed
Close

Glucocorticoids have short- and long-term effects on adrenal gland function and development. RNA sequencing (RNA-seq) was performed to identify early transcriptomic responses to the synthetic glucocorticoid, dexamethasone (Dex), in vitro and in vivo. In total, 1711 genes were differentially expressed in the adrenal glands of the 1-h Dex-treated mice. Among them, only 113 were also considered differentially expressed genes (DEGs) in murine adrenocortical Y-1 cells treated with Dex for 1 h. Gene ontology analysis showed that the upregulated DEGs in the adrenal gland of the 1-h Dex-treated mice were highly associated with the development of neuronal cells, suggesting the adrenal medulla had a rapid response to Dex. Interestingly, only 4.3% of Dex-responsive genes in the Y-1 cell line under Dex treatment for 1 h were differentially expressed under Dex treatment for 24 h. The heatmaps revealed that most early responsive DEGs in Y-1 cells during 1 h of treatment exhibited a transient response. The expression of these genes under treatment for 24 h returned to basal levels similar to that during control treatment. In summary, this research compared the rapid transcriptomic effects of Dex stimulation in vivo and in vitro. Notably, adrenocortical Y-1 cells had a transient early response to Dex treatment. Furthermore, the DEGs had a minimal overlap in the 1-h Dex-treated group in vivo and in vitro.

Open access
Henrik Falhammar Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

Search for other papers by Henrik Falhammar in
Google Scholar
PubMed
Close
,
Magnus Kjellman Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
Department of Breast and Endocrine Surgery, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Magnus Kjellman in
Google Scholar
PubMed
Close
, and
Jan Calissendorff Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

Search for other papers by Jan Calissendorff in
Google Scholar
PubMed
Close

Background

With the increasing access to imaging more pheochromocytomas are diagnosed in the workup of adrenal incidentalomas. This may have changed the occurrence of the classic presentation with hypertension and the classic triad (headaches, sweating and palpitation).

Methods

We reviewed 94 consecutive cases of pheochromocytomas. Two cases of ectopic ACTH-syndrome were subsequently excluded.

Results

Of the 92 cases included 64% had presented as an incidentaloma, 32% as a suspected pheochromocytoma and 4% had been screened because of previously diagnosed MEN2A. Those screened were youngest while those with incidentalomas were oldest. The females were more common in the incidentaloma and the screening groups, and males in the suspected pheochromocytoma group. Measurements of noradrenaline/normetanephrine levels were highest in the suspected pheocromocytoma group and lowest in the screening group. Hypertension was present in 63% of the incidentalomas, 79% of suspected pheochromocytomas and in none of the screening group. Paroxysmal symptoms were present in almost all with suspected pheochromocytoma while only in half of the other groups. The suspected pheocromocytoma group had most symptoms and the screening group least. The classic triad was present in 14% of the incidentalomas, in 28% of the suspected and in none of the screening group, while no symptoms at all was present in 12%, 0% and 25%, respectively. Pheochromocytoma crisis occurred in 5%. There was a positive correlation between tumor size vs hormone levels, and catecholamine levels vs blood pressure.

Conclusion

Clinicians need to be aware of the modern presentation of pheochromocytomas since early identification can be life-saving.

Open access
Sophie Howarth Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, UK
Department of Endocrinology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK

Search for other papers by Sophie Howarth in
Google Scholar
PubMed
Close
,
Luca Giovanelli Department of Endocrinology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK

Search for other papers by Luca Giovanelli in
Google Scholar
PubMed
Close
,
Catherine Napier Department of Endocrinology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK

Search for other papers by Catherine Napier in
Google Scholar
PubMed
Close
, and
Simon H Pearce Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, UK
Department of Endocrinology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK

Search for other papers by Simon H Pearce in
Google Scholar
PubMed
Close

Autoimmune Addison’s disease (AAD) is defined as primary adrenal insufficiency due to immune-mediated destruction of the adrenal cortex. This destruction of steroid-producing cells has historically been thought of as an irreversible process, with linear progression from an ACTH-driven compensated phase to overt adrenal insufficiency requiring lifelong glucocorticoid replacement. However, a growing body of evidence suggests that this process may be more heterogeneous than previously thought, with potential for complete or partial recovery of glucocorticoid secretion. Although patients with persistent mineralocorticoid deficiency despite preserved or recovered glucocorticoid function are anecdotally mentioned, few well-documented cases have been reported to date. We present three patients in the United Kingdom who further challenge the long-standing hypothesis that AAD is a progressive, irreversible disease process. We describe one patient with a 4-year history of mineralocorticoid-only Addison’s disease, a patient with spontaneous recovery of adrenal function and one patient with clinical features of adrenal insufficiency despite significant residual cortisol function. All three patients show varying degrees of mineralocorticoid deficiency, suggesting that recovery of zona fasciculata function in the adrenal cortex may occur independently to that of the zona glomerulosa. We outline the current evidence for heterogeneity in the natural history of AAD and discuss possible mechanisms for the recovery of adrenal function.

Open access
Tatiana V Novoselova Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK

Search for other papers by Tatiana V Novoselova in
Google Scholar
PubMed
Close
,
Peter J King Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK

Search for other papers by Peter J King in
Google Scholar
PubMed
Close
,
Leonardo Guasti Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK

Search for other papers by Leonardo Guasti in
Google Scholar
PubMed
Close
,
Louise A Metherell Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK

Search for other papers by Louise A Metherell in
Google Scholar
PubMed
Close
,
Adrian J L Clark Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK

Search for other papers by Adrian J L Clark in
Google Scholar
PubMed
Close
, and
Li F Chan Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK

Search for other papers by Li F Chan in
Google Scholar
PubMed
Close

The melanocortin-2-receptor (MC2R), also known as the ACTH receptor, is a critical component of the hypothalamic–pituitary–adrenal axis. The importance of MC2R in adrenal physiology is exemplified by the condition familial glucocorticoid deficiency (FGD), a potentially fatal disease characterised by isolated cortisol deficiency. MC2R mutations cause ~25% of cases. The discovery of a MC2R accessory protein MRAP, mutations of which account for ~20% of FGD, has provided insight into MC2R trafficking and signalling. MRAP is a single transmembrane domain accessory protein highly expressed in the adrenal gland and essential for MC2R expression and function. Mouse models helped elucidate the action of ACTH. The Mc2r-knockout (Mc2r / ) mice was the first mouse model developed to have adrenal insufficiency with deficiencies in glucocorticoid, mineralocorticoid and catecholamines. We recently reported the generation of the Mrap / mice which better mimics the human FGD phenotype with isolated glucocorticoid deficiency alone. The adrenal glands of adult Mrap / mice were grossly dysmorphic with a thickened capsule, deranged zonation and deranged WNT4/beta-catenin and sonic hedgehog (SHH) pathway signalling. Collectively, these mouse models of FGD highlight the importance of ACTH and MRAP in adrenal progenitor cell regulation, cortex maintenance and zonation.

Open access
Ivar Følling Department of Endocrinology, Akershus University Hospital, Lørenskog, Norway
Institute of Clinical Medicine, University of Oslo, Oslo, Norway
Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway

Search for other papers by Ivar Følling in
Google Scholar
PubMed
Close
,
Anna B Wennerstrøm Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway

Search for other papers by Anna B Wennerstrøm in
Google Scholar
PubMed
Close
,
Tor J Eide Division of Laboratory Medicine, Department of Pathology, Oslo University Hospital, Oslo, Norway

Search for other papers by Tor J Eide in
Google Scholar
PubMed
Close
, and
Hilde Loge Nilsen Institute of Clinical Medicine, University of Oslo, Oslo, Norway
Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway

Search for other papers by Hilde Loge Nilsen in
Google Scholar
PubMed
Close

Introduction

Phaeochromocytomas are tumours originating in the medulla of the adrenal gland. They produce catecholamines, and some tumours also produce ectopic hormones. Two types of glucose imbalances occur in phaeochromocytoma patients, hyperglycaemia and hypoglycaemic attacks. Therefore, we tested whether insulin transcript (INS), insulin, and a hybrid read-through transcript between exons from insulin and insulin-like growth factor 2 (INS-IGF2) were expressed in phaeochromocytomas.

Methods

We measured the expression of insulin using immunohistochemistry. The expression of INS-IGF2 was determined by qRT-PCR in formalin-fixed and paraffin-embedded tissue from 20 phaeochromocytomas. The expression of INS and INS-IGF2 transcriptswas also analysed in 182 phaeochromocytomas and paragangliomas using publicly available datasets in The Cancer Genome Atlas (TCGA) Database.

Results

Of 20 phaeochromocytomas, 16 stained positive for insulin. The distribution of positive cells was mostly scattered, with some focal expression indicating clonal expansion. Nineteen tumours expressed high levels of INS and INS-IGF2 transcripts. The expression of the two transcripts corresponded closely. In the TCGA dataset, phaeochromocytoma expresses higher levels of INS and INS-IGF2 transcripts compared to the normal non-tumour adrenal glands. Thus, the expression of INS and INS-IGF2 seems to be a general phenomenon in phaeochromocytoma.

Conclusion

Most phaeochromocytomas contain cells that overexpress INS and INS-IGF2 transcripts. Most tumours also display heterogeneous expression of polypeptides immunoreactive to monoclonal anti-insulin antibodies. Clinically this may relate to both hyperglycaemia and hypoglycaemic attacks seen in patients with phaeochromocytoma as well as autocrine tumour growth.

Open access
Ailsa Maria Main Department of Medical Endocrinology and Metabolism, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark

Search for other papers by Ailsa Maria Main in
Google Scholar
PubMed
Close
,
Maria Rossing Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark

Search for other papers by Maria Rossing in
Google Scholar
PubMed
Close
,
Line Borgwardt Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark

Search for other papers by Line Borgwardt in
Google Scholar
PubMed
Close
,
Birgitte Grønkær Toft Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark

Search for other papers by Birgitte Grønkær Toft in
Google Scholar
PubMed
Close
,
Åse Krogh Rasmussen Department of Medical Endocrinology and Metabolism, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark

Search for other papers by Åse Krogh Rasmussen in
Google Scholar
PubMed
Close
, and
Ulla Feldt-Rasmussen Department of Medical Endocrinology and Metabolism, Copenhagen University Hospital, Rigshospitalet, and Faculty of Health, Institute of Clinical and Scientific Research, Copenhagen, Denmark

Search for other papers by Ulla Feldt-Rasmussen in
Google Scholar
PubMed
Close

Phaeochromocytomas and paragangliomas (PPGLs) are tumours of the adrenal medulla and extra-adrenal sympathetic nervous system which often secrete catecholamines. Variants of the SDHX (SDHA, -AF2, -B, -C, -D) genes are a frequent cause of familial PPGLs. In this study from a single tertiary centre, we aimed to characterise the genotype–phenotype associations in patients diagnosed with germline variants in SDHX genes. We also assessed whether systematic screening of family members resulted in earlier detection of tumours. The study cohort comprised all individuals (n = 59) diagnosed with a rare variant in SDHX during a 13-year period. Patient- and pathology records were checked for clinical characteristics and histopathological findings. We found distinct differences in the clinical and histopathological characteristics between genetic variants in SDHB. We identified two SDHB variants with distinct phenotypical patterns. Family screening for SDHB variants resulted in earlier detection of tumours in two families. Patients with SDHA, SDHC and SDHD variants also had malignant phenotypes, underlining the necessity for a broad genetic screening of the proband. Our study corroborates previous findings of poor prognostic markers and found that the genetic variants and clinical phenotype are linked and, therefore, useful in the decision of clinical follow-up. Regular tumour screening of carriers of pathogenic variants may lead to an earlier diagnosis and expected better prognosis. The development of a combined algorithm with clinical, genetic, morphological, and biochemical factors may be the future for improved clinical risk stratification, forming a basis for larger multi-centre follow up studies.

Open access
Janko Sattler Adrenal Steroid Group, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Department of Rheumatology and Clinical Immunology, Charité-University Medicine, Berlin, Germany

Search for other papers by Janko Sattler in
Google Scholar
PubMed
Close
,
Jinwen Tu Adrenal Steroid Group, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Concord Clinical School, The University of Sydney, Sydney, Australia

Search for other papers by Jinwen Tu in
Google Scholar
PubMed
Close
,
Shihani Stoner Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia

Search for other papers by Shihani Stoner in
Google Scholar
PubMed
Close
,
Jingbao Li Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Shaanxi, China

Search for other papers by Jingbao Li in
Google Scholar
PubMed
Close
,
Frank Buttgereit Department of Rheumatology and Clinical Immunology, Charité-University Medicine, Berlin, Germany

Search for other papers by Frank Buttgereit in
Google Scholar
PubMed
Close
,
Markus J Seibel Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Concord Clinical School, The University of Sydney, Sydney, Australia
Department of Endocrinology & Metabolism, Concord Hospital, Sydney, Australia

Search for other papers by Markus J Seibel in
Google Scholar
PubMed
Close
,
Hong Zhou Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Concord Clinical School, The University of Sydney, Sydney, Australia

Search for other papers by Hong Zhou in
Google Scholar
PubMed
Close
, and
Mark S Cooper Adrenal Steroid Group, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Concord Clinical School, The University of Sydney, Sydney, Australia
Department of Endocrinology & Metabolism, Concord Hospital, Sydney, Australia

Search for other papers by Mark S Cooper in
Google Scholar
PubMed
Close

Patients with chronic immune-mediated arthritis exhibit abnormal hypothalamo-pituitary-adrenal (HPA) axis activity. The basis for this abnormality is not known. Immune-mediated arthritis is associated with increased extra-adrenal synthesis of active glucocorticoids by the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme. 11β-HSD1 is expressed in the central nervous system, including regions involved in HPA axis regulation. We examined whether altered 11β-HSD1 expression within these regions contributes to HPA axis dysregulation during arthritis. The expression of 11β-HSD1, and other components of glucocorticoid signaling, were examined in various brain regions and the pituitary gland of mice with experimentally induced arthritis. Two arthritis protocols were employed: The K/BxN spontaneous arthritis model for chronic arthritis and the K/BxN serum transfer arthritis model for acute arthritis. 11β-HSD1 mRNA (Hsd11b1) was expressed in the hippocampus, hypothalamus, cortex, cerebellum and pituitary gland. Hypothalamic Hsd11b1 expression did not change in response to arthritis in either model. Pituitary Hsd11b1 expression was however significantly increased in both chronic and acute arthritis models. Hippocampal Hsd11b1 was decreased in acute but not chronic arthritis. Chronic, but not acute, arthritis was associated with a reduction in hypothalamic corticotropin-releasing hormone and arginine vasopressin expression. In both models, serum adrenocorticotropic hormone and corticosterone levels were no different from non-inflammatory controls. These findings demonstrate inflammation-dependent regulation of Hsd11b1 expression in the pituitary gland and hippocampus. The upregulation of 11β-HSD1 expression in the pituitary during both chronic and acute arthritis, and thus, an increase in glucocorticoid negative feedback, could contribute to the abnormalities in HPA axis activity seen in immune-mediated arthritis.

Open access
Yiqiang Huang Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Yiqiang Huang in
Google Scholar
PubMed
Close
,
Lin-ang Wang Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Lin-ang Wang in
Google Scholar
PubMed
Close
,
Qiubo Xie Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Qiubo Xie in
Google Scholar
PubMed
Close
,
Jian Pang Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Jian Pang in
Google Scholar
PubMed
Close
,
Luofu Wang Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Luofu Wang in
Google Scholar
PubMed
Close
,
Yuting Yi Geneplus-Beijing Institute, Beijing, People’s Republic of China

Search for other papers by Yuting Yi in
Google Scholar
PubMed
Close
,
Jun Zhang Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Jun Zhang in
Google Scholar
PubMed
Close
,
Yao Zhang Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Yao Zhang in
Google Scholar
PubMed
Close
,
Rongrong Chen Geneplus-Beijing Institute, Beijing, People’s Republic of China

Search for other papers by Rongrong Chen in
Google Scholar
PubMed
Close
,
Weihua Lan Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Weihua Lan in
Google Scholar
PubMed
Close
,
Dianzheng Zhang Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA

Search for other papers by Dianzheng Zhang in
Google Scholar
PubMed
Close
, and
Jun Jiang Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Search for other papers by Jun Jiang in
Google Scholar
PubMed
Close

Pheochromocytoma and paragangliomas (PCC/PGL) are neuroendocrine tumors that arise from chromaffin cells of the adrenal medulla and sympathetic/parasympathetic ganglia, respectively. Of clinical relevance regarding diagnosis is the highly variable presentation of symptoms in PCC/PGL patients. To date, the clear-cut correlations between the genotypes and phenotypes of PCC/PGL have not been entirely established. In this study, we reviewed the medical records of PCC/PGL patients with pertinent clinical, laboratory and genetic information. Next-generation sequencing (NGS) performed on patient samples revealed specific germline mutations in the SDHB (succinate dehydrogenase complex iron-sulfur subunit B) and SDHD (succinate dehydrogenase complex subunit D) genes and these mutations were validated by Sanger sequencing. Of the 119 patients, two were identified with SDHB mutation and one with SDHD mutation. Immunohistochemical (IHC) staining was used to analyze the expression of these mutated genes. The germline mutations identified in the SDH genes were c343C>T and c.541-542A>G in the SDHB gene and c.334-337delACTG in the SDHD gene. IHC staining of tumors from the c.343C>T and c.541-2A>G carriers showed positive expression of SDHB. Tumors from the c.334-337delACTG carrier showed no expression of SDHD and a weak diffused staining pattern for SDHB. We strongly recommend genetic testing for suspected PCC/PGL patients with a positive family history, early onset of age, erratic hypertension, recurrence or multiple tumor sites and loss of SDHB and/or SDHD expression. Tailored personal management should be conducted once a patient is confirmed as an SDHB and/or SDHD mutation carrier or diagnosed with PCC/PGL.

Open access
Annelies van’t Westeinde Department of Women’s and Children’s Health, Karolinska Institutet and Division of Pediatrics, Unit for Pediatric Endocrinology and Metabolic Disorders, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Annelies van’t Westeinde in
Google Scholar
PubMed
Close
,
Leif Karlsson Department of Women’s and Children’s Health, Karolinska Institutet and Division of Pediatrics, Unit for Pediatric Endocrinology and Metabolic Disorders, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Leif Karlsson in
Google Scholar
PubMed
Close
,
Valeria Messina Department of Women’s and Children’s Health, Karolinska Institutet and Division of Pediatrics, Unit for Pediatric Endocrinology and Metabolic Disorders, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Valeria Messina in
Google Scholar
PubMed
Close
,
Lena Wallensteen Department of Women’s and Children’s Health, Karolinska Institutet and Division of Pediatrics, Unit for Pediatric Endocrinology and Metabolic Disorders, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Lena Wallensteen in
Google Scholar
PubMed
Close
,
Manuela Brösamle European Patient Advocacy Group for Adrenal Diseases, European Reference Network on Rare Endocrine Conditions (Endo ERN), Endo ERN Coordinating Centre, Leiden, The Netherlands

Search for other papers by Manuela Brösamle in
Google Scholar
PubMed
Close
,
Giorgio Dal Maso ArfSAG (Associazione Refionale Famiglie Sindrome Adreno Genitale) c/o Unita Operativa di Pediatria, Azienda Ospedaliero Universitaria di Bologna, Policlinico S Orsala-Malpighi, Bologna, Italy

Search for other papers by Giorgio Dal Maso in
Google Scholar
PubMed
Close
,
Alessandro Lazzerini Spanish Association of Congenital Adrenal Hyperplasia (CAH), Spain

Search for other papers by Alessandro Lazzerini in
Google Scholar
PubMed
Close
,
Jette Kristensen ePAG & Chair of Danish Addison Patient Association, Aarhus, Denmark

Search for other papers by Jette Kristensen in
Google Scholar
PubMed
Close
,
Diana Kwast Dutch Adrenal Society NVACP, Nijkerk, The Netherlands

Search for other papers by Diana Kwast in
Google Scholar
PubMed
Close
,
Lea Tschaidse Department of Endocrinology, Medizinische Klinik IV, Klinikum der Universität München, Munich, Germany

Search for other papers by Lea Tschaidse in
Google Scholar
PubMed
Close
,
Matthias K Auer Department of Endocrinology, Medizinische Klinik IV, Klinikum der Universität München, Munich, Germany

Search for other papers by Matthias K Auer in
Google Scholar
PubMed
Close
,
Hanna F Nowotny Department of Endocrinology, Medizinische Klinik IV, Klinikum der Universität München, Munich, Germany

Search for other papers by Hanna F Nowotny in
Google Scholar
PubMed
Close
,
Luca Persani Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy

Search for other papers by Luca Persani in
Google Scholar
PubMed
Close
,
Nicole Reisch Department of Endocrinology, Medizinische Klinik IV, Klinikum der Universität München, Munich, Germany

Search for other papers by Nicole Reisch in
Google Scholar
PubMed
Close
, and
Svetlana Lajic Department of Women’s and Children’s Health, Karolinska Institutet and Division of Pediatrics, Unit for Pediatric Endocrinology and Metabolic Disorders, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Svetlana Lajic in
Google Scholar
PubMed
Close

First-trimester prenatal treatment with glucocorticoid (GC) dexamethasone (DEX) in pregnancies at risk for classic congenital adrenal hyperplasia (CAH) is associated with ethical dilemmas. Though effective in reducing virilisation in girls with CAH, it entails exposure to high doses of GC in fetuses that do not benefit from the treatment. The current paper provides an update on the literature on outcomes of prenatal DEX treatment in CAH cases and unaffected subjects. Long-term follow-up research is still needed to determine treatment safety. In addition, advances in early prenatal diagnostics for CAH and sex-typing as well as studies assessing dosing effects of DEX may avoid unnecessary treatment and improve treatment safety.

Open access
Peter Ergang Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Search for other papers by Peter Ergang in
Google Scholar
PubMed
Close
,
Anna Mikulecká Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Search for other papers by Anna Mikulecká in
Google Scholar
PubMed
Close
,
Martin Vodicˇka Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic

Search for other papers by Martin Vodicˇka in
Google Scholar
PubMed
Close
,
Karla Vagnerová Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Search for other papers by Karla Vagnerová in
Google Scholar
PubMed
Close
,
Ivan Mikšík Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Search for other papers by Ivan Mikšík in
Google Scholar
PubMed
Close
, and
Jirˇí Pácha Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic

Search for other papers by Jirˇí Pácha in
Google Scholar
PubMed
Close

Stress is an important risk factors for human diseases. It activates the hypothalamic–pituitary–adrenal (HPA) axis and increases plasma glucocorticoids, which are powerful regulators of immune system. The response of the target cells to glucocorticoids depends not only on the plasma concentrations of cortisol and corticosterone but also on their local metabolism. This metabolism is catalyzed by 11β-hydroxysteroid dehydrogenases type 1 and 2, which interconvert glucocorticoid hormones cortisol and corticosterone and their 11-oxo metabolites cortisone and 11-dehydrocorticosterone. The goal of this study was to determine whether stress modulates glucocorticoid metabolism within lymphoid organs – the structures where immune cells undergo development and activation. Using the resident-intruder paradigm, we studied the effect of social stress on glucocorticoid metabolism in primary and secondary lymphoid organs of Fisher 344 (F344) and Lewis (LEW) rats, which exhibit marked differences in their HPA axis response to social stressors and inflammation. We show that repeated social defeat increased the regeneration of corticosterone from 11-dehydrocorticosterone in the thymus, spleen and mesenteric lymphatic nodes (MLN). Compared with the F344 strain, LEW rats showed higher corticosterone regeneration in splenocytes of unstressed rats and in thymic and MLN mobile cells after stress but corticosterone regeneration in the stroma of all lymphoid organs was similar in both strains. Inactivation of corticosterone to 11-dehydrocorticosterone was found only in the stroma of lymphoid organs but not in mobile lymphoid cells and was not upregulated by stress. Together, our findings demonstrate the tissue- and strain-dependent regeneration of glucocorticoids following social stress.

Open access