Search Results
You are looking at 41 - 50 of 255 items for
- Abstract: Adrenal x
- Abstract: Addisons x
- Abstract: Adrenaline x
- Abstract: Androgens x
- Abstract: Catecholamines x
- Abstract: hyperplasia x
- Abstract: Cortex x
- Abstract: Cushings x
- Abstract: Glucocorticoids x
- Abstract: Medulla x
- Abstract: Noradrenaline x
Search for other papers by Boni Xiang in
Google Scholar
PubMed
Search for other papers by Ran Tao in
Google Scholar
PubMed
Search for other papers by Xinhua Liu in
Google Scholar
PubMed
Search for other papers by Xiaoming Zhu in
Google Scholar
PubMed
Search for other papers by Min He in
Google Scholar
PubMed
Search for other papers by Zengyi Ma in
Google Scholar
PubMed
Search for other papers by Yehong Yang in
Google Scholar
PubMed
Search for other papers by Zhaoyun Zhang in
Google Scholar
PubMed
Search for other papers by Yiming Li in
Google Scholar
PubMed
Search for other papers by Zhenwei Yao in
Google Scholar
PubMed
Search for other papers by Yongfei Wang in
Google Scholar
PubMed
Search for other papers by Hongying Ye in
Google Scholar
PubMed
Objective
The aim of this study was to evaluate thyroid functions in Cushing’s syndrome (CS), the dynamic changes of thyroid hormones and antithyroid antibodies in Cushing’s disease (CD) pre- and postoperatively.
Design and methods
This is a retrospective study enrolling 118 patients with CS (102 CD, 10 adrenal CS and 6 ectopic adrenocorticotropic syndrome (EAS)). Thyroid functions (thyroid-stimulation hormone (TSH), T3, free T3 (FT3), T4 and free T4 (FT4)) were measured in all CS at the time of diagnosis and in all CD 3 months after transsphenoidal pituitary tumor resection. Postoperative hormone monitoring within 3 months was conducted in 9 CD patients completing remission. Twenty-eight remitted CD patients experienced hormone and antithyroid antibody evaluation preoperatively and on the 3rd, 6th and 12th month after surgery.
Results
TSH, T3 and FT3 were below the reference range in 31%, 69% and 44% of the 118 CS patients. Remitted CD patients (81/102) had significantly higher TSH (P = 0.000), T3 (P = 0.000) and FT3 (P = 0.000) than those in the non-remission group (21/102). After remission of CD, TSH, T3 and FT3 showed a significant increase, with a few cases above the reference range. By 12 months, most CD patients’ thyroid functions returned to normal. Thyroid hormones (including TSH, T3 and FT3) were negatively associated with serum cortisol levels both before and after surgery. No significant changes of antithyroid autoantibodies were observed.
Conclusions
TSH, T3 and FT3 are suppressed in endogenous hypercortisolemia. After remission of CD, TSH, T3 and FT3 increased significantly, even above the reference range, but returned to normal 1 year after surgery in most cases. Antithyroid antibodies did not change significantly after remission of CD.
Search for other papers by Deirdre Green in
Google Scholar
PubMed
Search for other papers by Rosemary Dineen in
Google Scholar
PubMed
Search for other papers by Michael W O’Reilly in
Google Scholar
PubMed
Search for other papers by Mark Sherlock in
Google Scholar
PubMed
Despite the availability of adrenal hormone replacement therapy, patients with adrenal insufficiency can be affected by reduced fertility and parity. Patients with well-managed adrenal insufficiency are expected to have uneventful pregnancies and favourable outcomes, but an increased risk of maternal and neonatal complications has been reported in some cases. Many physiological changes occur to the hypothalamic–pituitary–adrenal (HPA) axis during pregnancy, often making a new diagnosis and management of adrenal insufficiency challenging. The management of adrenal insufficiency also needs to reflect the physiologic changes of pregnancy, often requiring increased doses of glucocorticoid as pregnancy progresses and in some circumstances mineralocorticoid replacement (in primary adrenal insufficiency patients only), especially in the third trimester. To date, there are no prospective data guiding management of adrenal insufficiency in pregnancy. In this review, we focus on the impact of adrenal insufficiency on fertility and parity based on the aetiology of adrenal insufficiency and provide a practical approach to the management of patients with adrenal insufficiency before and during pregnancy.
Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
Search for other papers by Margret J Einarsdottir in
Google Scholar
PubMed
Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
Search for other papers by Penelope Trimpou in
Google Scholar
PubMed
Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
Search for other papers by Gudmundur Johannsson in
Google Scholar
PubMed
Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
Search for other papers by Oskar Ragnarsson in
Google Scholar
PubMed
Objective
It is unknown whether glucocorticoid (GC)-induced adrenal insufficiency may cause premature mortality in GC users. We conducted a retrospective cohort study to investigate if undiagnosed and undertreated GC-induced adrenal insufficiency is a contributor to premature death in GC users.
Methods
Information on dispensed prescriptions in West Sweden from 2007 to 2014 was obtained from the Swedish Prescribed Drug Register. Cause of death was collected from the Swedish Cause of Death Register. Of 223,211 patients who received oral GC prescriptions, 665 died from sepsis within 6 months of their last prescription. Three hundred of these patients who had died in hospital were randomly selected for further investigation. Medical records were initially reviewed by one investigator. Furthermore, two additional investigators reviewed the medical records of patients whose deaths were suspected to be caused by GC-induced adrenal insufficiency.
Results
Of 300 patients (121 females, 40%), 212 (75%) were prescribed GC treatment at admission. The mean age was 76 ± 11 years (range 30–99). Undiagnosed or undertreated GC-induced adrenal insufficiency was considered a probable contributor to death by at least two investigators in 11 (3.7%) patients. In five of these 11 cases, long-term GC therapy was abruptly discontinued during hospitalization. Undiagnosed or undertreated GC-induced adrenal insufficiency was considered a possible contributing factor to death in a further 36 (12%) patients.
Conclusion
GC-induced adrenal insufficiency is an important contributor to premature death in GC users. Awareness of the disorder during intercurrent illness and following cessation of GC treatment is essential.
Search for other papers by Fiona Broughton Pipkin in
Google Scholar
PubMed
Search for other papers by Hiten D Mistry in
Google Scholar
PubMed
Search for other papers by Chandrima Roy in
Google Scholar
PubMed
Search for other papers by Bernhard Dick in
Google Scholar
PubMed
Search for other papers by Jason Waugh in
Google Scholar
PubMed
Search for other papers by Rebecca Chikhi in
Google Scholar
PubMed
Search for other papers by Lesia O Kurlak in
Google Scholar
PubMed
Search for other papers by Markus G Mohaupt in
Google Scholar
PubMed
Pre-eclampsia leads to disturbed fetal organ development, including metabolic syndrome, attributed to altered pituitary-adrenal feedback loop. We measured cortisol metabolites in infants born from pre-eclamptic and normotensive women and hypothesised that glucocorticoid exposure would be exaggerated in the former. Twenty-four hour urine was collected from infants at months 3 and 12. Cortisol metabolites and apparent enzyme activities were analysed by gas chromatography-mass spectrometry. From 3 to 12 months, excretion of THS, THF and pregnandiol had risen in both groups; THF also rose in the pre-eclamptic group. No difference was observed with respect to timing of the visit or to hypertensive status for THE or total F metabolites (P>0.05). All apparent enzymes activities, except 17α-hydroxylase, were lower in infants at 12 compared to 3 months in the normotensive group. In the pre-eclamptic group, only 11β-HSD activities were lower at 12 months.17α-hydroxylase and 11β-HSD activities of tetrahydro metabolites were higher in the pre-eclamptic group at 3 months (P<0.05). 11β-hydroxylase activity increased in the pre-eclamptic group at 12 months. Cortisol excretion, determined by increased 11β-hydroxylase, compensates for high 11β-HSD-dependent cortisol degradation at 3 months and at 12 months counterbalances the reduced cortisol substrate availability in infants born from pre-eclamptic mothers.
Department of Clinical Science, Department of Medicine, University of Bergen, N-5021 Bergen, Norway
Search for other papers by Paal Methlie in
Google Scholar
PubMed
Search for other papers by Steinar Hustad in
Google Scholar
PubMed
Search for other papers by Ralf Kellman in
Google Scholar
PubMed
Search for other papers by Bjørg Almås in
Google Scholar
PubMed
Search for other papers by Martina M Erichsen in
Google Scholar
PubMed
Department of Clinical Science, Department of Medicine, University of Bergen, N-5021 Bergen, Norway
Search for other papers by Eystein S Husebye in
Google Scholar
PubMed
Department of Clinical Science, Department of Medicine, University of Bergen, N-5021 Bergen, Norway
Search for other papers by Kristian Løvås in
Google Scholar
PubMed
Objective
Liquid chromatography–tandem mass spectrometry (LC–MS/MS) offers superior analytical specificity compared with immunoassays, but it is not available in many regions and hospitals due to expensive instrumentation and tedious sample preparation. Thus, we developed an automated, high-throughput LC–MS/MS assay for simultaneous quantification of ten endogenous and synthetic steroids targeting diseases of the hypothalamic–pituitary–adrenal axis and gonads.
Methods
Deuterated internal standards were added to 85 μl serum and processed by liquid–liquid extraction. Cortisol, cortisone, prednisolone, prednisone, 11-deoxycortisol, dexamethasone, testosterone, androstenedione and progesterone were resolved by ultra-high-pressure chromatography on a reversed-phase column in 6.1 min and detected by triple-quadrupole mass spectrometry. The method was used to assess steroid profiles in women with Addison's disease (AD, n=156) and blood donors (BDs, n=102).
Results
Precisions ranged from 4.5 to 10.1% relative standard deviations (RSD), accuracies from 95 to 108% and extraction recoveries from 60 to 84%. The method was practically free of matrix effects and robust to individual differences in serum composition. Most postmenopausal AD women had extremely low androstenedione concentrations, below 0.14 nmol/l, and median testosterone concentrations of 0.15 nmol/l (interquartile range 0.00–0.41), considerably lower than those of postmenopausal BDs (1.28 nmol/l (0.96–1.64) and 0.65 nmol/l (0.56–1.10) respectively). AD women in fertile years had androstenedione concentrations of 1.18 nmol/l (0.71–1.76) and testosterone concentrations of 0.44 nmol/l (0.22–0.63), approximately half of those found in BDs of corresponding age.
Conclusion
This LC–MS/MS assay provides highly sensitive and specific assessments of glucocorticoids and androgens with low sample volumes and is suitable for endocrine laboratories and research. Its utility has been demonstrated in a large cohort of women with AD, and the data suggest that women with AD are particularly androgen deficient after menopause.
Search for other papers by Yiyan Wang in
Google Scholar
PubMed
Search for other papers by Yaoyao Dong in
Google Scholar
PubMed
Search for other papers by Yinghui Fang in
Google Scholar
PubMed
Search for other papers by Yao Lv in
Google Scholar
PubMed
Search for other papers by Qiqi Zhu in
Google Scholar
PubMed
Search for other papers by Xiaoheng Li in
Google Scholar
PubMed
Search for other papers by Qingquan Lian in
Google Scholar
PubMed
Search for other papers by Ren-Shan Ge in
Google Scholar
PubMed
Glucocorticoid hormone might cause intrauterine growth restriction. The glucocorticoid-metabolizing enzyme 11β-hydroxysteroid dehydrogenase 2 (HSD11B2) in the placenta eliminates excess levels of glucocorticoids during pregnancy. The aim of the current study was to define the effects of diethylstilbestrol (DES) on HSD11B2 activity in the mammalian placentas and identify its mode of action. Rat and human placental microsomal HSD11B2 were incubated with different concentrations of DES, and IC50 values were determined. The mode of action was analyzed by incubation of DES together with substrates, glucocorticoid and NAD+. DES suppressed rat and human HSD11B2 with IC50 values of 5.33 and 12.62 μM, respectively. DES was a competitive inhibitor of rat and human HSD11B2 when steroid substrates were added, while it was an uncompetitive inhibitor when cofactor NAD+ was exposed. Oral administration of DES (0.5 mg/kg) to the rat delayed the cortisol metabolism in adult female Sprague–Dawley rats, as indicated by the increases in cortisol’s elimination half-life, maximum concentration and area under the curve. In conclusion, DES is a potent HSD11B2 inhibitor, possibly contributing to the intrauterine growth restriction.
Department of Medicine, Haukeland University Hospital, Bergen, Norway
Search for other papers by Grethe Å Ueland in
Google Scholar
PubMed
Search for other papers by Thea Grinde in
Google Scholar
PubMed
Department of Medicine, Haukeland University Hospital, Bergen, Norway
K. G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Search for other papers by Paal Methlie in
Google Scholar
PubMed
Search for other papers by Oskar Kelp in
Google Scholar
PubMed
K. G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Search for other papers by Kristian Løvås in
Google Scholar
PubMed
Department of Medicine, Haukeland University Hospital, Bergen, Norway
K. G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Search for other papers by Eystein S Husebye in
Google Scholar
PubMed
Objective:
Autonomous cortisol secretion (ACS) is a condition with ACTH-independent cortisol overproduction from adrenal incidentalomas (AI) or adrenal hyperplasia. The hypercortisolism is often mild, and most patients lack typical clinical features of overt Cushing’s syndrome (CS). ACS is not well defined and diagnostic tests lack validation.
Methods:
Retrospective study of 165 patients with AI evaluated clinically and by assay of morning plasma ACTH, late-night saliva cortisol, serum DHEA sulphate (DHEAS), 24-h urine-free cortisol, and cortisol after dexamethasone suppression.
Results:
Patients with AI (n = 165) were diagnosed as non-functioning incidentalomas (NFI) (n = 82) or ACS (n = 83) according to current European guidelines. Late-night saliva cortisol discriminated poorly between NFI and ACS, showing a high rate of false-positive (23/63) and false-negative (38/69) results. The conventional low-dose dexamethasone suppression test (LDDST) did not improve the diagnostic specificity, compared with the 1 mg overnight DST. Receiver operating characteristic curve analysis of DHEAS in the two cohorts demonstrated an area under the curve of 0.76 (P < 0.01) with a sensitivity for ACS of 58% and a specificity of 80% using the recommended cutoff at 1.04 µmol/L (40 µg/dL).
Conclusion:
We here demonstrate in a large retrospective cohort of incidentaloma patients, that neither DHEAS, late-night saliva cortisol nor 24-h urine free cortisol are useful to discriminate between non-functioning adrenal incidentalomas and ACS. The conventional LDDST do not add further information compared with the 1 mg overnight DST. Alternative biomarkers are needed to improve the diagnostic workup of ACS.
Collaborating Center for the WHO Family of International Classifications in China, Beijing, China
Search for other papers by Jingya Zhou in
Google Scholar
PubMed
Collaborating Center for the WHO Family of International Classifications in China, Beijing, China
Search for other papers by Meng Zhang in
Google Scholar
PubMed
Key Laboratory of Endocrinology of National Health Commission of People’s Republic of China, Beijing, China
Search for other papers by Lin Lu in
Google Scholar
PubMed
China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
Search for other papers by Xiaopeng Guo in
Google Scholar
PubMed
China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
Search for other papers by Lu Gao in
Google Scholar
PubMed
Search for other papers by Weigang Yan in
Google Scholar
PubMed
Clinical Epidemiology Unit, International Epidemiology Network, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
Search for other papers by Haiyu Pang in
Google Scholar
PubMed
Collaborating Center for the WHO Family of International Classifications in China, Beijing, China
Search for other papers by Yi Wang in
Google Scholar
PubMed
China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
Search for other papers by Bing Xing in
Google Scholar
PubMed
Objective
To investigate the validity of discharge ICD-10 codes in detecting the etiology of endogenous Cushing’s syndrome (CS) in hospitalized patients.
Methods
We evaluated the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of CS etiology-related ICD-10 codes or code combinations by comparing hospital discharge administrative data (DAD) with established diagnoses from medical records.
Results
Coding for patients with adrenocortical adenoma (ACA) and those with bilateral macronodular adrenal hyperplasia (BMAH) demonstrated disappointingly low sensitivity at 78.8% (95% CI: 70.1–85.6%) and 83.9% (95% CI: 65.5–93.9%), respectively. BMAH had the lowest PPV of 74.3% (95% CI: 56.4–86.9%). In confirmed ACA patients, the sensitivity for ACA code combinations was higher in patients initially admitted to the Department of Endocrinology before surgery than that in patients directly admitted to the Department of Urology (90.0 vs 73.1%, P = 0.033). The same phenomenon was observed in the PPV for the BMAH code (100.0 vs 60.9%, P = 0.012). Misinterpreted or confusing situations caused by coders (68.1%) and by the omission or denormalized documentation of symptomatic diagnosis by clinicians (26.1%) accounted for the main source of coding errors.
Conclusions
Hospital DAD is an effective data source for evaluating the etiology of CS but not ACA and BMAH. Improving surgeons’ documentation, especially in the delineation of symptomatic and locative diagnoses in discharge abstracts; department- or disease-specific training for coders and more multidisciplinary collaboration are ways to enhance the applicability of administrative data for CS etiologies.
Search for other papers by Clara Lundetoft Clausen in
Google Scholar
PubMed
Search for other papers by Trine Holm Johannsen in
Google Scholar
PubMed
Search for other papers by Niels Erik Skakkebæk in
Google Scholar
PubMed
Search for other papers by Hanne Frederiksen in
Google Scholar
PubMed
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Anders Juul in
Google Scholar
PubMed
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Thomas Benfield in
Google Scholar
PubMed
In the context of severe coronavirus disease 2019 (COVID-19) illness, we examined endogenous glucocorticoid concentrations, steroidogenic enzyme activity, and their correlation with inflammation and patient outcomes. This observational study included 125 hospitalized COVID-19 patients and 101 healthy individuals as a reference group. We utilized LC-MS to assess serum concentrations of 11-deoxycortisol, cortisol, and cortisone, as well as activities of steroidogenic enzymes (11β-hydroxylase and 11β-hydroxysteroid-dehydrogenase type 1). Cox proportional hazards regression analysis and competing risk analysis were employed to analyze associations between glucocorticoid concentrations and outcomes, adjusting for relevant factors. In patients with COVID-19, cortisol concentrations were higher and cortisone concentrations were lower compared to the reference group, while 11-deoxycortisol concentrations were similar. Steroidogenic enzyme activity favored cortisol production. Correlations between glucocorticoid concentrations and inflammatory markers were low. A doubling in concentrations cortisol, was associated with increased 90-day mortality and mechanical ventilation (HR: 2.40 95% CI: (1.03–5.59) , P = 0.042 and HR: 3.83 (1.19–12.31), P = 0.024). A doubling in concentrations of 11-deoxycortisol was also associated to mortality (HR: 1.32 (1.05–1.67), P = 0.018), whereas concentrations of cortisone were associated with mechanical ventilation (HR: 5.09 (1.49–17.40), P = 0.009). In conclusion, serum concentrations of glucocorticoid metabolites were altered in patients hospitalized with severe COVID-19, and steroidogenic enzyme activity resulting in the conversion of cortisone to biologically active cortisol was preserved, thus not favoring critical-illness-related corticosteroid insufficiency at the enzymatic level. Glucocorticoid release did not counterbalance the hyperinflammatory state in patients with severe COVID-19. High serum concentrations of 11-deoxycortisol and cortisol were associated with 90-day mortality, and high serum concentrations of cortisol and cortisone were associated with mechanical ventilation.
Search for other papers by M Cherenko in
Google Scholar
PubMed
Search for other papers by N M Appelman-Dijkstra in
Google Scholar
PubMed
Search for other papers by A L Priego Zurita in
Google Scholar
PubMed
Search for other papers by N R Biermasz in
Google Scholar
PubMed
Search for other papers by O M Dekkers in
Google Scholar
PubMed
Search for other papers by F A Klok in
Google Scholar
PubMed
Search for other papers by N Reisch in
Google Scholar
PubMed
Search for other papers by A Aulinas in
Google Scholar
PubMed
Search for other papers by B Biagetti in
Google Scholar
PubMed
Search for other papers by S Cannavo in
Google Scholar
PubMed
Search for other papers by L Canu in
Google Scholar
PubMed
Search for other papers by M Detomas in
Google Scholar
PubMed
Search for other papers by F Devuyst in
Google Scholar
PubMed
Search for other papers by H Falhammar in
Google Scholar
PubMed
Search for other papers by R A Feelders in
Google Scholar
PubMed
Search for other papers by F Ferrau in
Google Scholar
PubMed
Search for other papers by F Gatto in
Google Scholar
PubMed
Search for other papers by C Grasselli in
Google Scholar
PubMed
Search for other papers by P van Houten in
Google Scholar
PubMed
Search for other papers by C Hoybye in
Google Scholar
PubMed
Search for other papers by A M Isidori in
Google Scholar
PubMed
Search for other papers by A Kyrilli in
Google Scholar
PubMed
Search for other papers by P Loli in
Google Scholar
PubMed
Search for other papers by D Maiter in
Google Scholar
PubMed
Search for other papers by E Nowak in
Google Scholar
PubMed
Search for other papers by R Pivonello in
Google Scholar
PubMed
Search for other papers by O Ragnarsson in
Google Scholar
PubMed
Search for other papers by R V Steenaard in
Google Scholar
PubMed
Search for other papers by N Unger in
Google Scholar
PubMed
Search for other papers by A van de Ven in
Google Scholar
PubMed
Search for other papers by S M Webb in
Google Scholar
PubMed
Search for other papers by D Yeste in
Google Scholar
PubMed
University of Glasgow, Office for Rare Conditions, Glasgow, UK
University of Glasgow, Developmental Endocrinology Research Group, Royal Hospital for Children, Glasgow, UK
Search for other papers by S F Ahmed in
Google Scholar
PubMed
Search for other papers by A M Pereira in
Google Scholar
PubMed
Background
Patients with Cushing syndrome (CS) are at increased risk of venous thromboembolism (VTE).
Objective
The aim was to evaluate the current management of new cases of CS with a focus on VTE and thromboprophylaxis.
Design and methods
A survey was conducted within those that report in the electronic reporting tool (e-REC) of the European Registries for Rare Endocrine Conditions (EuRRECa) and the involved main thematic groups (MTG’s) of the European Reference Networks for Rare Endocrine Disorders (Endo-ERN) on new patients with CS from January 2021 to July 2022.
Results
Of 222 patients (mean age 44 years, 165 females), 141 patients had Cushing disease (64%), 69 adrenal CS (31%), and 12 patients with ectopic CS (5.4%). The mean follow-up period post-CS diagnosis was 15 months (range 3–30). Cortisol-lowering medications were initiated in 38% of patients. One hundred fifty-four patients (69%) received thromboprophylaxis (including patients on chronic anticoagulant treatment), of which low-molecular-weight heparins were used in 96% of cases. VTE was reported in six patients (2.7%), of which one was fatal: two long before CS diagnosis, two between diagnosis and surgery, and two postoperatively. Three patients were using thromboprophylaxis at time of the VTE diagnosis. The incidence rate of VTE in patients after Cushing syndrome diagnosis in our study cohort was 14.6 (95% CI 5.5; 38.6) per 1000 person-years.
Conclusion
Thirty percent of patients with CS did not receive preoperative thromboprophylaxis during their active disease stage, and half of the VTE cases even occurred during this stage despite thromboprophylaxis. Prospective trials to establish the optimal thromboprophylaxis strategy in CS patients are highly needed.
Significance statement
The incidence rate of venous thromboembolism in our study cohort was 14.6 (95% CI 5.5; 38.6) per 1000 person-years. Notably, this survey showed that there is great heterogeneity regarding time of initiation and duration of thromboprophylaxis in expert centers throughout Europe.