Search Results
You are looking at 1 - 1 of 1 items for :
- Abstract: adrenarche x
- Abstract: amenorrhoea x
- Abstract: fertility x
- Abstract: Gender x
- Abstract: infertility x
- Abstract: menarche x
- Abstract: menopause x
- Abstract: puberty x
- Abstract: testes x
- Abstract: transsexual x
- Abstract: ovary x
- Abstract: follicles x
- Cardiovascular x
Department of Nephrology & Key Laboratory of Nephrology, National Health Commission and Guangdong Province, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
Search for other papers by Lanping Jiang in
Google Scholar
PubMed
Renal Division, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
Search for other papers by Xiaoyan Peng in
Google Scholar
PubMed
Search for other papers by Bingbin Zhao in
Google Scholar
PubMed
Search for other papers by Lei Zhang in
Google Scholar
PubMed
Search for other papers by Lubin Xu in
Google Scholar
PubMed
Search for other papers by Xuemei Li in
Google Scholar
PubMed
Search for other papers by Min Nie in
Google Scholar
PubMed
Search for other papers by Limeng Chen in
Google Scholar
PubMed
Purposes
This study was conducted to identify the frequent mutations from reported Chinese Gitelman syndrome (GS) patients, to predict the three-dimensional structure change of human Na–Cl co-transporter (hNCC), and to test the activity of these mutations and some novel mutations in vitro and in vivo.
Methods
SLC12A3 gene mutations in Chinese GS patients previously reported in the PubMed, China National Knowledge Infrastructure, and Wanfang database were summarized. Predicted configurations of wild type (WT) and mutant proteins were achieved using the I-TASSER workplace. Six missense mutations (T60M, L215F, D486N, N534K, Q617R, and R928C) were generated by site-directed mutagenesis. 22Na+ uptake experiment was carried out in the Xenopus laevisoocyte expression system. In the study, 35 GS patients and 20 healthy volunteers underwent the thiazide test.
Results
T60M, T163M, D486N, R913Q, R928C, and R959frameshift were frequent SLC12A3 gene mutations (mutated frequency >3%) in 310 Chinese GS families. The protein’s three-dimensional structure was predicted to be altered in all mutations. Compared with WT hNCC, the thiazide-sensitive 22Na+ uptake was significantly diminished for all six mutations: T60M 22 ± 9.2%, R928C 29 ± 12%, L215F 38 ± 14%, N534K 41 ± 15.5%, Q617R 63 ± 22.1%, and D486N 77 ± 20.4%. In thiazide test, the net increase in chloride fractional excretion in 20 healthy controls was significantly higher than GS patients with or without T60M or D486N mutations.
Conclusions
Frequent mutations (T60M, D486N, and R928C) and novel mutations (L215F, N534K, and Q617R) lead to protein structure alternation and protein dysfunction verified by 22Na+ uptake experiment in vitro and thiazide test on the patients.