Search Results
You are looking at 51 - 60 of 486 items for
- Abstract: adrenarche x
- Abstract: amenorrhoea x
- Abstract: fertility x
- Abstract: Gender x
- Abstract: Hypogonadism x
- Abstract: infertility x
- Abstract: Kallmann x
- Abstract: Klinefelter x
- Abstract: menopause x
- Abstract: puberty x
- Abstract: testes x
- Abstract: transsexual x
- Abstract: Turner x
- Abstract: ovary x
- Abstract: follicles x
Search for other papers by Dorte Glintborg in
Google Scholar
PubMed
Search for other papers by Hanne Mumm in
Google Scholar
PubMed
Search for other papers by Jens Juul Holst in
Google Scholar
PubMed
Search for other papers by Marianne Andersen in
Google Scholar
PubMed
Context
Insulin resistance in polycystic ovary syndrome (PCOS) may increase the risk of reactive hypoglycaemia (RH) and decrease glucagon-like peptide-1 (GLP-1) secretion. The possible effects of treatment with oral contraceptives (OCP) and/or metformin on GLP-1 secretion and risk of RH in PCOS is undetermined.
Setting
Outpatient clinic.
Patients and interventions
Randomized, controlled clinical trial. Ninety women with PCOS were randomized to 12-month treatment with OCP (150 mg desogestrel + 30 mg ethinylestradiol), metformin (2 g/day) or metformin + OCP. Five-hour oral glucose tolerance tests (5-h OGTT) measuring fasting and area under the curve (AUC) for GLP-1, glucose, insulin and C-peptide were performed before and after the intervention period. Sixty-five women completed the study and 34 weight-matched healthy women were included as controls.
Main outcome measures
Changes in GLP-1, glucose, insulin and C-peptide during 5-h OGTT.
Results
Fasting GLP-1 levels increased during metformin + OCP vs OCP treatment, whereas AUC GLP-1 levels were unchanged during medical treatment. The prevalence of reactive hypoglycemia increased from 9/65 to 14/65 after intervention (P < 0.01) and was more common after treatment with metformin + OCP (increase from 3/23 to 6/23, P = 0.01). Reactive hypoglycaemia was associated with higher insulin and C-peptide levels during 5-h OGTT, but was unassociated with BMI and AUC GLP-1. GLP-1 levels were comparable in PCOS vs controls. AUC GLP-1 levels were significantly lower in obese vs lean patients and were inversely associated with BMI.
Conclusions
AUC GLP-1 levels were unchanged during treatment. Increased risk of hypoglycemia during metformin + OCP could be associated with increased insulin secretion.
Search for other papers by Sarantis Livadas in
Google Scholar
PubMed
Search for other papers by Christina Bothou in
Google Scholar
PubMed
Search for other papers by Justyna Kuliczkowska-Płaksej in
Google Scholar
PubMed
Search for other papers by Ralitsa Robeva in
Google Scholar
PubMed
Search for other papers by Andromahi Vryonidou in
Google Scholar
PubMed
Search for other papers by Jelica Bjekic Macut in
Google Scholar
PubMed
Search for other papers by Ioannis Androulakis in
Google Scholar
PubMed
Search for other papers by Milica Opalic in
Google Scholar
PubMed
Search for other papers by Zadalla Mouslech in
Google Scholar
PubMed
Search for other papers by Andrej Milewicz in
Google Scholar
PubMed
Search for other papers by Alessandra Gambineri in
Google Scholar
PubMed
Search for other papers by Dimitrios Panidis in
Google Scholar
PubMed
Search for other papers by Djuro Macut in
Google Scholar
PubMed
Background
Polycystic ovary syndrome (PCOS) is considered a risk factor for the development of type 2 diabetes mellitus (T2DM). However, which is the most appropriate way to evaluate dysglycemia in women with PCOS and who are at increased risk are as yet unclear.
Aim of the study
To determine the prevalence of T2DM, impaired glucose tolerance (IGT), and impaired fasting glucose (IFG) in PCOS women and potential factors to identify those at risk.
Subjects and methods
The oral glucose tolerance test (OGTT), biochemical/hormonal profile, and ovarian ultrasound data from 1614 Caucasian women with PCOS and 362 controls were analyzed in this cross-sectional multicenter study. The data were categorized according to age and BMI.
Results
Dysglycemia (T2DM, IGT, and IFG according to World Health Organization criteria) was more frequent in the PCOS group compared to controls: 2.2% vs 0.8%, P = 0.04; 9.5% vs 7.4%, P = 0.038; 14.2% vs 9.1%, P = 0.002, respectively. OGTT was essential for T2DM diagnosis, since in 88% of them basal glucose values were inconclusive for diagnosis. The presence of either T2DM or IFG was irrespective of age (P = 0.54) and BMI (P = 0.32), although the latter was associated with IGT (P = 0.021). There was no impact of age and BMI status on the prevalence of T2DM or IFG. Regression analysis revealed a role for age, BMI, fat deposition, androgens, and insulin resistance for dysglycemia. However, none of the factors prevailed as a useful marker employed in clinical practice.
Conclusions
One-third of our cohort of PCOS women with either T2DM or IGT displayed normal fasting glucose values but without confirming any specific predictor for dysglycemic condition. Hence, the evaluation of glycemic status using OGTT in all women with PCOS is strongly supported.
Search for other papers by Jie Yang in
Google Scholar
PubMed
Search for other papers by Min Lin in
Google Scholar
PubMed
Search for other papers by Xiaoyan Tian in
Google Scholar
PubMed
Search for other papers by Chujun Li in
Google Scholar
PubMed
Search for other papers by Haocun Wu in
Google Scholar
PubMed
Search for other papers by Ling Deng in
Google Scholar
PubMed
Search for other papers by Xuelan Li in
Google Scholar
PubMed
Search for other papers by Xin Chen in
Google Scholar
PubMed
Purpose: Our study aimed to assess the relationship between serum adipokines and insulin resistance (IR) in women with polycystic ovary syndrome (PCOS), as well as explore the predictive value of adipokines on IR in PCOS.
Methods: This was a prospective cross-sectional study. 154 women with PCOS were included from July 2021 to September 2022 who underwent gonadal steroid hormone measurement, lipid profile, oral glucose tolerance test and homeostasis model assessment (HOMA)-IR. Adiponectin (APN), leptin and secreted frizzled-related protein (Sfrp5) were measured by immunoturbidimetry and enzyme-linked immunosorbent assay. Women with PCOS were categorised based on the presence of IR.
Results: Women with PCOS with IR (n=99) had significantly lower APN level and APN to leptin ratio (A/L ratio) than those without IR (n=55), whereas serum levels of leptin and Sfrp5 were similar between the two groups. In multivariable linear regression analysis, serum log (APN) and log (A/L ratio) were associated with log(HOMA-IR), the association was statistically significant after adjusting for body mass index (BMI) and free androgen index. The area under the ROC curve (95% CI) for APN and A/L ratio were 0.726 (0.644–0.807; P<0.001) and 0.660(0.569–0.751; P<0.01), with cutoff values of 5.225 mg/L (Youden index ¼ 0.364) and 1.438 (Youden index ¼ 0.265) respectively.
Conclusion: Our study demonstrated that serum APN was negatively related to IR. Serum APN may be useful as a clinical marker for IR in women with PCOS. Our findings warrant further investigations into the function of APN in the pathogenesis of IR in women with PCOS.
Disciplina de Endocrinologia, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, São Paulo, Brazil
Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular LIM/42, Disciplina de Endocrinologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
Search for other papers by Renata C Scalco in
Google Scholar
PubMed
Search for other papers by Ericka B Trarbach in
Google Scholar
PubMed
Search for other papers by Edoarda V A Albuquerque in
Google Scholar
PubMed
Search for other papers by Thais K Homma in
Google Scholar
PubMed
Search for other papers by Thais H Inoue-Lima in
Google Scholar
PubMed
Search for other papers by Mirian Y Nishi in
Google Scholar
PubMed
Search for other papers by Berenice B Mendonca in
Google Scholar
PubMed
Search for other papers by Alexander A L Jorge in
Google Scholar
PubMed
Most patients with Turner syndrome (TS) need hormone replacement therapy because of hypergonadotropic hypogonadism; individual outcomes, however, are highly variable. Our objective was to assess the influence of five estrogen receptor 1 gene (ESR1) polymorphisms (rs543650, rs1038304, rs2046210, rs2234693 and rs9340799) on adult height, breast development, uterine volume and bone mineral density (BMD). We studied 91 TS patients from a tertiary hospital using adult estrogen dose. In our group, ESR1 rs2234693 was associated with femoral neck and total hip BMD, and it accounted for around 10% of BMD variability in both sites (P < 0.01). Patients homozygous for C allele in this polymorphism had significantly lower femoral neck BMD (0.699 ± 0.065 g/cm2 vs 0.822 ± 0.113 g/cm2, P = 0.008) and total hip BMD (0.777 ± 0.118 g/cm2 vs 0.903 ± 0.098 g/cm2, P = 0.009) than patients homozygous for T allele. The other four ESR1 polymorphisms were not able to predict any of the above estrogen therapy outcomes in an isolated manner. Patients homozygous for the haplotype GCG formed by polymorphisms rs543650, rs2234693 and rs9340799 had an even more significantly lower femoral neck BMD (0.666 ± 0.049 vs 0.820 ± 0.105 g/cm2, P = 0.0047) and total hip BMD (0.752 ± 0.093 vs 0.908 ± 0.097 g/cm2, P = 0.0029) than patients homozygous for haplotypes with a T allele in rs2234693. In conclusion, homozygosity for C allele in ESR1 rs2234693 and/or for GCG haplotype appears to be associated with lower femoral neck and total hip BMD. We believe that the identification of polymorphisms related to estrogen outcomes may contribute to individualization of treatment in TS.
Search for other papers by M von Wolff in
Google Scholar
PubMed
Laboratory of Biometry, University of Thessaly, Volos, Greece
Search for other papers by C T Nakas in
Google Scholar
PubMed
Division of Pneumology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
Search for other papers by M Tobler in
Google Scholar
PubMed
Search for other papers by T M Merz in
Google Scholar
PubMed
Search for other papers by M P Hilty in
Google Scholar
PubMed
Search for other papers by J D Veldhuis in
Google Scholar
PubMed
Search for other papers by A R Huber in
Google Scholar
PubMed
Search for other papers by J Pichler Hefti in
Google Scholar
PubMed
Humans cannot live at very high altitude for reasons, which are not completely understood. Since these reasons are not restricted to cardiorespiratory changes alone, changes in the endocrine system might also be involved. Therefore, hormonal changes during prolonged hypobaric hypoxia were comprehensively assessed to determine effects of altitude and hypoxia on stress, thyroid and gonadal hypothalamus–pituitary hormone axes. Twenty-one male and 19 female participants were examined repetitively during a high-altitude expedition. Cortisol, prolactin, thyroid-stimulating hormone (TSH), fT4 and fT3 and in males follicle-stimulating hormone (FSH), luteinizing hormone (LH) and total testosterone were analysed as well as parameters of hypoxemia, such as SaO2 and paO2 at 550 m (baseline) (n = 40), during ascent at 4844 m (n = 38), 6022 m (n = 31) and 7050 m (n = 13), at 4844 m (n = 29) after acclimatization and after the expedition (n = 38). Correlation analysis of hormone concentrations with oxygen parameters and with altitude revealed statistical association in most cases only with altitude. Adrenal, thyroid and gonadal axes were affected by increasing altitude. Adrenal axis and prolactin were first supressed at 4844 m and then activated with increasing altitude; thyroid and gonadal axes were directly activated or suppressed respectively with increasing altitude. Acclimatisation at 4844 m led to normalization of adrenal and gonadal but not of thyroid axes. In conclusion, acclimatization partly leads to a normalization of the adrenal, thyroid and gonadal axes at around 5000 m. However, at higher altitude, endocrine dysregulation is pronounced and might contribute to the physical degradation found at high altitude.
Search for other papers by M Boering in
Google Scholar
PubMed
Isala, Department of Internal Medicine, Zwolle, The Netherlands
Search for other papers by P R van Dijk in
Google Scholar
PubMed
Langerhans Medical Research group, Zwolle, The Netherlands
Search for other papers by S J J Logtenberg in
Google Scholar
PubMed
Department of General Practice, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
Search for other papers by K H Groenier in
Google Scholar
PubMed
Search for other papers by B H R Wolffenbuttel in
Google Scholar
PubMed
Search for other papers by R O B Gans in
Google Scholar
PubMed
Langerhans Medical Research group, Zwolle, The Netherlands
Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
Search for other papers by N Kleefstra in
Google Scholar
PubMed
Isala, Department of Internal Medicine, Zwolle, The Netherlands
Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
Search for other papers by H J G Bilo in
Google Scholar
PubMed
Aims
Elevated sex hormone-binding globulin (SHBG) concentrations have been described in patients with type 1 diabetes mellitus (T1DM), probably due to low portal insulin concentrations. We aimed to investigate whether the route of insulin administration, continuous intraperitoneal insulin infusion (CIPII), or subcutaneous (SC), influences SHBG concentrations among T1DM patients.
Methods
Post hoc analysis of SHBG in samples derived from a randomized, open-labeled crossover trial was carried out in 20 T1DM patients: 50% males, mean age 43 (±13) years, diabetes duration 23 (±11) years, and hemoglobin A1c (HbA1c) 8.7 (±1.1) (72 (±12) mmol/mol). As secondary outcomes, testosterone, 17-β-estradiol, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) were analyzed.
Results
Estimated mean change in SHBG was −10.3nmol/L (95% CI: −17.4, −3.2) during CIPII and 3.7nmol/L (95% CI: −12.0, 4.6) during SC insulin treatment. Taking the effect of treatment order into account, the difference in SHBG between therapies was −6.6nmol/L (95% CI: −17.5, 4.3); −12.7nmol/L (95% CI: −25.1, −0.4) for males and −1.7nmol/L (95% CI: −24.6, 21.1) for females, respectively. Among males, SHBG and testosterone concentrations changed significantly during CIPII; −15.8nmol/L (95% CI: −24.2, −7.5) and −8.3nmol/L (95% CI: −14.4, −2.2), respectively. The difference between CIPII and SC insulin treatment was also significant for change in FSH 1.2U/L (95% CI: 0.1, 2.2) among males.
Conclusions
SHBG concentrations decreased significantly during CIPII treatment. Moreover, the difference in change between CIPII and SC insulin therapy was significant for SHBG and FSH among males. These findings support the hypothesis that portal insulin administration influences circulating SHBG and sex steroids.
Search for other papers by Liza Haqq in
Google Scholar
PubMed
Search for other papers by James McFarlane in
Google Scholar
PubMed
Search for other papers by Gudrun Dieberg in
Google Scholar
PubMed
Search for other papers by Neil Smart in
Google Scholar
PubMed
Polycystic ovarian syndrome (PCOS) affects 18–22% of women at reproductive age. We conducted a systematic review and meta-analysis evaluating the expected benefits of lifestyle (exercise plus diet) interventions on the reproductive endocrine profile in women with PCOS. Potential studies were identified by systematically searching PubMed, CINAHL and the Cochrane Controlled Trials Registry (1966–April 30, 2013) systematically using key concepts of PCOS. Significant improvements were seen in women receiving lifestyle intervention vs usual care in follicle-stimulating hormone (FSH) levels, mean difference (MD) 0.39 IU/l (95% CI 0.09 to 0.70, P=0.01), sex hormone-binding globulin (SHBG) levels, MD 2.37 nmol/l (95% CI 1.27 to 3.47, P<0.0001), total testosterone levels, MD −0.13 nmol/l (95% CI −0.22 to −0.03, P=0.008), androstenedione levels, MD −0.09 ng/dl (95% CI −0.15 to −0.03, P=0.005), free androgen index (FAI) levels, MD −1.64 (95% CI −2.94 to −0.35, P=0.01) and Ferriman–Gallwey (FG) score, MD −1.01 (95% CI −1.54 to −0.48, P=0.0002). Significant improvements were also observed in women who received exercise-alone intervention vs usual care in FSH levels, MD 0.42 IU/l (95% CI 0.11 to 0.73, P=0.009), SHBG levels, MD 3.42 nmol/l (95% CI 0.11 to 6.73, P=0.04), total testosterone levels, MD −0.16 nmol/l (95% CI −0.29 to −0.04, P=0.01), androstenedione levels, MD −0.09 ng/dl (95% CI −0.16 to −0.03, P=0.004) and FG score, MD −1.13 (95% CI −1.88 to −0.38, P=0.003). Our analyses suggest that lifestyle (diet and exercise) intervention improves levels of FSH, SHBG, total testosterone, androstenedione and FAI, and FG score in women with PCOS.
Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
Search for other papers by Tao Mei in
Google Scholar
PubMed
Search for other papers by Jianhe Zhang in
Google Scholar
PubMed
Search for other papers by Liangfeng Wei in
Google Scholar
PubMed
Search for other papers by Xingfeng Qi in
Google Scholar
PubMed
Search for other papers by Yiming Ma in
Google Scholar
PubMed
Search for other papers by Xianhua Liu in
Google Scholar
PubMed
Search for other papers by Shaohua Chen in
Google Scholar
PubMed
Search for other papers by Songyuan Li in
Google Scholar
PubMed
Search for other papers by Jianwu Wu in
Google Scholar
PubMed
Search for other papers by Shousen Wang in
Google Scholar
PubMed
Tumor cells require large amounts of energy to sustain growth. Through the mediated transport of glucose transporters, the uptake and utilization of glucose by tumor cells are significantly enhanced in the hypoxic microenvironment. Pituitary adenomas are benign tumors with high-energy metabolisms. We aimed to investigate the role of expression of glucose transporter 3 (GLUT3) and glucose transporter 1 (GLUT1) in pituitary adenomas, including effects on size, cystic change and hormone type. Pituitary adenomas from 203 patients were collected from January 2013 to April 2017, and immunohistochemical analysis was used to detect the expression of GLUT3 and GLUT1 in tumor specimens. GLUT3-positive expression in the cystic change group was higher than that in the non-cystic change group (P = 0.018). Proportions of GLUT3-positive staining of microadenomas, macroadenomas, and giant adenomas were 22.7 (5/22), 50.4 (66/131) and 54.0% (27/50), respectively (P = 0.022). In cases of prolactin adenoma, GLUT3-positive staining was predominant in cell membranes (P = 0.000006), while in cases of follicle-stimulating hormone or luteotropic hormone adenoma, we found mainly paranuclear dot-like GLUT3 staining (P = 0.025). In other hormonal adenomas, GLUT3 was only partially expressed, and the intensity of cell membrane or paranuclear punctate staining was weak. In contrast to GLUT3, GLUT1 expression was not associated with pituitary adenomas. Thus, our results indicate that the expression of GLUT3 in pituitary adenomas is closely related to cystic change and hormonal type. This study is the first to report a unique paranuclear dot-like GLUT3 staining pattern in pituitary adenomas.
Search for other papers by Mikkel Andreassen in
Google Scholar
PubMed
Search for other papers by Anders Juul in
Google Scholar
PubMed
Search for other papers by Ulla Feldt-Rasmussen in
Google Scholar
PubMed
Search for other papers by Niels Jørgensen in
Google Scholar
PubMed
Objective
Gonadotropins (luteinizing hormone (LH) and follicle-stimulating hormone (FSH)) are released from the pituitary gland and stimulate Leydig cells to produce testosterone and initiates spermatogenesis. Little is known about how and when the deterioration of semen quality occurs in patients with adult-onset gonadotropin insufficiency.
Design and methods
A retrospective study comprising 20 testosterone-deficient men (median age, 29 years) with acquired pituitary disease who delivered semen for cryopreservation before initiation of testosterone therapy. Semen variables and hormone concentrations were compared to those of young healthy men (n = 340).
Results
Thirteen of 20 patients (65%) and 82% of controls had total sperm counts above 39 million and progressive motile spermatozoa above 32% (P = 0.05). For the individual semen variables, there were no significant differences in semen volume (median (intraquartile range) 3.0 (1.3–6.8) vs 3.2 (2.3–4.3) mL, P = 0.47), sperm concentration 41 (11–71) vs 43 (22–73) mill/mL (P = 0.56) or total sperm counts (P = 0.66). One patient had azoospermia. Patients vs controls had lower serum testosterone 5.4 (2.2–7.6) vs 19.7 (15.5–24.5) nmol/L (P = 0.001), calculated free testosterone (cfT) 145 (56–183) vs 464 (359–574) pmol/L (P < 0.001), LH 1.5 (1.1–2.1) vs 3.1 (2.3–4.0) U/L (P = 0.002) and inhibin b (P < 0.001). Levels of FSH were similar (P = 0.63). Testosterone/LH ratio and cfT/LH ratio were reduced in patients (both P < 0.001).
Conclusions
Despite Leydig cell insufficiency in patients with acquired pituitary insufficiency, the majority presented with normal semen quality based on the determination of the number of progressively motile spermatozoa. In addition, the data suggest reduced LH bioactivity in patients with pituitary insufficiency.
Search for other papers by Yanling Cai in
Google Scholar
PubMed
Search for other papers by Yan Yang in
Google Scholar
PubMed
Search for other papers by Xiao Pang in
Google Scholar
PubMed
Search for other papers by Suping Li in
Google Scholar
PubMed
Purpose
The aim was to investigate the effect of radioactive iodine (RAI) treatment for differentiated thyroid cancer (DTC) on male gonadal function.
Methods
PubMed, Embase, Web of Science, OVID, Scopus, and Wanfang databases were searched up to June 10, 2022, to identify published studies related to RAI and male gonadal function. ReviewManager version 5.4.1 software was used to calculate mean differences (MDs) with 95% CIs.
Results
Initially, 1958 articles were retrieved from the databases, and 6 articles were included in the quantitative analysis. The meta-analysis results showed that follicle-stimulating hormone (FSH) increased when the follow-up duration was ≥12 months after RAI, but the difference was not statistically significant (MD = −2.64, 95% CI = (−5.61, 0.33), P = 0.08). But the results of the subgroup analysis showed that when the follow-up time was ≤6 months, FSH levels were significantly higher after RAI (MD = −7.65, 95% CI = (−13.95, −1.34), P = 0.02). The level of inhibin B was significantly lower at ≥12 months and ≤6 months after RAI (MD = 66.38, 95% CI = (8.39, 124.37), P = 0.02) and (MD = 116.27, 95% CI = (43.56, 188.98), P = 0.002). Additionally, luteinizing hormone (LH) and testosterone have similar results – that is, LH and testosterone levels were higher after RAI, but the difference was not statistically significant (MD = –0.87, 95% CI = (−2.04, 0.30), P = 0.15) and (MD = −1.69, 95% CI (−7.29, 3.90), P = 0.55).
Conclusions
Male gonadal function may be temporarily impaired within 6 months after RAI but may return to normal levels afterward.