Search Results

You are looking at 11 - 20 of 173 items for

  • Abstract: Adrenocorticotropic x
  • Abstract: Anterior x
  • Abstract: ANS x
  • Abstract: Behaviour x
  • Abstract: Circadian rhythms x
  • Abstract: corticotropin-releasing x
  • Abstract: Cortisol x
  • Abstract: Depression x
  • Abstract: HPA x
  • Abstract: Nervous x
  • Abstract: Neuro* x
  • Abstract: Oxytocin x
  • Abstract: Social x
  • Abstract: Stress x
  • Abstract: Vasopressin x
Clear All Modify Search
Open access

Rachel K Rowe, Benjamin M Rumney, Hazel G May, Paska Permana, P David Adelson, S Mitchell Harman, Jonathan Lifshitz and Theresa C Thomas

As many as 20–55% of patients with a history of traumatic brain injury (TBI) experience chronic endocrine dysfunction, leading to impaired quality of life, impaired rehabilitation efforts and lowered life expectancy. Endocrine dysfunction after TBI is thought to result from acceleration–deceleration forces to the brain within the skull, creating enduring hypothalamic and pituitary neuropathology, and subsequent hypothalamic–pituitary endocrine (HPE) dysfunction. These experiments were designed to test the hypothesis that a single diffuse TBI results in chronic dysfunction of corticosterone (CORT), a glucocorticoid released in response to stress and testosterone. We used a rodent model of diffuse TBI induced by midline fluid percussion injury (mFPI). At 2months postinjury compared with uninjured control animals, circulating levels of CORT were evaluated at rest, under restraint stress and in response to dexamethasone, a synthetic glucocorticoid commonly used to test HPE axis regulation. Testosterone was evaluated at rest. Further, we assessed changes in injury-induced neuron morphology (Golgi stain), neuropathology (silver stain) and activated astrocytes (GFAP) in the paraventricular nucleus (PVN) of the hypothalamus. Resting plasma CORT levels were decreased at 2months postinjury and there was a blunted CORT increase in response to restraint induced stress. No changes in testosterone were measured. These changes in CORT were observed concomitantly with altered complexity of neuron processes in the PVN over time, devoid of neuropathology or astrocytosis. Results provide evidence that a single moderate diffuse TBI leads to changes in CORT function, which can contribute to the persistence of symptoms related to endocrine dysfunction. Future experiments aim to evaluate additional HP-related hormones and endocrine circuit pathology following diffuse TBI.

Open access

Greta B Raglan, Louis A Schmidt and Jay Schulkin

The stress response has been linked to the expression of anxiety and depression, but the mechanisms for these connections are under continued consideration. The activation and expression of glucocorticoids and CRH are variable and may hold important clues to individual experiences of mood disorders. This paper explores the interactions of glucocorticoids and CRH in the presentation of anxiety and depressive disorders in an effort to better describe their differing roles in each of these clinical presentations. In addition, it focuses on ways in which extra-hypothalamic glucocorticoids and CRH, often overlooked, may play important roles in the presentation of clinical disorders.

Open access

Masatada Watanabe, Shuji Ohno and Hiroshi Wachi

Emerging evidence suggests that sex steroids are important for human skin health. In particular, estrogen improves skin thickness, elasticity and moisture of older women. The major source of circulating estrogen is the ovary; however, local estrogen synthesis and secretion have important roles in, for example, bone metabolism and breast cancer development. We hypothesized that infiltrated peripheral monocytes are one of the sources of estrogen in skin tissues. We also hypothesized that, during atopic dermatitis under stress, a decline in the hypothalamus–pituitary–adrenal axis (HPA) and facilitation of the (hypothalamus)–sympathetic–adrenomedullary system (SAM) attenuates estrogen secretion from monocytes. Based on this hypothesis, we tested aromatase expression in the human peripheral monocyte-derived cell line THP-1 in response to the synthetic glucocorticoid dexamethasone (Dex), the synthetic β-agonist isoproterenol (Iso) and the β-antagonist propranolol (Pro). Dex mimics glucocorticoid secreted during excitation of the HPA, and Iso mimics catecholamine secreted during excitation of the SAM. We found that aromatase activity and the CYP19A1 gene transcript were both upregulated in THP-1 cells in the presence of Dex. Addition of Iso induced their downregulation and further addition of Pro rescued aromatase expression. These results may suggest that attenuation of estrogen secretion from peripheral monocytes could be a part of the pathology of stress-caused deterioration of atopic dermatitis. Further examination using an in vitro human skin model including THP-1 cells might be a valuable tool for investigating the therapeutic efficacy and mechanism of estrogen treatment for skin health.

Open access

M de Fost, S M Oussaada, E Endert, G E Linthorst, M J Serlie, M R Soeters, J H DeVries, P H Bisschop and E Fliers

The water deprivation test is the gold standard test to differentiate central or nephrogenic diabetes insipidus (DI) from primary polydipsia (PP) in patients with polyuria and polydipsia. Few studies have addressed the diagnostic performance of this test. The aim of this retrospective cohort study was to evaluate the diagnostic performance of the standard water deprivation test, including plasma arginine vasopressin (AVP) measurements, in 40 consecutive patients with polyuria. We compared initial test results with the final clinical diagnosis, i.e., no DI, central DI, or nephrogenic DI. The median length of follow-up was 8 years. In a subset of ten patients, the novel marker copeptin (CP) was measured in plasma. Using the final diagnosis as a gold standard, a threshold for urine osmolality of >800 mOsmol/kg after water deprivation yielded a sensitivity and specificity of 96 and 100%, respectively, for diagnosing PP. Sensitivity increased to 100% if the cut-off value for urine osmolality was set at 680 mOsmol/kg. Plasma AVP levels did not differ between patient groups and did not differentiate among central DI, nephrogenic DI, or PP. In all three patients with central DI, plasma CP was <2.5 pmol/l with plasma osmolality >290 mOsmol/kg, and >2.5 pmol/l in patients without DI. The optimal cut-off value for differentiating PP from DI during a water deprivation test was urine osmolality >680 mOsmol/kg. Differentiating between central and nephrogenic DI should be based on clinical judgment as AVP levels did not discriminate.

Open access

S E Baldeweg, S Ball, A Brooke, H K Gleeson, M J Levy, M Prentice, J Wass and the Society for Endocrinology Clinical Committee

Cranial diabetes insipidus (CDI) is a treatable chronic condition that can potentially develop into a life-threatening medical emergency. CDI is due to the relative or absolute lack of the posterior pituitary hormone vasopressin (AVP), also known as anti-diuretic hormone. AVP deficiency results in uncontrolled diuresis. Complete deficiency can lead to polyuria exceeding 10 L/24 h. Given a functioning thirst mechanism and free access to water, patients with CDI can normally maintain adequate fluid balance through increased drinking. Desmopressin (DDAVP, a synthetic AVP analogue) reduces uncontrolled water excretion in CDI and is commonly used in treatment. Critically, loss of thirst perception (through primary pathology or reduced consciousness) or limited access to water (through non-availability, disability or inter-current illness) in a patient with CDI can lead to life-threatening dehydration. This position can be further exacerbated through the omission of DDAVP. Recent data have highlighted serious adverse events (including deaths) in patients with CDI. These adverse outcomes and deaths have occurred through a combination of lack of knowledge and treatment failures by health professionals. Here, with our guideline, we recommend treatment pathways for patients with known CDI admitted to hospital. Following these guidelines is essential for the safe management of patients with CDI.

Open access

Bettina Winzeler, Michelle Steinmetz, Julie Refardt, Nicole Cesana-Nigro, Milica Popovic, Wiebke Kristin Fenske and Mirjam Christ-Crain

Objective: The syndrome of inappropriate antidiuresis (SIAD) is a common condition in hospitalized patients. It is crucial to establish the cause of SIAD especially in order to exclude underlying malignancy. As malignant SIAD may be due to a paraneoplastic synthesis of arginine vasopressin, we hypothesized that its stable surrogate marker copeptin can be used as a diagnostic tool to differentiate between malignant and non-malignant SIAD.

Methods: Prospective observational study. We analyzed data from 146 SIAD patients of two different cohorts from Switzerland and Germany. Patients were included while presenting at the emergency department and underwent a standardized diagnostic assessment including the measurement of copeptin levels.

Results: 39 patients (median age: 63 years, 51% female) were diagnosed with cancer-related and 107 (median age: 73 years, 68% female) with non-malignant SIAD. Serum sodium levels were higher in cancer-related versus non-malignant SIAD: median (IQR) 124 mmol/l (120; 127) versus 120 mmol/l (117; 123) (P<0.001). Median (IQR) copeptin levels of patients with cancer-related SIAD were 11.1 pmol/l (5.2; 37.1) and 10.5 pmol/l (5.2; 25.2) with non-malignant SIAD (P = 0.38). Among different cancer entities, patients suffering from small cell lung cancer showed the highest copeptin values, but overall no significant difference in copeptin levels between cancer types was observed (P = 0.46).

Conclusions: Copeptin levels are similar in cancer-related and non-malignant SIAD. Copeptin seems, therefore, not suitable as a marker of malignant disease in SIAD.

Open access

Gavin P Vinson and Caroline H Brennan

Substantial evidence shows that the hypophyseal–pituitary–adrenal (HPA) axis and corticosteroids are involved in the process of addiction to a variety of agents, and the adrenal cortex has a key role. In general, plasma concentrations of cortisol (or corticosterone in rats or mice) increase on drug withdrawal in a manner that suggests correlation with the behavioural and symptomatic sequelae both in man and in experimental animals. Corticosteroid levels fall back to normal values in resumption of drug intake. The possible interactions between brain corticotrophin releasing hormone (CRH) and proopiomelanocortin (POMC) products and the systemic HPA, and additionally with the local CRH–POMC system in the adrenal gland itself, are complex. Nevertheless, the evidence increasingly suggests that all may be interlinked and that CRH in the brain and brain POMC products interact with the blood-borne HPA directly or indirectly. Corticosteroids themselves are known to affect mood profoundly and may themselves be addictive. Additionally, there is a heightened susceptibility for addicted subjects to relapse in conditions that are associated with change in HPA activity, such as in stress, or at different times of the day. Recent studies give compelling evidence that a significant part of the array of addictive symptoms is directly attributable to the secretory activity of the adrenal cortex and the actions of corticosteroids. Additionally, sex differences in addiction may also be attributable to adrenocortical function: in humans, males may be protected through higher secretion of DHEA (and DHEAS), and in rats, females may be more susceptible because of higher corticosterone secretion.

Open access

I Azzam, S Gilad, R Limor, N Stern and Y Greenman

Ghrelin plasma concentration increases in parallel to cortisol after a standardized psychological stress in humans, but the physiological basis of this interaction is unknown. We aimed to elucidate this question by studying the ghrelin response to pharmacological manipulation of the hypothalamic–pituitary–adrenal (HPA) axis. Six lean, healthy male volunteers were examined under four experimental conditions. Blood samples were collected every 30 min for two sequential periods of two hours. Initially, a baseline period was followed by intravenous injection of a synthetic analog of ACTH (250 μg). Subsequently, a single dose of metyrapone was administered at midnight and in the following morning, blood samples were collected for 2 h, followed by an intravenous injection of hydrocortisone (100 mg) with continued sampling. We show that increased cortisol serum levels secondary to ACTH stimulation or hydrocortisone administration are positively associated with plasma ghrelin levels, whereas central stimulation of the HPA axis by blocking cortisol synthesis with metyrapone is associated with decreased plasma ghrelin levels. Collectively, this suggests that HPA-axis-mediated elevations in ghrelin plasma concentration require increased peripheral cortisol levels, independent of central elevation of ACTH and possibly CRH levels.

Open access

Julie Refardt, Clara Odilia Sailer, Bettina Winzeler, Matthias Johannes Betz, Irina Chifu, Ingeborg Schnyder, Martin Fassnacht, Wiebke Fenske, Mirjam Christ-Crain and for the CODDI-Investigators

The pathomechanism of primary polydipsia is poorly understood. Recent animal data reported a connection between fibroblast growth factor 21 (FGF-21) and elevated fluid intake independently of hormonal control by the hormone arginine-vasopressin (AVP) and osmotic stimulation. We therefore compared circulating FGF-21 levels in patients with primary polydipsia to patients with AVP deficiency (central diabetes insipidus) and healthy volunteers. In this prospective cohort study, we analyzed FGF-21 levels of 20 patients with primary polydipsia, 20 patients with central diabetes insipidus and 20 healthy volunteers before and after stimulation with hypertonic saline infusion targeting a plasma sodium level ≥150 mmol/L. The primary outcome was the difference in FGF-21 levels between the three groups. Baseline characteristics were similar between the groups except for patients with central diabetes insipidus being heavier. There was no difference in baseline FGF-21 levels between patients with primary polydipsia and healthy volunteers (122 pg/mL (52,277) vs 193 pg/mL (48,301), but higher levels in patients with central diabetes insipidus were observed (306 pg/mL (114,484); P = 0.037). However, this was not confirmed in a multivariate linear regression analysis after adjusting for age, sex, BMI and smoking status. Osmotic stimulation did not affect FGF-21 levels in either group (difference to baseline: primary polydipsia −23 pg/mL (−43, 22); central diabetes insipidus 17 pg/mL (−76, 88); healthy volunteers −6 pg/mL (−68, 22); P = 0.45). To conclude, FGF-21 levels are not increased in patients with primary polydipsia as compared to central diabetes insipidus or healthy volunteers. FGF-21 therefore does not seem to be causal of elevated fluid intake in these patients.

Open access

T S Nilsen, L Thorsen, C Kirkegaard, I Ugelstad, S D Fosså and T Raastad

Background

Androgen deprivation therapy (ADT) for prostate cancer (PCa) is associated with several side effects, including loss of muscle mass. Muscle atrophy is associated with reduced mitochondrial function and increased muscle cellular stress that may be counteracted by strength training. Thus, the aim of this study was to investigate the effect of strength training on mitochondrial proteins and indicators of muscle cellular stress in PCa patients on ADT.

Methods

Men diagnosed with locally advanced PCa receiving ADT were randomised to a strength training group (STG) (n=16) or a control group (CG) (n=15) for 16 weeks. Muscle biopsies were collected pre- and post-intervention from the vastus lateralis muscle, and analysed for mitochondrial proteins (citrate synthase, cytochrome c oxidase subunit IV (COXIV), HSP60) and indicators of muscle cellular stress (heat shock protein (HSP) 70, alpha B-crystallin, HSP27, free ubiquitin, and total ubiquitinated proteins) using Western blot and ELISA.

Results

No significant intervention effects were observed in any of the mitochondrial proteins or indicators of muscle cellular stress. However, within-group analysis revealed that the level of HSP70 was reduced in the STG and a tendency towards a reduction in citrate synthase levels was observed in the CG. Levels of total ubiquitinated proteins were unchanged in both groups.

Conclusion

Although reduced HSP70 levels indicated reduced muscle cellular stress in the STG, the lack of an intervention effect precluded any clear conclusions.