Search Results

You are looking at 1 - 10 of 10 items for :

  • Abstract: adrenarche x
  • Abstract: amenorrhoea x
  • Abstract: fertility x
  • Abstract: Gender x
  • Abstract: Hypogonadism x
  • Abstract: infertility x
  • Abstract: Kallmann x
  • Abstract: Klinefelter x
  • Abstract: puberty x
  • Abstract: testes x
  • Abstract: transsexual x
  • Abstract: Turner x
  • Abstract: sperm* x
  • Abstract: ovary x
  • Paediatric Endocrinology Collection x
Clear All Modify Search
Isabelle Flechtner Center for Rare Gynecological Disorders, Centre des Pathologies Gynécologiques Rares, Paris, France
Department of Paediatric Endocrinology, Gynaecology, and Diabetology, AP-HP, Necker-Enfants Malades University Hospital, IMAGINE Institute affiliate, Paris, France

Search for other papers by Isabelle Flechtner in
Google Scholar
PubMed
Close
,
Magali Viaud Center for Rare Gynecological Disorders, Centre des Pathologies Gynécologiques Rares, Paris, France
Department of Paediatric Endocrinology, Gynaecology, and Diabetology, AP-HP, Necker-Enfants Malades University Hospital, IMAGINE Institute affiliate, Paris, France

Search for other papers by Magali Viaud in
Google Scholar
PubMed
Close
,
Dulanjalee Kariyawasam Department of Paediatric Endocrinology, Gynaecology, and Diabetology, AP-HP, Necker-Enfants Malades University Hospital, IMAGINE Institute affiliate, Paris, France

Search for other papers by Dulanjalee Kariyawasam in
Google Scholar
PubMed
Close
,
Marie Perrissin-Fabert Center for Rare Gynecological Disorders, Centre des Pathologies Gynécologiques Rares, Paris, France
Department of Paediatric Endocrinology, Gynaecology, and Diabetology, AP-HP, Necker-Enfants Malades University Hospital, IMAGINE Institute affiliate, Paris, France

Search for other papers by Marie Perrissin-Fabert in
Google Scholar
PubMed
Close
,
Maud Bidet Center for Rare Gynecological Disorders, Centre des Pathologies Gynécologiques Rares, Paris, France
Department of Paediatric Endocrinology, Gynaecology, and Diabetology, AP-HP, Necker-Enfants Malades University Hospital, IMAGINE Institute affiliate, Paris, France

Search for other papers by Maud Bidet in
Google Scholar
PubMed
Close
,
Anne Bachelot Center for Rare Gynecological Disorders, Centre des Pathologies Gynécologiques Rares, Paris, France
Department of Endocrinology and Reproductive Medicine, AP-HPIE3M, Hôpital Pitié-Salpêtrière, ICAN, Paris, France

Search for other papers by Anne Bachelot in
Google Scholar
PubMed
Close
,
Philippe Touraine Center for Rare Gynecological Disorders, Centre des Pathologies Gynécologiques Rares, Paris, France
Department of Endocrinology and Reproductive Medicine, AP-HPIE3M, Hôpital Pitié-Salpêtrière, ICAN, Paris, France

Search for other papers by Philippe Touraine in
Google Scholar
PubMed
Close
,
Philippe Labrune Department of Pediatrics, APHP, Centre de Référence des Maladies héréditaires du Métabolisme Hépatique, Hopital Antoine Béclère and Paris Sud University, Clamart, France

Search for other papers by Philippe Labrune in
Google Scholar
PubMed
Close
,
Pascale de Lonlay Reference Center of Inherited Metabolic Diseases, Université de Paris, Necker Enfants Malades, University Hospital, Paris, France
Centre for Rare Gynecological Disorders, Hospital Universitaire Necker-Enfants Malades, Paediatric Endocrinology, Gynaecology and Diabetology, AP-HP, Université de Paris, Paris, France

Search for other papers by Pascale de Lonlay in
Google Scholar
PubMed
Close
, and
Michel Polak Center for Rare Gynecological Disorders, Centre des Pathologies Gynécologiques Rares, Paris, France
Department of Paediatric Endocrinology, Gynaecology, and Diabetology, AP-HP, Necker-Enfants Malades University Hospital, IMAGINE Institute affiliate, Paris, France
Centre for Rare Gynecological Disorders, Hospital Universitaire Necker-Enfants Malades, Paediatric Endocrinology, Gynaecology and Diabetology, AP-HP, Université de Paris, Paris, France

Search for other papers by Michel Polak in
Google Scholar
PubMed
Close

Classic galactosemia is a rare inborn error of galactose metabolism with a birth prevalence of about 1/30,000–60,000. Long-term complications occurring despite dietary treatment consist of premature ovarian insufficiency (POI) and neurodevelopmental impairments. We performed with the French Reference Centers for Rare Diseases a multisite collaborative questionnaire survey for classic galactosemic patients. Its primary objective was to assess their puberty, pregnancy, gonadotropic axis, and pelvic morphology by ultrasound. The secondary objective was to determine predictive factors for pregnancy without oocyte donation. Completed questionnaires from 103 patients, 56 females (median age, 19 years (3–52 years)) and 47 males (median age, 19 years (3–45 years)), were analyzed. Among the 43 females older than 13 years old, mean age for breast development first stage was 13.8 years; spontaneous menarche occurred in 21/31 females at a mean age of 14.6 years. In these 21 women, 62% had spaniomenorrhea and 7/17 older than 30 years had amenorrhea. All age-groups confounded, FSH was above reference range for 65.7% of the patients, anti-Müllerian hormone and inhibin B were undetectable, and the ovaries were small with few or no follicles detected. Among the 5 females who sought to conceive, 4 had pregnancies. Among the 47 males, 1 had cryptorchidism, all have normal testicular function and none had a desire to conceive children. Thus, spontaneous puberty and POI are both common in this population. Spontaneous menarche seems to be the best predictive factor for successful spontaneous pregnancy.

Open access
Maki Igarashi Medical Support Center for Japan Environmental and Children’s Study, National Center for Child Health and Development, Setagaya, Tokyo, Japan
Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Maki Igarashi in
Google Scholar
PubMed
Close
,
Tadayuki Ayabe Medical Support Center for Japan Environmental and Children’s Study, National Center for Child Health and Development, Setagaya, Tokyo, Japan
Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Tadayuki Ayabe in
Google Scholar
PubMed
Close
,
Kiwako Yamamoto-Hanada Medical Support Center for Japan Environmental and Children’s Study, National Center for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Kiwako Yamamoto-Hanada in
Google Scholar
PubMed
Close
,
Keiko Matsubara Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Keiko Matsubara in
Google Scholar
PubMed
Close
,
Hatoko Sasaki Medical Support Center for Japan Environmental and Children’s Study, National Center for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Hatoko Sasaki in
Google Scholar
PubMed
Close
,
Mayako Saito-Abe Medical Support Center for Japan Environmental and Children’s Study, National Center for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Mayako Saito-Abe in
Google Scholar
PubMed
Close
,
Miori Sato Medical Support Center for Japan Environmental and Children’s Study, National Center for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Miori Sato in
Google Scholar
PubMed
Close
,
Nathan Mise Department of Environmental and Preventive Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan

Search for other papers by Nathan Mise in
Google Scholar
PubMed
Close
,
Akihiko Ikegami Department of Environmental and Preventive Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan

Search for other papers by Akihiko Ikegami in
Google Scholar
PubMed
Close
,
Masayuki Shimono Regional Center for Pilot Study of Japan Environment and Children’s Study, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan

Search for other papers by Masayuki Shimono in
Google Scholar
PubMed
Close
,
Reiko Suga Regional Center for Pilot Study of Japan Environment and Children’s Study, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan

Search for other papers by Reiko Suga in
Google Scholar
PubMed
Close
,
Shouichi Ohga Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
Research Center for Environment and Developmental Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan

Search for other papers by Shouichi Ohga in
Google Scholar
PubMed
Close
,
Masafumi Sanefuji Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
Research Center for Environment and Developmental Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan

Search for other papers by Masafumi Sanefuji in
Google Scholar
PubMed
Close
,
Masako Oda Department of Public Health, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan

Search for other papers by Masako Oda in
Google Scholar
PubMed
Close
,
Hiroshi Mitsubuchi Department of Neonatology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan

Search for other papers by Hiroshi Mitsubuchi in
Google Scholar
PubMed
Close
,
Takehiro Michikawa Japan Environment and Children’s Study Programme Office, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan

Search for other papers by Takehiro Michikawa in
Google Scholar
PubMed
Close
,
Shin Yamazaki Japan Environment and Children’s Study Programme Office, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan

Search for other papers by Shin Yamazaki in
Google Scholar
PubMed
Close
,
Shoji Nakayama Japan Environment and Children’s Study Programme Office, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan

Search for other papers by Shoji Nakayama in
Google Scholar
PubMed
Close
,
Yukihiro Ohya Medical Support Center for Japan Environmental and Children’s Study, National Center for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Yukihiro Ohya in
Google Scholar
PubMed
Close
, and
Maki Fukami Medical Support Center for Japan Environmental and Children’s Study, National Center for Child Health and Development, Setagaya, Tokyo, Japan
Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Maki Fukami in
Google Scholar
PubMed
Close

Objective

Ultra-sensitive hormone assays have detected slight sex differences in blood estradiol (E2) levels in young children before adrenarche. However, the origin of circulating E2 in these individuals remains unknown. This study aimed to clarify how E2 is produced in young girls before adrenarche.

Design

This is a satellite project of the Japan Environment and Children’s Study organized by the National Institute for Environmental Studies.

Methods

We collected blood samples from healthy 6-year-old Japanese children (79 boys and 71 girls). Hormone measurements and data analysis were performed in the National Institute for Environmental Studies and the Medical Support Center of the Japan Environment and Children’s Study, respectively.

Results

E2 and follicle stimulating hormone (FSH) levels were significantly higher in girls than in boys, while dehydroepiandrosterone sulfate (DHEA-S) and testosterone levels were comparable between the two groups. Girls showed significantly higher E2/testosterone ratios than boys. In children of both sexes, a correlation was observed between E2 and testosterone levels and between testosterone and DHEA-S levels. Moreover, E2 levels were correlated with FSH levels only in girls.

Conclusions

The results indicate that in 6-year-old girls, circulating E2 is produced primarily in the ovary from adrenal steroids through FSH-induced aromatase upregulation. This study provides evidence that female-dominant E2 production starts several months or years before adrenarche. The biological significance of E2 biosynthesis in these young children needs to be clarified in future studies.

Open access
Valentina Guarnotta Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza ‘G. D’Alessandro’ (PROMISE), Sezione di Malattie Endocrine, del Ricambio e della Nutrizione, Università di Palermo, Palermo, Italy

Search for other papers by Valentina Guarnotta in
Google Scholar
PubMed
Close
,
Silvia Lucchese Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza ‘G. D’Alessandro’ (PROMISE), Sezione di Malattie Endocrine, del Ricambio e della Nutrizione, Università di Palermo, Palermo, Italy

Search for other papers by Silvia Lucchese in
Google Scholar
PubMed
Close
,
Mariagrazia Irene Mineo Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza ‘G. D’Alessandro’ (PROMISE), Sezione di Malattie Endocrine, del Ricambio e della Nutrizione, Università di Palermo, Palermo, Italy

Search for other papers by Mariagrazia Irene Mineo in
Google Scholar
PubMed
Close
,
Donatella Mangione Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza ‘G. D’Alessandro’ (PROMISE), Sezione di Ostetricia e Ginecologia, Università di Palermo, Palermo, Italy

Search for other papers by Donatella Mangione in
Google Scholar
PubMed
Close
,
Renato Venezia Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza ‘G. D’Alessandro’ (PROMISE), Sezione di Ostetricia e Ginecologia, Università di Palermo, Palermo, Italy

Search for other papers by Renato Venezia in
Google Scholar
PubMed
Close
,
Piero Luigi Almasio Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza ‘G. D’Alessandro’ (PROMISE), Sezione di Gastroenterologia ed Epatologia, Università di Palermo, Palermo, Italy

Search for other papers by Piero Luigi Almasio in
Google Scholar
PubMed
Close
, and
Carla Giordano Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza ‘G. D’Alessandro’ (PROMISE), Sezione di Malattie Endocrine, del Ricambio e della Nutrizione, Università di Palermo, Palermo, Italy

Search for other papers by Carla Giordano in
Google Scholar
PubMed
Close

Objective

The aim of this study is to clarify, in girls with premature pubarche (PP), the influence of premature androgenization on the prevalence of polycystic ovary syndrome (PCOS).

Design and patients

Ninety-nine PP girls, 63 who developed PCOS and 36 who did not develop PCOS, were retrospectively included. Clinical, anthropometric, and metabolic parameters were evaluated at the time of diagnosis of PP and after 10 years from menarche to find predictive factors of PCOS.

Results

Young females with PP showed a PCOS prevalence of 64% and showed a higher prevalence of familial history of diabetes (P = 0.004) and a lower prevalence of underweight (P = 0.025) than PP-NO-PCOS. In addition, girls with PP-PCOS showed higher BMI (P < 0.001), waist circumference (P < 0.001), total testosterone (P = 0.026), visceral adiposity index (VAI) (P = 0.013), total cholesterol (P < 0.001), LDL-cholesterol (P < 0.001), non-HDL cholesterol (P < 0.001) and lower age of menarche (P = 0.015), ISI-Matsuda (P < 0.001), DIo (P = 0.002), HDL cholesterol (P = 0.026) than PP-NO-PCOS. Multivariate analysis showed that WC (P = 0.049), ISI-Matsuda (P < 0.001), oral disposition index (DIo) (P < 0.001), VAI (P < 0.001), total testosterone (P < 0.001) and LDL-cholesterol (P < 0.001) are independent predictive factors for PCOS in girls with PP.

Conclusions

Our study established a strong association between multiple risk factors and development of PCOS in PP girls. These risk factors are predominantly related to the regulation of glucose, lipid, and androgen metabolism. Among these factors, WC, ISI-Matsuda, DIo, VAI, total testosterone, and LDL-cholesterol predict PCOS.

Open access
Teodoro Durá-Travé Department of Pediatrics, School of Medicine, University of Navarra, Pamplona, Spain
Department of Pediatrics, Navarra Hospital Complex, Pamplona, Spain
Navarra Institute for Health Research (IdisNA), Pamplona, Spain

Search for other papers by Teodoro Durá-Travé in
Google Scholar
PubMed
Close
,
Fidel Gallinas-Victoriano Department of Pediatrics, Navarra Hospital Complex, Pamplona, Spain

Search for other papers by Fidel Gallinas-Victoriano in
Google Scholar
PubMed
Close
,
María Malumbres-Chacon Department of Pediatrics, Navarra Hospital Complex, Pamplona, Spain

Search for other papers by María Malumbres-Chacon in
Google Scholar
PubMed
Close
,
Lotfi Ahmed-Mohamed Department of Pediatrics, Navarra Hospital Complex, Pamplona, Spain

Search for other papers by Lotfi Ahmed-Mohamed in
Google Scholar
PubMed
Close
,
María Jesús Chueca -Guindulain Department of Pediatrics, Navarra Hospital Complex, Pamplona, Spain
Navarra Institute for Health Research (IdisNA), Pamplona, Spain

Search for other papers by María Jesús Chueca -Guindulain in
Google Scholar
PubMed
Close
, and
Sara Berrade-Zubiri Department of Pediatrics, Navarra Hospital Complex, Pamplona, Spain
Navarra Institute for Health Research (IdisNA), Pamplona, Spain

Search for other papers by Sara Berrade-Zubiri in
Google Scholar
PubMed
Close

Objective

The objective of this study was to analyze whether some auxological characteristics or a single basal gonadotropin measurement will be sufficient to distinguish the prepubertal from pubertal status.

Methods

Auxologycal characteristics were recorded and serum LH and FSH were measured by immunochemiluminescence assays before and after GnRH stimulation test in a sample of 241 Caucasian girls with breast budding between 6- and 8-years old. Peak LH levels higher than 5 IU/L were considered a pubertal response. Area under the curve, cut-off points, sensitivity, and specificity for auxologycal variables and basal gonadotropins levels were determined by receiver operating curves.

Results

There were no significant differences in age at onset, weight, height, BMI and height velocity between both groups. Bone age was significantly higher in pubertal girls (P < 0.05), although with limited discriminatory capacity. The sensitivity and specificity for the basal LH levels were 89 and 82%, respectively, for a cut off point of 0.1 IU/L. All girls in the pubertal group had a basal LH higher than 1.0 IU/L (positive predictive value of 100%). There was a wide overlap of basal FSH and LH/FSH ratio between prepubertal and pubertal girls.

Conclusions

Auxologycal characteristics should not be used only in the differential diagnosis between prepubertal from pubertal status in 6- to 8-year-old girls. We found a high specificity of a single basal LH sample and it would be useful for establishing the diagnosis of puberty in this age group, reducing the need for GnRH stimulation testing.

Open access
Mei Li Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Search for other papers by Mei Li in
Google Scholar
PubMed
Close
,
Yanfei Chen Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Search for other papers by Yanfei Chen in
Google Scholar
PubMed
Close
,
Binrong Liao Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Search for other papers by Binrong Liao in
Google Scholar
PubMed
Close
,
Jing Tang Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Search for other papers by Jing Tang in
Google Scholar
PubMed
Close
,
Jingzi Zhong Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Search for other papers by Jingzi Zhong in
Google Scholar
PubMed
Close
, and
Dan Lan Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Search for other papers by Dan Lan in
Google Scholar
PubMed
Close

Objective

To evaluate the characteristics and significance of serum kisspeptin and makorin ring finger protein 3 (MKRN3) levels for the diagnosis of central precocious puberty (CPP) in girls.

Method

Thirty four individuals with CPP, 17 individuals with premature thelarche (PT), and 28 age-matched prepubertal girls as normal control (NC) were recruited in this case–control study. Physical measurements included BMI and tests for breast, bone, and sexual characteristics. Biochemical measurements included serum LH, FSH, estradiol, insulin-like growth factor-1, MKRN3, and kisspeptin. Blood samples were taken from individuals with CPP and PT before the gonadotrophin-releasing hormone stimulation test and at 30, 60, 90, and 120 min after injection with triptorelin.

Results

Serum kisspeptin levels were higher in the CPP group when compared to the NC group (P = 0.020), while serum MKRN3 levels were lower in the two groups (P = 0.028). There were no significant differences between the CPP and PT groups as well as the PT and NC groups (all, P > 0.05). The cut-off value of serum kisspeptin differentiating patients with CPP from those without CPP was 0.40 nmol/L, with 82.4% sensitivity and 57.1% specificity, while the cut-off value of serum MKRN3 was 0.33 pmol/L, with 79.4% sensitivity and 53.6% specificity. The area under the curves (AUCs) of both kisspeptin and MKRN3 for differentiating those girls with CPP from PT were less than 0.5.

Conclusions

Serum levels of kisspeptin and MKRN3 may play an auxiliary role in predicting CPP. However, the two measurements were not able to differentiate girls with CPP from PT and prepubertal control. This study emphasizes the need to search for markers to simplify the accurate diagnosis of CPP in girls.

Open access
Thomas Reinehr Pediatric Endocrinology, Diabetes and Nutrition Medicine, Vestische Children’s Hospital, University of Witten/Herdecke, Datteln, Germany

Search for other papers by Thomas Reinehr in
Google Scholar
PubMed
Close
,
Martin Carlsson Endocrine Care, Pfizer Inc, New York, New York, USA

Search for other papers by Martin Carlsson in
Google Scholar
PubMed
Close
,
Dionisios Chrysis Division of Pediatric Endocrinology, University of Patras, Patras, Greece

Search for other papers by Dionisios Chrysis in
Google Scholar
PubMed
Close
, and
Cecilia Camacho-Hübner Endocrine Care, Pfizer Inc, New York, New York, USA

Search for other papers by Cecilia Camacho-Hübner in
Google Scholar
PubMed
Close

Background

The precision of adult height prediction by bone age determination in children with idiopathic growth hormone deficiency (IGHD) is unknown.

Methods

The near adult height (NAH) of patients with IGHD in the KIGS database was compared retrospectively to adult height prediction calculated by the Bayley–Pinneau (BP) prediction based on bone age by Greulich–Pyle (GP) in 315 children and based on the Tanner-Whitehouse 2 (TW2) method in 121 children. Multiple linear regression analyses adjusted for age at GH start, age at puberty, mean dose and years of of GH treatment, and maximum GH peak in stimulation test were calculated.

Results

The mean underestimation of adult height based on the BP method was at baseline 4.1 ± 0.7 cm in girls and 6.1 ± 0.6 cm in boys, at 1 year of GH treatment 2.5 ± 0.5 cm in girls and 0.9 ± 0.4 cm in boys, while at last bone age determination adult height was overestimated in mean by 0.4 ± 0.6 cm in girls and 3.8 ± 0.5 cm in boys. The mean underestimation of adult height based on the TW2 method was at baseline 5.3 ± 2.0 cm in girls and 7.9 ± 0.8 cm in boys, at 1 year of GH treatment adult height was overestimated in girls 0.1 ± 0.6 cm in girls and underestimated 4.1 ± 0.4 cm in boys, while at last bone age determination adult height was overestimated in mean by 3.1 ± 1.5 cm in girls and 3.6 ± 0.8 cm in boys.

Conclusions

Height prediction by BP and TW2 at onset of GH treatment underestimates adult height in prepubertal IGHD children, while in mean 6 years after onset of GH treatment these prediction methods overestimated adult height.

Open access
Sidsel Mathiesen Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Sidsel Mathiesen in
Google Scholar
PubMed
Close
,
Kaspar Sørensen Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Kaspar Sørensen in
Google Scholar
PubMed
Close
,
Marianne Ifversen Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Marianne Ifversen in
Google Scholar
PubMed
Close
,
Casper P Hagen Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Casper P Hagen in
Google Scholar
PubMed
Close
,
Jørgen Holm Petersen Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Jørgen Holm Petersen in
Google Scholar
PubMed
Close
,
Anders Juul Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Anders Juul in
Google Scholar
PubMed
Close
, and
Klaus Müller Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Klaus Müller in
Google Scholar
PubMed
Close

Objectives

Longitudinal assessment of testicular function after pediatric hematopoietic stem cell transplantation (HSCT) is needed to guide clinical follow-up. We investigated dynamics in male reproductive hormones after pediatric HSCT, focusing on pubertal timing and associations with testosterone deficiency and azoospermia in adulthood.

Methods

This retrospective, longitudinal study included 39 survivors median 19 years after pediatric HSCT. Serum concentrations of LH, testosterone, FSH, and inhibin B from the time of HSCT, during puberty, and into adulthood were analyzed. Pubertal timing (rise in LH and testosterone) was compared to a reference cohort of 112 healthy boys. Associations between reproductive hormone levels during puberty and adult testicular function (including semen quality) were investigated.

Results

Pubertal induction with testosterone was needed in 6/26 patients who were prepubertal at HSCT. In the remaining patients, pubertal timing was comparable to the reference cohort. However, 9/33 patients (without pubertal induction) developed testosterone deficiency in early adulthood, which was associated with higher LH levels from age 14 to 16 years. Azoospermia in adulthood was found in 18/26 patients without testosterone substitution. Higher FSH and lower inhibin B levels from mid-pubertal age were associated with azoospermia in adulthood, in patients being prepubertal at HSCT.

Conclusion

Our results indicate a substantial risk of deterioration in testicular function after pediatric HSCT, despite normal pubertal timing. Although reproductive hormone levels from mid-puberty indicated adult testicular function, prolonged follow-up into adulthood is needed in these patients, including clinical examination, reproductive hormone analysis, and semen sample for patients interested in their fertility potential.

Open access
Britt J van Keulen Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Endocrinology, Amsterdam, The Netherlands

Search for other papers by Britt J van Keulen in
Google Scholar
PubMed
Close
,
Conor V Dolan Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Search for other papers by Conor V Dolan in
Google Scholar
PubMed
Close
,
Bibian van der Voorn Department of Pediatric Endocrinology, Sophia Kinderziekenhuis, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands

Search for other papers by Bibian van der Voorn in
Google Scholar
PubMed
Close
,
Ruth Andrew Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK

Search for other papers by Ruth Andrew in
Google Scholar
PubMed
Close
,
Brian R Walker Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK
Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK

Search for other papers by Brian R Walker in
Google Scholar
PubMed
Close
,
Hilleke Hulshoff Pol Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands

Search for other papers by Hilleke Hulshoff Pol in
Google Scholar
PubMed
Close
,
Dorret I Boomsma Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Search for other papers by Dorret I Boomsma in
Google Scholar
PubMed
Close
,
Joost Rotteveel Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Endocrinology, Amsterdam, The Netherlands

Search for other papers by Joost Rotteveel in
Google Scholar
PubMed
Close
, and
Martijn J J Finken Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Endocrinology, Amsterdam, The Netherlands

Search for other papers by Martijn J J Finken in
Google Scholar
PubMed
Close

Objective

Sex differences in disease susceptibility might be explained by sexual dimorphism in hypothalamic-pituitary-adrenal axis activity, which has been postulated to emerge during puberty. However, studies conducted thus far lacked an assessment of Tanner pubertal stage. This study aimed to assess the contribution of pubertal development to sexual dimorphism in cortisol production and metabolism.

Methods

Participants (n = 218) were enrolled from a population-based Netherlands Twin Register. At the ages of 9, 12 and 17 years, Tanner pubertal stage was assessed and early morning urine samples were collected. Cortisol metabolites were measured with GC-MS/MS and ratios were calculated, representing cortisol metabolism enzyme activities, such as A-ring reductases, 11β-HSDs and CYP3A4. Cortisol production and metabolism parameters were compared between sexes for pre-pubertal (Tanner stage 1), early pubertal (Tanner stage 2–3) and late-pubertal (Tanner stage 4–5) stages.

Results

Cortisol metabolite excretion rate decreased with pubertal maturation in both sexes, but did not significantly differ between sexes at any pubertal stage, although in girls a considerable decrease was observed between early and late-pubertal stage (P < 0.001). A-ring reductase activity was similar between sexes at pre- and early pubertal stages and was lower in girls than in boys at late-pubertal stage. Activities of 11β-HSDs were similar between sexes at pre-pubertal stage and favored cortisone in girls at early and late-pubertal stages. Cytochrome P450 3A4 activity did not differ between sexes.

Conclusions

Prepubertally, sexes were similar in cortisol parameters. During puberty, as compared to boys, in girls the activities of A-ring reductases declined and the balance between 11β-HSDs progressively favored cortisone. In addition, girls showed a considerable decrease in cortisol metabolite excretion rate between early and late-pubertal stages. Our findings suggest that the sexual dimorphism in cortisol may either be explained by rising concentrations of sex steroids or by puberty-induced changes in body composition.

Open access
Heike Hoyer-Kuhn Department of Paediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany

Search for other papers by Heike Hoyer-Kuhn in
Google Scholar
PubMed
Close
,
Angela Huebner Department of Paediatrics, University Children’s Hospital Dresden, Dresden, Germany

Search for other papers by Angela Huebner in
Google Scholar
PubMed
Close
,
Anette Richter-Unruh University Children’s Hospital Bochum, Bochum, Nordrhein-Westfalen, Germany

Search for other papers by Anette Richter-Unruh in
Google Scholar
PubMed
Close
,
Markus Bettendorf University Children’s Hospital Heidelberg, Heidelberg, Germany

Search for other papers by Markus Bettendorf in
Google Scholar
PubMed
Close
,
Tilman Rohrer University Children’s Hospital Homburg, Homburg, Germany

Search for other papers by Tilman Rohrer in
Google Scholar
PubMed
Close
,
Klaus Kapelari University Children’s Hospital Innsbruck, Innsbruck, Austria

Search for other papers by Klaus Kapelari in
Google Scholar
PubMed
Close
,
Stefan Riedl Department of Pediatric, Medical University of Vienna, Vienna, Austria
St.Anna Kinderspital, Medical University of Vienna, Vienna, Austria

Search for other papers by Stefan Riedl in
Google Scholar
PubMed
Close
,
Klaus Mohnike Department of Biometrics, Otto von Guericke Universität Magdeburg, Magdeburg, Sachsen-Anhalt, Germany

Search for other papers by Klaus Mohnike in
Google Scholar
PubMed
Close
,
Helmuth-Günther Dörr University Children’s Hospital Erlangen, Erlangen, Germany

Search for other papers by Helmuth-Günther Dörr in
Google Scholar
PubMed
Close
,
Friedrich-Wilhelm Roehl Department of Biometrics, Otto von Guericke Universität Magdeburg, Magdeburg, Sachsen-Anhalt, Germany

Search for other papers by Friedrich-Wilhelm Roehl in
Google Scholar
PubMed
Close
,
Katharina Fink Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany

Search for other papers by Katharina Fink in
Google Scholar
PubMed
Close
,
Reinhard W Holl Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany

Search for other papers by Reinhard W Holl in
Google Scholar
PubMed
Close
, and
Joachim Woelfle University Children’s Hospital Erlangen, Erlangen, Germany

Search for other papers by Joachim Woelfle in
Google Scholar
PubMed
Close

Objective

Treatment of classic congenital adrenal hyperplasia (CAH) is necessary to compensate for glucocorticoid/mineralocorticoid deficiencies and to suppress androgen excess. Hydrocortisone (HC) is preferred in growing children with classic CAH but recommendations regarding dosage/administration are inconsistent. The aim of this study was to evaluate HC dosing in children with CAH in relation to chronological age, sex, and phenotype based on a multicenter CAH registry.

Design

The CAH registry was initiated in 1997 by the AQUAPE in Germany. On December 31st 2018, data from 1571 patients were included.

Methods

A custom-made electronic health record software is used at the participating centers. Pseudonymized data are transferred for central analysis. Parameters were selected based on current guidelines. Descriptive analyses and linear regression models were implemented with SAS 9.4.

Results

We identified 1288 patients on exclusive treatment with hydrocortisone three times daily (604 boys; median age 7.2 years; 817 salt-wasting phenotype, 471 simple-virilizing phenotype). The mean (lower-upper quartiles) daily HC dose (mg/m² body surface area) was 19.4 (18.9–19.8) for patients <3 months (n = 329), 15.0 (14.6–15.3) for age ≥3–12 months (n = 463), 14.0 (13.7–14.3) for age 1–5.9 years (n = 745), 14.2 (14.0–14.5) for age 6 years to puberty entry (n = 669), and 14.9 (14.6–15.2) during puberty to 18 years (n = 801). Fludrocortisone was administered in 74.1% of patients with a median daily dosage of 88.8 µg.

Conclusion

Our analyses showed that still a high proportion of children are treated with HC doses higher than recommended. This evaluation provides comprehensive information on nationwide hydrocortisone substitution dosages in children with CAH underlining the benefit of systematic data within a registry to assess daily practice.

Open access
Lisette van Alewijk Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands

Search for other papers by Lisette van Alewijk in
Google Scholar
PubMed
Close
,
Kirsten Davidse Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands

Search for other papers by Kirsten Davidse in
Google Scholar
PubMed
Close
,
Karlijn Pellikaan Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands

Search for other papers by Karlijn Pellikaan in
Google Scholar
PubMed
Close
,
Judith van Eck Department of Paediatrics, Subdivision of Endocrinology, Erasmus University Medical Centre, Rotterdam, the Netherlands

Search for other papers by Judith van Eck in
Google Scholar
PubMed
Close
,
Anita C S Hokken-Koelega Department of Paediatrics, Subdivision of Endocrinology, Erasmus University Medical Centre, Rotterdam, the Netherlands
Academic Centre for Growth, Erasmus University Medical Centre, Rotterdam, the Netherlands
Dutch Growth Research Foundation, Rotterdam, the Netherlands

Search for other papers by Anita C S Hokken-Koelega in
Google Scholar
PubMed
Close
,
Theo C J Sas Department of Paediatrics, Subdivision of Endocrinology, Erasmus University Medical Centre, Rotterdam, the Netherlands
Diabeter, National Diabetes Care and Research Centre, Rotterdam, the Netherlands

Search for other papers by Theo C J Sas in
Google Scholar
PubMed
Close
,
Sabine Hannema Department of Paediatrics, Subdivision of Endocrinology, Erasmus University Medical Centre, Rotterdam, the Netherlands
Department of Paediatric Endocrinology, Leiden University Medical Centre, Leiden, the Netherlands

Search for other papers by Sabine Hannema in
Google Scholar
PubMed
Close
,
Aart J van der Lely Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands

Search for other papers by Aart J van der Lely in
Google Scholar
PubMed
Close
, and
Laura C G de Graaff Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
Academic Centre for Growth, Erasmus University Medical Centre, Rotterdam, the Netherlands

Search for other papers by Laura C G de Graaff in
Google Scholar
PubMed
Close

Objective

Adolescents and young adults (AYA) with common endocrine disorders show a high dropout (up to 50%) after the transfer from paediatric to adult endocrinology. Little is known about transition readiness in rare endocrine conditions (rEC). This study aims to assess medical self-management skills (SMS) among AYA with rEC in relation to age and gender, in order to understand dropout and increase transition readiness.

Design

Cross-sectional study using web-based medical self-management questionnaires.

Methods

Questionnaires consisting of 54 questions in seven domains were filled out by the adolescents before the first shared appointment with both paediatric and adult endocrinologist.

Results

Fifty-seven patients (median age 17 years, 25/57 females) participated and generally scored well on most items. However, one out of seven did not know the name of their disorder, one sixth of the glucocorticoid users did not know that dose should be adapted in case of illness or surgery, over one-fifth had never ordered their repeat prescriptions themselves and two-thirds had never had a conversation alone with their doctor.

Conclusions

Several SMS among patients with rEC are insufficient, with regard to medical knowledge, practical skills and communication. As SMS are only weakly related to non-modifiable factors, such as age and gender, we recommend focussing on other factors to increase transition readiness. The timing, amount and ‘mode’ of medical information should be individualised. Transition checklists should be used to detect shortcomings in practical skills and communication, which can subsequently be trained with the help of parents, caregivers and/or e-technology.

Open access