Search Results
You are looking at 51 - 60 of 468 items for
- Abstract: adrenarche x
- Abstract: amenorrhoea x
- Abstract: fertility x
- Abstract: Gender x
- Abstract: Hypogonadism x
- Abstract: infertility x
- Abstract: Kallmann x
- Abstract: Klinefelter x
- Abstract: menopause x
- Abstract: puberty x
- Abstract: testes x
- Abstract: transsexual x
- Abstract: Turner x
- Abstract: sperm* x
- Abstract: ovary x
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Marie Lindhardt Ljubicic in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Trine Holm Johannsen in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Margit Bistrup Fischer in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Emmie N Upners in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Alexander S Busch in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Katharina M Main in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Anna-Maria Andersson in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Casper P Hagen in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Anders Juul in
Google Scholar
PubMed
The ratio between luteinizing hormone (LH) and follicle-stimulating hormone (FSH) has previously been described as an excellent marker of sex in healthy infants. However, LH/FSH remains not fully described in patients with differences of sex development (DSD). The aim was therefore to describe LH/FSH in infants with DSD. This was a retrospective study of DSD patients, all aged 0–1.2 years. In total, 87 infants with DSD and at least one serum sample per infant were included. Longitudinal samples from single patients were included whenever possible. Serum LH/FSH ratios in these patients were plotted against recently published age-related and sex-dimorphic cutoffs. Overall, LH/FSH sometimes corresponded to assigned sex without any obvious pattern in terms of diagnoses. LH/FSH corresponded to the biological sex in all patients with Turner or Klinefelter syndrome. In patients with 46,XX or 46,XY DSD (except congenital adrenal hyperplasia (CAH)), the ratios did not correspond to the assigned sex in all cases and were interchangeably within the male and female range. In patients with CAH, the ratio corresponded to biological sex (based on sex chromosomes) in some cases but also ranged across the cutoffs. In the 15 patients with 45,X/46,XY mosaicism, the LH/FSH ratios corresponded to the assigned sex in all cases (12 were raised as males, 3 as females) and at all time points in cases with multiple sampling. While this study describes LH/FSH in infants with DSD, the exact clinical role of the ratio in the management of these patients remains to be further elucidated.
Disciplina de Endocrinologia, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, São Paulo, Brazil
Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular LIM/42, Disciplina de Endocrinologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
Search for other papers by Renata C Scalco in
Google Scholar
PubMed
Search for other papers by Ericka B Trarbach in
Google Scholar
PubMed
Search for other papers by Edoarda V A Albuquerque in
Google Scholar
PubMed
Search for other papers by Thais K Homma in
Google Scholar
PubMed
Search for other papers by Thais H Inoue-Lima in
Google Scholar
PubMed
Search for other papers by Mirian Y Nishi in
Google Scholar
PubMed
Search for other papers by Berenice B Mendonca in
Google Scholar
PubMed
Search for other papers by Alexander A L Jorge in
Google Scholar
PubMed
Most patients with Turner syndrome (TS) need hormone replacement therapy because of hypergonadotropic hypogonadism; individual outcomes, however, are highly variable. Our objective was to assess the influence of five estrogen receptor 1 gene (ESR1) polymorphisms (rs543650, rs1038304, rs2046210, rs2234693 and rs9340799) on adult height, breast development, uterine volume and bone mineral density (BMD). We studied 91 TS patients from a tertiary hospital using adult estrogen dose. In our group, ESR1 rs2234693 was associated with femoral neck and total hip BMD, and it accounted for around 10% of BMD variability in both sites (P < 0.01). Patients homozygous for C allele in this polymorphism had significantly lower femoral neck BMD (0.699 ± 0.065 g/cm2 vs 0.822 ± 0.113 g/cm2, P = 0.008) and total hip BMD (0.777 ± 0.118 g/cm2 vs 0.903 ± 0.098 g/cm2, P = 0.009) than patients homozygous for T allele. The other four ESR1 polymorphisms were not able to predict any of the above estrogen therapy outcomes in an isolated manner. Patients homozygous for the haplotype GCG formed by polymorphisms rs543650, rs2234693 and rs9340799 had an even more significantly lower femoral neck BMD (0.666 ± 0.049 vs 0.820 ± 0.105 g/cm2, P = 0.0047) and total hip BMD (0.752 ± 0.093 vs 0.908 ± 0.097 g/cm2, P = 0.0029) than patients homozygous for haplotypes with a T allele in rs2234693. In conclusion, homozygosity for C allele in ESR1 rs2234693 and/or for GCG haplotype appears to be associated with lower femoral neck and total hip BMD. We believe that the identification of polymorphisms related to estrogen outcomes may contribute to individualization of treatment in TS.
Search for other papers by Bruno Donadille in
Google Scholar
PubMed
Search for other papers by Muriel Houang in
Google Scholar
PubMed
Université Pierre et Marie Curie, Sorbonne Université, Paris, France
Search for other papers by Irène Netchine in
Google Scholar
PubMed
INSERM UMR_S933, Paris, France
Search for other papers by Jean-Pierre Siffroi in
Google Scholar
PubMed
Université Pierre et Marie Curie, Sorbonne Université, Paris, France
INSERM UMR_S933, Paris, France
Search for other papers by Sophie Christin-Maitre in
Google Scholar
PubMed
Human 3 beta-hydroxysteroid dehydrogenase deficiency (3b-HSD) is a very rare form of congenital adrenal hyperplasia resulting from HSD3B2 gene mutations. The estimated prevalence is less than 1/1,000,000 at birth. It leads to steroidogenesis impairment in both adrenals and gonads. Few data are available concerning adult testicular function in such patients. We had the opportunity to study gonadal axis and testicular function in a 46,XY adult patient, carrying a HSD3B2 mutation. He presented at birth a neonatal salt-wasting syndrome. He had a micropenis, a perineal hypospadias and two intrascrotal testes. HSD3B2 gene sequencing revealed a 687del27 homozygous mutation. The patient achieved normal puberty at the age of 15 years. Transition from the paediatric department occurred at the age of 19 years. His hormonal profile under hydrocortisone and fludrocortisone treatments revealed normal serum levels of 17OH-pregnenolone, as well as SDHEA, ACTH, total testosterone, inhibin B and AMH. Pelvic ultrasound identified two scrotal testes of 21 mL each, without any testicular adrenal rest tumours. His adult spermatic characteristics were normal, according to WHO 2010 criteria, with a sperm concentration of 57.6 million/mL (N > 15), 21% of typical forms (N > 4%). Sperm vitality was subnormal (41%; N > 58%). This patient, in contrast to previous reports, presents subnormal sperm parameters and therefore potential male fertility in a 24-years-old patient with severe 3b-HSD deficiency. This case should improve counselling about fertility of male patients carrying HSD3B2 mutation.
Search for other papers by Jan Roar Mellembakken in
Google Scholar
PubMed
Search for other papers by Azita Mahmoudan in
Google Scholar
PubMed
Search for other papers by Lars Mørkrid in
Google Scholar
PubMed
Search for other papers by Inger Sundström-Poromaa in
Google Scholar
PubMed
Search for other papers by Laure Morin-Papunen in
Google Scholar
PubMed
Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Uusimaa, Finland
Search for other papers by Juha S Tapanainen in
Google Scholar
PubMed
Search for other papers by Terhi T Piltonen in
Google Scholar
PubMed
Search for other papers by Angelica Lindén Hirschberg in
Google Scholar
PubMed
Search for other papers by Elisabet Stener-Victorin in
Google Scholar
PubMed
Department of Gynecology and Obstetrics, St. Olav’s Hospital, Trondheim, Norway
Search for other papers by Eszter Vanky in
Google Scholar
PubMed
Search for other papers by Pernille Ravn in
Google Scholar
PubMed
Search for other papers by Richard Christian Jensen in
Google Scholar
PubMed
Search for other papers by Marianne Skovsager Andersen in
Google Scholar
PubMed
Search for other papers by Dorte Glintborg in
Google Scholar
PubMed
Objective
Obesity is considered to be the strongest predictive factor for cardio-metabolic risk in women with polycystic ovary syndrome (PCOS). The aim of the study was to compare blood pressure (BP) in normal weight women with PCOS and controls matched for age and BMI.
Methods
From a Nordic cross-sectional base of 2615 individuals of Nordic ethnicity, we studied a sub cohort of 793 normal weight women with BMI < 25 kg/m2 (512 women with PCOS according to Rotterdam criteria and 281 age and BMI-matched controls). Participants underwent measurement of BP and body composition (BMI, waist-hip ratio), lipid status, and fasting BG. Data were presented as median (quartiles).
Results
The median age for women with PCOS were 28 (25, 32) years and median BMI was 22.2 (20.7, 23.4) kg/m2. Systolic BP was 118 (109, 128) mmHg in women with PCOS compared to 110 (105, 120) mmHg in controls and diastolic BP was 74 (67, 81) vs 70 (64, 75) mmHg, both P < 0.001. The prevalence of women with BP ≥ 140/90 mmHg was 11.1% (57/512) in women with PCOS vs 1.8% (5/281) in controls, P < 0.001. In women ≥ 35 years the prevalence of BP ≥ 140/90 mmHg was comparable in women with PCOS and controls (12.7% vs 9.8%, P = 0.6). Using multiple regression analyses, the strongest association with BP was found for age, waist circumference, and total cholesterol in women with PCOS.
Conclusions
Normal weight women with PCOS have higher BP than controls. BP and metabolic screening are relevant also in young normal weight women with PCOS.
Search for other papers by Mírian Romitti in
Google Scholar
PubMed
Search for other papers by Vitor C Fabris in
Google Scholar
PubMed
Search for other papers by Patricia K Ziegelmann in
Google Scholar
PubMed
Search for other papers by Ana Luiza Maia in
Google Scholar
PubMed
Search for other papers by Poli Mara Spritzer in
Google Scholar
PubMed
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine disorder affecting women of reproductive age. PCOS has been associated with distinct metabolic and cardiovascular diseases and with autoimmune conditions, predominantly autoimmune thyroid disease (AITD). AITD has been reported in 18–40% of PCOS women, depending on PCOS diagnostic criteria and ethnicity. The aim of this systematic review and meta-analysis was to summarize the available evidence regarding the likelihood of women with PCOS also having AITD in comparison to a reference group of non-PCOS women. We systematically searched EMBASE and MEDLINE for non-interventional case control, cross-sectional or cohort studies published until August 2017. The Ottawa–Newcastle Scale was used to assess the methodological quality of studies. Statistical meta-analysis was performed with R. Thirteen studies were selected for the present analysis, including 1210 women diagnosed with PCOS and 987 healthy controls. AITD was observed in 26.03 and 9.72% of PCOS and control groups respectively. A significant association was detected between PCOS and chance of AITD (OR = 3.27, 95% CI 2.32–4.63). Notably, after geographical stratification, the higher risk of AITD in PCOS women persisted for Asians (OR = 4.56, 95% CI 2.47–8.43), Europeans (OR = 3.27, 95% CI 2.07–5.15) and South Americans (OR = 1.86, 95% CI 1.05–3.29). AIDT is a frequent condition in PCOS patients and might affect thyroid function. Thus, screening for thyroid function and thyroid-specific autoantibodies should be considered in patients with PCOS even in the absence of overt symptoms. This systematic review and meta-analysis is registered in PROSPERO under number CRD42017079676.
Polish Mother’s Memorial Hospital–Research Institute, Lodz, Poland
Search for other papers by Krzysztof C Lewandowski in
Google Scholar
PubMed
Search for other papers by Justyna Płusajska in
Google Scholar
PubMed
Search for other papers by Wojciech Horzelski in
Google Scholar
PubMed
Search for other papers by Ewa Bieniek in
Google Scholar
PubMed
Polish Mother’s Memorial Hospital–Research Institute, Lodz, Poland
Search for other papers by Andrzej Lewiński in
Google Scholar
PubMed
Background
Though insulin resistance (IR) is common in polycystic ovary syndrome (PCOS), there is no agreement as to what surrogate method of assessment of IR is most reliable.
Subjects and methods
In 478 women with PCOS, we compared methods based on fasting insulin and either fasting glucose (HOMA-IR and QUICKI) or triglycerides (McAuley Index) with IR indices derived from glucose and insulin during OGTT (Belfiore, Matsuda and Stumvoll indices).
Results
There was a strong correlation between IR indices derived from fasting values HOMA-IR/QUICKI, r = −0.999, HOMA-IR/McAuley index, r = −0.849 and between all OGTT-derived IR indices (e.g. r = −0.876, for IRI/Matsuda, r = −0.808, for IRI/Stumvoll, and r = 0.947, for Matsuda/Stumvoll index, P < 0.001 for all), contrasting with a significant (P < 0.001), but highly variable correlation between IR indices derived from fasting vs OGTT-derived variables, ranging from r = −0.881 (HOMA-IR/Matsuda), through r = 0.58, or r = −0.58 (IRI/HOMA-IR, IRI/QUICKI, respectively) to r = 0.41 (QUICKI/Stumvoll), and r = 0.386 for QUICKI/Matsuda indices. Detailed comparison between HOMA-IR and IRI revealed that concordance between HOMA and IRI was poor for HOMA-IR/IRI values above 75th and 90th percentile. For instance, only 53% (70/132) women with HOMA-IR >75th percentile had IRI value also above 75th percentile. There was a significant, but weak correlation of all IR indices with testosterone concentrations.
Conclusions
Significant number of women with PCOS can be classified as being either insulin sensitive or insulin resistant depending on the method applied, as correlation between various IR indices is highly variable. Clinical application of surrogate indices for assessment of IR in PCOS must be therefore viewed with an extreme caution.
Search for other papers by A Daniel Bird in
Google Scholar
PubMed
Search for other papers by Spencer Greatorex in
Google Scholar
PubMed
Search for other papers by David Reser in
Google Scholar
PubMed
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
Search for other papers by Gareth G Lavery in
Google Scholar
PubMed
Search for other papers by Timothy J Cole in
Google Scholar
PubMed
Steroid hormones play clinically important and specific regulatory roles in the development, growth, metabolism, reproduction and brain function in human. The type 1 and 2 11-beta hydroxysteroid dehydrogenase enzymes (11β-HSD1 and 2) have key roles in the pre-receptor modification of glucocorticoids allowing aldosterone regulation of blood pressure, control of systemic fluid and electrolyte homeostasis and modulation of integrated metabolism and brain function. Although the activity and function of 11β-HSDs is thought to be understood, there exists an open reading frame for a distinct 11βHSD-like gene; HSD11B1L, which is present in human, non-human primate, sheep, pig and many other higher organisms, whereas an orthologue is absent in the genomes of mouse, rat and rabbit. We have now characterised this novel HSD11B1L gene as encoded by 9 exons and analysis of EST library transcripts indicated the use of two alternate ATG start sites in exons 2 and 3, and alternate splicing in exon 9. Relatively strong HSD11B1L gene expression was detected in human, non-human primate and sheep tissue samples from the brain, ovary and testis. Analysis in non-human primates and sheep by immunohistochemistry localised HSD11B1L protein to the cytoplasm of ovarian granulosa cells, testis Leydig cells, and gonadatroph cells in the anterior pituitary. Intracellular localisation analysis in transfected human HEK293 cells showed HSD1L protein within the endoplasmic reticulum and sequence analysis suggests that similar to 11βHSD1 it is membrane bound. The endogenous substrate of this third HSD enzyme remains elusive with localisation and expression data suggesting a reproductive hormone as a likely substrate.
INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France
Search for other papers by Milène Tetsi Nomigni in
Google Scholar
PubMed
Search for other papers by Sophie Ouzounian in
Google Scholar
PubMed
Search for other papers by Alice Benoit in
Google Scholar
PubMed
Search for other papers by Jacqueline Vadrot in
Google Scholar
PubMed
Search for other papers by Frédérique Tissier in
Google Scholar
PubMed
INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France
Search for other papers by Sylvie Renouf in
Google Scholar
PubMed
INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France
INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France
Search for other papers by Hervé Lefebvre in
Google Scholar
PubMed
INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France
Search for other papers by Sophie Christin-Maitre in
Google Scholar
PubMed
INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France
Search for other papers by Estelle Louiset in
Google Scholar
PubMed
Hirsutism induced by hyperandrogenism can be associated with polycystic ovary syndrome, 21-hydroxylase (OH) deficiency or androgen-secreting tumors, including ovarian and adrenal tumors. Adrenal androgen-secreting tumors are frequently malignant. Adrenal oncocytomas represent rare causes of hyperandrogenism. The aim of the study was to investigate steroidogenic enzyme expression and steroid secretion in an androgen-secreting adrenal oncocytoma in a young woman presenting with hirsutism. Hyperandrogenism was diagnosed on the basis of elevated plasma Δ4-androstenedione and testosterone levels. Pelvic ultrasound was normal, CT scanning revealed a right adrenal mass. Androgens were assessed in adrenal and ovarian vein samples and proved a right adrenal origin. Adrenalectomy normalized androgen levels and the adrenal tumor was diagnosed as an oncocytoma. Real time-PCR, immunohistochemistry and cell culture studies were performed on tumor explants to investigate the steroid secretion profile. Among enzymes required for cortisol synthesis, 17α-OH and 3β-hydroxysteroid dehydrogenase 2 (3β-HSD2) were highly expressed whereas 21-OH and 11β-OH were weakly produced at the mRNA and/or protein levels. Enzymes involved in testosterone production, 17β-HSD5 and 17β-HSD3, were also detected. ACTH receptor was present in the tissue. Cortisol, Δ4-androstenedione and testosterone secretions by cultured cells were increased by ACTH. These results provide the first demonstration, to our knowledge, of abnormal expression profile of steroidogenic enzymes in an adrenocortical oncocytoma. Our results also indicate that Δ4-androstenedione hypersecretion resulted from high 17α-OH and 3β-HSD2 expression in combination with low expression of 21-OH and 11β-OH. Testosterone production was ascribed to occurrence of 17β-HSD5 and 17β-HSD3. Finally, our results indicate that androgen secretion was stimulated by ACTH.
The Leicester Diabetes Centre, University Hospitals of Leicester NHS Trust, Leicester General Hospital, Leicester, UK
Search for other papers by M A Webb in
Google Scholar
PubMed
Department of Diabetes and Endocrinology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK
Diabetes and Endocrinology Department, Kettering General Hospital NHS Foundation Trust, Kettering, UK
Search for other papers by H Mani in
Google Scholar
PubMed
Search for other papers by S J Robertson in
Google Scholar
PubMed
Search for other papers by H L Waller in
Google Scholar
PubMed
Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK
Search for other papers by D R Webb in
Google Scholar
PubMed
Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK
Search for other papers by C L Edwardson in
Google Scholar
PubMed
Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK
Search for other papers by D H Bodicoat in
Google Scholar
PubMed
Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK
Search for other papers by T Yates in
Google Scholar
PubMed
The Leicester Diabetes Centre, University Hospitals of Leicester NHS Trust, Leicester General Hospital, Leicester, UK
Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK
Search for other papers by K Khunti in
Google Scholar
PubMed
The Leicester Diabetes Centre, University Hospitals of Leicester NHS Trust, Leicester General Hospital, Leicester, UK
Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK
Search for other papers by M J Davies in
Google Scholar
PubMed
Aims
Physical activity has been proposed to be an effective non-pharmacological method of reducing systemic inflammation and therefore may prove particularly efficacious for women with polycystic ovary syndrome (PCOS) who have been shown to have high levels of inflammation and an increased risk of type 2 diabetes (T2DM) and cardiovascular disease (CVD). Therefore, the aim of the present study was to assess whether modest changes in daily step count could significantly reduce levels of inflammatory markers in women with PCOS.
Subjects and Methods
Sixty-five women with PCOS were assessed at baseline and again at 6 months. All had been provided with an accelerometer and encouraged to increase activity levels. Multivariate linear regression analyses (adjusted for age, ethnicity, baseline step count, change in BMI and change in accelerometer wear-time) were used to assess changes in daily step count against clinical and research biomarkers of inflammation, CVD and T2DM.
Results
Mean step count/day at baseline was 6337 (±270). An increase in step count (by 1000 steps) was associated with a 13% reduction in IL6 (β: −0.81 ng/L; 95% CI, −1.37, −0.25, P = 0.005) and a 13% reduction in CRP (β: −0.68 mg/L; 95% CI, −1.30, −0.06, P = 0.033). Additionally, there was a modest decrease in BMI (β: 0.20 kg/m2; 95% CI, −0.38, −0.01, P = 0.038). Clinical markers of T2DM and CVD were not affected by increased step count.
Conclusions
Modest increases in step count/day can reduce levels of inflammatory markers in women with PCOS, which may reduce the future risk of T2DM and CVD.
Search for other papers by Xia Wu in
Google Scholar
PubMed
Search for other papers by Zhiling Li in
Google Scholar
PubMed
Search for other papers by Wenjiang Sun in
Google Scholar
PubMed
Search for other papers by Huan Zheng in
Google Scholar
PubMed
Polycystic ovary syndrome (PCOS) is associated with an increased risk of cardiovascular disease in women. Hyperhomocysteinemia (H-Hcy) is closely related to arterial stiffness (AS) in patients with cardiovascular disease. This study aimed to investigate the relationship between serum homocysteine(Hcy) level and brachial-ankle pulse wave velocity (baPWV) in Chinese women with PCOS. A total of 124 PCOS women were enrolled and divided into two groups according to their baPWV values: normal, baPWV < 1400 cm/s and high AS, baPWV ≥ 1400 cm/s. Univariate analysis was performed to investigate the relative factors for baPWV, and multiple regression analysis was used to evaluate the association of Hcy with baPWV. The group with high AS (n = 35) had higher Hcy levels than the other group (n = 89; P < 0.05). Moreover, univariate analysis revealed that serum Hcy was positively correlated with baPWV (r = 0.133, P < 0.01). In multiple regression analysis, the age-adjusted serum Hcy level was positively correlated with baPWV (β = 0.201, P < 0.01). It remained positively associated with baPWV (β = 0.145, P < 0.01) after further adjustments for age, BMI, PCOS duration, systolic blood pressure, and homeostasis model assessment-insulin resistance as well as several other factors correlated with baPWV. Our results demonstrated that H-Hcy was significantly and independently related to elevated baPWV, suggesting that Hcy might play a role in the pathologic process of AS in women with PCOS. Further researches with more subjects are needed to explore whether Hcy would be a promising biomarker for the stratification management of PCOS women.