Search Results

You are looking at 21 - 30 of 476 items for

  • Abstract: adrenarche x
  • Abstract: amenorrhoea x
  • Abstract: fertility x
  • Abstract: Gender x
  • Abstract: Hypogonadism x
  • Abstract: infertility x
  • Abstract: Kallmann x
  • Abstract: Klinefelter x
  • Abstract: menopause x
  • Abstract: puberty x
  • Abstract: testes x
  • Abstract: transsexual x
  • Abstract: Turner x
  • Abstract: sperm* x
  • Abstract: ovary x
Clear All Modify Search
Rohit Barnabas Department of Endocrinology, Seth GS Medical College and KEM Hospital, Parel, Mumbai, India

Search for other papers by Rohit Barnabas in
Google Scholar
PubMed
Close
,
Swati Jadhav Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Centre, Bengaluru, India

Search for other papers by Swati Jadhav in
Google Scholar
PubMed
Close
,
Anurag Ranjan Lila Department of Endocrinology, Seth GS Medical College and KEM Hospital, Parel, Mumbai, India

Search for other papers by Anurag Ranjan Lila in
Google Scholar
PubMed
Close
,
Sirisha Kusuma Boddu Consultant Pediatric Endocrinology & Diabetes, Rainbow Children’s Hospital, Hyderabad, India

Search for other papers by Sirisha Kusuma Boddu in
Google Scholar
PubMed
Close
,
Saba Samad Memon Department of Endocrinology, Seth GS Medical College and KEM Hospital, Parel, Mumbai, India

Search for other papers by Saba Samad Memon in
Google Scholar
PubMed
Close
,
Sneha Arya Department of Endocrinology, Seth GS Medical College and KEM Hospital, Parel, Mumbai, India

Search for other papers by Sneha Arya in
Google Scholar
PubMed
Close
,
Samiksha Chandrashekhar Hegishte Department of Endocrinology, Seth GS Medical College and KEM Hospital, Parel, Mumbai, India

Search for other papers by Samiksha Chandrashekhar Hegishte in
Google Scholar
PubMed
Close
,
Manjiri Karlekar Department of Endocrinology, Seth GS Medical College and KEM Hospital, Parel, Mumbai, India

Search for other papers by Manjiri Karlekar in
Google Scholar
PubMed
Close
,
Virendra A Patil Department of Endocrinology, Seth GS Medical College and KEM Hospital, Parel, Mumbai, India

Search for other papers by Virendra A Patil in
Google Scholar
PubMed
Close
,
Vijaya Sarathi Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Centre, Bengaluru, India

Search for other papers by Vijaya Sarathi in
Google Scholar
PubMed
Close
,
Nalini S Shah Department of Endocrinology, Seth GS Medical College and KEM Hospital, Parel, Mumbai, India

Search for other papers by Nalini S Shah in
Google Scholar
PubMed
Close
, and
Tushar Bandgar Department of Endocrinology, Seth GS Medical College and KEM Hospital, Parel, Mumbai, India

Search for other papers by Tushar Bandgar in
Google Scholar
PubMed
Close

Background

The data on Leydig cell hypoplasia (LCH) resulting from biallelic Luteinizing hormone/chorionic gonadotropin receptor (LHCGR) inactivating variants is limited to case series.

Methods

We aim to describe our patients and perform systematic review of the patients with LHCGR inactivating variants in the literature. Detailed phenotype and genotype data of three patients from our centre and 85 (46,XY: 67; 46,XX: 18) patients from 59 families with LHCGR-inactivating variants from literature were described.

Results

Three 46,XY patients (age 6–18 years) from our center, with two reared as females, had two novel variants in LHCGR. Systematic review (including our patients) revealed 72 variants in 88 patients. 46,XY patients (n = 70, 56 raised as females) presented with pubertal delay (n = 41) or atypical genitalia (n = 17). Sinnecker score ≥3 (suggesting antenatal human chorionic gonadotropin (hCG) inaction) was seen in 80% (56/70), and hCG-stimulated testosterone was low (<1.1 ng/mL) in 77.4% (24/31), whereas puberty/postpubertal age, high luteinizing hormone (LH) (97.6%, 41/42) and low (<1.0 ng/mL) basal testosterone (94.9%, 37/39) was observed in most. Follicle stimulating hormone was elevated in 21/51 of these patients. Variants with <10% receptor function were exclusively seen in cohorts with Sinnecker 4/5 (10/15 vs 0/5, P = 0.033). 46,XX patients (n = 18) presented with oligo/amenorrhea and/or anovulatory infertility and had polycystic ovaries (7/9) with median LH of 10 IU/L (1.2–38).

Conclusion

In summary, this study comprehensively characterizes LHCGR variants, revealing genotype-phenotype correlations and informing clinical management of LCH. In 46,XY LCH patients, pubertal LH inaction is uniform with variable severity of antenatal hCG inaction. Few mutant LHCGR have differential actions for LH and hCG.

Open access
Angela Köninger Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany

Search for other papers by Angela Köninger in
Google Scholar
PubMed
Close
,
Antonella Iannaccone Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany

Search for other papers by Antonella Iannaccone in
Google Scholar
PubMed
Close
,
Ensar Hajder Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany

Search for other papers by Ensar Hajder in
Google Scholar
PubMed
Close
,
Mirjam Frank Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Essen, Germany

Search for other papers by Mirjam Frank in
Google Scholar
PubMed
Close
,
Boerge Schmidt Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Essen, Germany

Search for other papers by Boerge Schmidt in
Google Scholar
PubMed
Close
,
Ekkehard Schleussner Department of Obstetrics, Jena University Hospital, Jena, Germany

Search for other papers by Ekkehard Schleussner in
Google Scholar
PubMed
Close
,
Rainer Kimmig Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany

Search for other papers by Rainer Kimmig in
Google Scholar
PubMed
Close
,
Alexandra Gellhaus Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany

Search for other papers by Alexandra Gellhaus in
Google Scholar
PubMed
Close
, and
Hans Dieplinger Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria

Search for other papers by Hans Dieplinger in
Google Scholar
PubMed
Close

Background

Patients suffering from polycystic ovary syndrome (PCOS) are often insulin resistant and at elevated risk for developing gestational diabetes mellitus (GDM). The aim of this study was to explore afamin, which can be determined preconceptionally to indicate patients who will subsequently develop GDM. Serum concentrations of afamin are altered in conditions of oxidative stress like insulin resistance (IR) and correlate with the gold standard of IR determination, the HOMA index.

Methods

Afamin serum concentrations and the HOMA index were analyzed post hoc in 63 PCOS patients with live births. Patients were treated at Essen University Hospital, Germany, between 2009 and 2018. Mann–Whitney U test, T test, Spearman’s correlation, linear regression models and receiver-operating characteristic (ROC) analyses were performed for statistical analysis.

Results

Patients who developed GDM showed significantly higher HOMA and serum afamin values before their pregnancy (P < 0.001, respectively). ROCs for afamin concentrations showed an area under the curve of 0.78 (95% confidence interval (CI) 0.65–0.90) and of 0.77 (95% CI 0.64–0.89) for the HOMA index. An afamin threshold of 88.6 mg/L distinguished between women who will develop GDM and those who will not with a sensitivity of 79.3% and a specificity of 79.4%. A HOMA index of 2.5 showed a sensitivity of 65.5% and a specificity of 88.2%.

Conclusion

The HOMA index and its surrogate parameter afamin are able to identify pre-pregnant PCOS patients who are at risk to develop GDM. Serum afamin concentrations are independent of fasting status and therefore an easily determinable biomarker.

Open access
E Kohva Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
Faculty of Medicine, Department of Physiology, University of Helsinki, Helsinki, Finland

Search for other papers by E Kohva in
Google Scholar
PubMed
Close
,
P J Miettinen Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland

Search for other papers by P J Miettinen in
Google Scholar
PubMed
Close
,
S Taskinen Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
Department of Pediatric Surgery, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland

Search for other papers by S Taskinen in
Google Scholar
PubMed
Close
,
M Hero Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland

Search for other papers by M Hero in
Google Scholar
PubMed
Close
,
A Tarkkanen Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
Faculty of Medicine, Department of Physiology, University of Helsinki, Helsinki, Finland

Search for other papers by A Tarkkanen in
Google Scholar
PubMed
Close
, and
T Raivio Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
Faculty of Medicine, Department of Physiology, University of Helsinki, Helsinki, Finland

Search for other papers by T Raivio in
Google Scholar
PubMed
Close

Background

We describe the phenotypic spectrum and timing of diagnosis and management in a large series of patients with disorders of sexual development (DSD) treated in a single pediatric tertiary center.

Methods

DSD patients who had visited our tertiary center during the survey period (between 2004 and 2014) were identified based on an ICD-10 inquiry, and their phenotypic and molecular genetic findings were recorded from patient charts.

Results

Among the 550 DSD patients, 53.3% had 46,XY DSD; 37.1% had sex chromosome DSD and 9.6% had 46,XX DSD. The most common diagnoses were Turner syndrome (19.8%, diagnosed at the mean age of 4.7 ± 5.5 years), Klinefelter syndrome (14.5%, 6.8 ± 6.2 years) and bilateral cryptorchidism (23.1%). Very few patients with 46,XY DSD (7%) or 46,XX DSD (21%) had molecular genetic diagnosis. The yearly rate of DSD diagnoses remained stable over the survey period. After the release of the Nordic consensus on the management of undescended testes, the age at surgery for bilateral cryptorchidism declined significantly (P < 0.001).

Conclusions

Our results show that (i) Turner syndrome and Klinefelter syndrome, the most frequent single DSD diagnoses, are still diagnosed relatively late; (ii) a temporal shift was observed in the management of bilateral cryptorchidism, which may favorably influence patients’ adulthood semen quality and (iii) next-generation sequencing methods are not fully employed in the diagnostics of DSD patients.

Open access
Feifei Cheng Department of Medicine and Therapeutics The Chinese University of Hong Kong, Hong Kong, Hong Kong

Search for other papers by Feifei Cheng in
Google Scholar
PubMed
Close
,
Noel Yat Hey Ng Department of Medicine and Therapeutics The Chinese University of Hong Kong, Hong Kong, Hong Kong

Search for other papers by Noel Yat Hey Ng in
Google Scholar
PubMed
Close
,
Claudia Ha Ting Tam Department of Medicine and Therapeutics The Chinese University of Hong Kong, Hong Kong, Hong Kong
Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, Hong Kong

Search for other papers by Claudia Ha Ting Tam in
Google Scholar
PubMed
Close
,
Yuying Zhang Department of Medicine and Therapeutics The Chinese University of Hong Kong, Hong Kong, Hong Kong
Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, Hong Kong

Search for other papers by Yuying Zhang in
Google Scholar
PubMed
Close
,
Cadmon King Poo Lim Department of Medicine and Therapeutics The Chinese University of Hong Kong, Hong Kong, Hong Kong
Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong

Search for other papers by Cadmon King Poo Lim in
Google Scholar
PubMed
Close
,
Guozhi Jiang Department of Medicine and Therapeutics The Chinese University of Hong Kong, Hong Kong, Hong Kong
Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, Hong Kong

Search for other papers by Guozhi Jiang in
Google Scholar
PubMed
Close
,
Alex Chi Wai Ng Department of Medicine and Therapeutics The Chinese University of Hong Kong, Hong Kong, Hong Kong

Search for other papers by Alex Chi Wai Ng in
Google Scholar
PubMed
Close
,
Tiffany Tse Ling Yau Department of Medicine and Therapeutics The Chinese University of Hong Kong, Hong Kong, Hong Kong

Search for other papers by Tiffany Tse Ling Yau in
Google Scholar
PubMed
Close
,
Lai Ping Cheung Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong

Search for other papers by Lai Ping Cheung in
Google Scholar
PubMed
Close
,
Aimin Xu Department of Medicine, Li Ka Shing (LKS) Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, Hong Kong
Department of Pharmacy and Pharmacology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong

Search for other papers by Aimin Xu in
Google Scholar
PubMed
Close
,
Juliana C N Chan Department of Medicine and Therapeutics The Chinese University of Hong Kong, Hong Kong, Hong Kong
Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, Hong Kong
Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong, Hong Kong

Search for other papers by Juliana C N Chan in
Google Scholar
PubMed
Close
, and
Ronald C W Ma Department of Medicine and Therapeutics The Chinese University of Hong Kong, Hong Kong, Hong Kong
Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, Hong Kong
Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong, Hong Kong

Search for other papers by Ronald C W Ma in
Google Scholar
PubMed
Close

Women with polycystic ovary syndrome (PCOS) have an increased risk of developing type 2 diabetes. FGF19, FGF21 and lipocalin-2 have emerged as important markers of metabolic risk. This study aims to compare the levels of FGF19, FGF21 and lipocalin-2 between subjects with or without PCOS, and to investigate the relationship between proteins and diabetes progression. In this nested case–control cohort study, 128 Chinese PCOS women and 128 controls were recruited and followed-up. All subjects underwent the oral glucose tolerance test for the evaluation of glycaemic status. Baseline serum protein levels were measured using ELISA. Compared with controls, PCOS subjects had higher levels of FGF19 (P < 0.001) and FGF21 (P = 0.022), but had lower lipocalin-2 (P < 0.001). In total, 20.8% of PCOS and 9.2% of controls developed diabetes over a mean duration of 10.4 ± 1.2 and 11.3 ± 0.5 years, respectively. Logistic regression analyses suggested FGF19 was positively associated with diabetes progression in controls, after adjusting for age, follow-up duration, waist and fasting glucose (P = 0.026, odds ratio (OR) (95% CI): 7.4 (1.3–43.6)), and the positive relationship between FGF21 and diabetes progression in controls was attenuated by adjusting for age and follow-up duration (P = 0.183). Lipocalin-2 was positively correlated with diabetes progression in PCOS group (P = 0.026, OR (95% CI)): 2.5 (1.1–5.6)); however, this became attenuated after adjusting for waist and fasting glucose (P = 0.081). In conclusion, there is differential expression of FGF19, FGF21, and lipocalin-2 in PCOS. The serum level of FGF19, and FGF21 is associated with diabetes progression in women without PCOS, while lipocalin-2 was related to diabetes progression in PCOS women.

Open access
Malin Nylander Department of Obstetrics and Gynecology, Herlev Gentofte Hospital, Herlev, Denmark
Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Malin Nylander in
Google Scholar
PubMed
Close
,
Signe Frøssing Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Department of Internal Medicine, Endocrine Unit, Herlev Gentofte Hospital, Herlev, Denmark

Search for other papers by Signe Frøssing in
Google Scholar
PubMed
Close
,
Caroline Kistorp Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Department of Internal Medicine, Endocrine Unit, Herlev Gentofte Hospital, Herlev, Denmark

Search for other papers by Caroline Kistorp in
Google Scholar
PubMed
Close
,
Jens Faber Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Department of Internal Medicine, Endocrine Unit, Herlev Gentofte Hospital, Herlev, Denmark

Search for other papers by Jens Faber in
Google Scholar
PubMed
Close
, and
Sven O Skouby Department of Obstetrics and Gynecology, Herlev Gentofte Hospital, Herlev, Denmark
Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Sven O Skouby in
Google Scholar
PubMed
Close

Polycystic ovary syndrome (PCOS) is associated with increased risk of venous thromboembolism (VTE) and cardiovascular disease (CVD) in later life. We aimed to study the effect of liraglutide intervention on markers of VTE and CVD risk, in PCOS. In a double-blind, placebo-controlled, randomized trial, 72 overweight and/or insulin-resistant women with PCOS were randomized, in a 2:1 ratio, to liraglutide or placebo 1.8 mg/day. Endpoints included between-group difference in change (baseline to follow-up) in plasminogen activator inhibitor-1 levels and in thrombin generation test parameters: endogenous thrombin potential, peak thrombin concentration, lag time and time to peak. Mean weight loss was 5.2 kg (95% CI 3.0–7.5 kg, P < 0.001) in the liraglutide group compared with placebo. We detected no effect on endogenous thrombin potential in either group. In the liraglutide group, peak thrombin concentration decreased by 16.71 nmol/L (95% CI 2.32–31.11, P < 0.05) and lag time and time to peak increased by 0.13 min (95% CI 0.01–0.25, P < 0.05) and 0.38 min (95% CI 0.09–0.68, P < 0.05), respectively, but there were no between-group differences. There was a trend toward 12% (95% CI 0–23, P = 0.05) decreased plasminogen activator inhibitor-1 in the liraglutide group, and there was a trend toward 16% (95% CI −4 to 32, P = 0.10) reduction, compared with placebo. In overweight women with PCOS, liraglutide intervention caused an approximate 5% weight loss. In addition, liraglutide affected thrombin generation, although not significantly differently from placebo. A concomitant trend toward improved fibrinolysis indicates a possible reduction of the baseline thrombogenic potential. The findings point toward beneficial effects of liraglutide on markers of VTE and CVD risk, which should be further pursued in larger studies.

Open access
Dorte Glintborg Department of Endocrinology and Metabolism, Odense University Hospital, Odense C, Denmark

Search for other papers by Dorte Glintborg in
Google Scholar
PubMed
Close
,
Hanne Mumm Department of Endocrinology and Metabolism, Odense University Hospital, Odense C, Denmark

Search for other papers by Hanne Mumm in
Google Scholar
PubMed
Close
,
Jens Juul Holst Department of Biomedical Sciences and NNF Centre for Basic Metabolic Research, The Panum Institute, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Jens Juul Holst in
Google Scholar
PubMed
Close
, and
Marianne Andersen Department of Endocrinology and Metabolism, Odense University Hospital, Odense C, Denmark

Search for other papers by Marianne Andersen in
Google Scholar
PubMed
Close

Context

Insulin resistance in polycystic ovary syndrome (PCOS) may increase the risk of reactive hypoglycaemia (RH) and decrease glucagon-like peptide-1 (GLP-1) secretion. The possible effects of treatment with oral contraceptives (OCP) and/or metformin on GLP-1 secretion and risk of RH in PCOS is undetermined.

Setting

Outpatient clinic.

Patients and interventions

Randomized, controlled clinical trial. Ninety women with PCOS were randomized to 12-month treatment with OCP (150 mg desogestrel + 30 mg ethinylestradiol), metformin (2 g/day) or metformin + OCP. Five-hour oral glucose tolerance tests (5-h OGTT) measuring fasting and area under the curve (AUC) for GLP-1, glucose, insulin and C-peptide were performed before and after the intervention period. Sixty-five women completed the study and 34 weight-matched healthy women were included as controls.

Main outcome measures

Changes in GLP-1, glucose, insulin and C-peptide during 5-h OGTT.

Results

Fasting GLP-1 levels increased during metformin + OCP vs OCP treatment, whereas AUC GLP-1 levels were unchanged during medical treatment. The prevalence of reactive hypoglycemia increased from 9/65 to 14/65 after intervention (P < 0.01) and was more common after treatment with metformin + OCP (increase from 3/23 to 6/23, P = 0.01). Reactive hypoglycaemia was associated with higher insulin and C-peptide levels during 5-h OGTT, but was unassociated with BMI and AUC GLP-1. GLP-1 levels were comparable in PCOS vs controls. AUC GLP-1 levels were significantly lower in obese vs lean patients and were inversely associated with BMI.

Conclusions

AUC GLP-1 levels were unchanged during treatment. Increased risk of hypoglycemia during metformin + OCP could be associated with increased insulin secretion.

Open access
Sarantis Livadas Endocrine Unit, Athens Medical Centre, Athens, Greece

Search for other papers by Sarantis Livadas in
Google Scholar
PubMed
Close
,
Christina Bothou Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Zurich, Zurich, Switzerland

Search for other papers by Christina Bothou in
Google Scholar
PubMed
Close
,
Justyna Kuliczkowska-Płaksej Department of Endocrinology, Diabetology and Isotope Therapy, University of Medicine, Wrocław, Poland

Search for other papers by Justyna Kuliczkowska-Płaksej in
Google Scholar
PubMed
Close
,
Ralitsa Robeva Ushate ‘acad. IV. Penchev’, Department of Endocrinology, Faculty of Medicine, Medical University-Sofia, Sofia, Bulgaria

Search for other papers by Ralitsa Robeva in
Google Scholar
PubMed
Close
,
Andromahi Vryonidou Department of Endocrinology and Diabetes, Hellenic Red Cross Hospital, Athens, Greece

Search for other papers by Andromahi Vryonidou in
Google Scholar
PubMed
Close
,
Jelica Bjekic Macut Department of Endocrinology, UMC Bežanijska Kosa, Faculty of Medicine, University of Belgrade, Belgrade, Serbia

Search for other papers by Jelica Bjekic Macut in
Google Scholar
PubMed
Close
,
Ioannis Androulakis Endocrine Unit, Athens Medical Centre, Athens, Greece

Search for other papers by Ioannis Androulakis in
Google Scholar
PubMed
Close
,
Milica Opalic Clinic of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, Belgrade, Serbia

Search for other papers by Milica Opalic in
Google Scholar
PubMed
Close
,
Zadalla Mouslech 1st Medical Propedeutic, Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece

Search for other papers by Zadalla Mouslech in
Google Scholar
PubMed
Close
,
Andrej Milewicz Department of Endocrinology, Diabetology and Isotope Therapy, University of Medicine, Wrocław, Poland

Search for other papers by Andrej Milewicz in
Google Scholar
PubMed
Close
,
Alessandra Gambineri Department of Medical and Surgical Science-DIMEC Endocrinology Unit, University of Bologna – S. Orsola-Mapighi Hospital, Italy

Search for other papers by Alessandra Gambineri in
Google Scholar
PubMed
Close
,
Dimitrios Panidis Gynaecological Endocrinology Infirmary of the Second Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Thessaloniki, Greece

Search for other papers by Dimitrios Panidis in
Google Scholar
PubMed
Close
, and
Djuro Macut Clinic of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, Belgrade, Serbia

Search for other papers by Djuro Macut in
Google Scholar
PubMed
Close

Background

Polycystic ovary syndrome (PCOS) is considered a risk factor for the development of type 2 diabetes mellitus (T2DM). However, which is the most appropriate way to evaluate dysglycemia in women with PCOS and who are at increased risk are as yet unclear.

Aim of the study

To determine the prevalence of T2DM, impaired glucose tolerance (IGT), and impaired fasting glucose (IFG) in PCOS women and potential factors to identify those at risk.

Subjects and methods

The oral glucose tolerance test (OGTT), biochemical/hormonal profile, and ovarian ultrasound data from 1614 Caucasian women with PCOS and 362 controls were analyzed in this cross-sectional multicenter study. The data were categorized according to age and BMI.

Results

Dysglycemia (T2DM, IGT, and IFG according to World Health Organization criteria) was more frequent in the PCOS group compared to controls: 2.2% vs 0.8%, P = 0.04; 9.5% vs 7.4%, P = 0.038; 14.2% vs 9.1%, P = 0.002, respectively. OGTT was essential for T2DM diagnosis, since in 88% of them basal glucose values were inconclusive for diagnosis. The presence of either T2DM or IFG was irrespective of age (P = 0.54) and BMI (P = 0.32), although the latter was associated with IGT (P = 0.021). There was no impact of age and BMI status on the prevalence of T2DM or IFG. Regression analysis revealed a role for age, BMI, fat deposition, androgens, and insulin resistance for dysglycemia. However, none of the factors prevailed as a useful marker employed in clinical practice.

Conclusions

One-third of our cohort of PCOS women with either T2DM or IGT displayed normal fasting glucose values but without confirming any specific predictor for dysglycemic condition. Hence, the evaluation of glycemic status using OGTT in all women with PCOS is strongly supported.

Open access
Jie Yang J Yang, Reproductive Medicine Center, Shunde Hospital of Southern Medical University, Foshan, China

Search for other papers by Jie Yang in
Google Scholar
PubMed
Close
,
Min Lin M Lin, Reproductive Medicine Center, The First People's Hospital of Yulin, Yulin, China

Search for other papers by Min Lin in
Google Scholar
PubMed
Close
,
Xiaoyan Tian X Tian, Reproductive Medicine Center, Shunde Hospital of Southern Medical University, Foshan, China

Search for other papers by Xiaoyan Tian in
Google Scholar
PubMed
Close
,
Chujun Li C Li, Reproductive Medicine Center, Shunde Hospital of Southern Medical University, Foshan, China

Search for other papers by Chujun Li in
Google Scholar
PubMed
Close
,
Haocun Wu H Wu, Department of Clinical Laboratory, Shunde Hospital of Southern Medical University, Foshan, China

Search for other papers by Haocun Wu in
Google Scholar
PubMed
Close
,
Ling Deng L Deng, Reproductive Medicine Center, Shunde Hospital of Southern Medical University, Foshan, China

Search for other papers by Ling Deng in
Google Scholar
PubMed
Close
,
Xuelan Li X Li, Reproductive Medicine Center, Shunde Hospital of Southern Medical University, Foshan, China

Search for other papers by Xuelan Li in
Google Scholar
PubMed
Close
, and
Xin Chen X Chen, Reproductive Medicine Center, Shunde Hospital of Southern Medical University, Foshan, China

Search for other papers by Xin Chen in
Google Scholar
PubMed
Close

Purpose: Our study aimed to assess the relationship between serum adipokines and insulin resistance (IR) in women with polycystic ovary syndrome (PCOS), as well as explore the predictive value of adipokines on IR in PCOS.

Methods: This was a prospective cross-sectional study. 154 women with PCOS were included from July 2021 to September 2022 who underwent gonadal steroid hormone measurement, lipid profile, oral glucose tolerance test and homeostasis model assessment (HOMA)-IR. Adiponectin (APN), leptin and secreted frizzled-related protein (Sfrp5) were measured by immunoturbidimetry and enzyme-linked immunosorbent assay. Women with PCOS were categorised based on the presence of IR.

Results: Women with PCOS with IR (n=99) had significantly lower APN level and APN to leptin ratio (A/L ratio) than those without IR (n=55), whereas serum levels of leptin and Sfrp5 were similar between the two groups. In multivariable linear regression analysis, serum log (APN) and log (A/L ratio) were associated with log(HOMA-IR), the association was statistically significant after adjusting for body mass index (BMI) and free androgen index. The area under the ROC curve (95% CI) for APN and A/L ratio were 0.726 (0.644–0.807; P<0.001) and 0.660(0.569–0.751; P<0.01), with cutoff values of 5.225 mg/L (Youden index ¼ 0.364) and 1.438 (Youden index ¼ 0.265) respectively.

Conclusion: Our study demonstrated that serum APN was negatively related to IR. Serum APN may be useful as a clinical marker for IR in women with PCOS. Our findings warrant further investigations into the function of APN in the pathogenesis of IR in women with PCOS.

Open access
Helene Bandsholm Leere Tallaksen Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Helene Bandsholm Leere Tallaksen in
Google Scholar
PubMed
Close
,
Emma B Johannsen Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Emma B Johannsen in
Google Scholar
PubMed
Close
,
Jesper Just Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Jesper Just in
Google Scholar
PubMed
Close
,
Mette Hansen Viuff Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Gynaecology and Obstetrics, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Mette Hansen Viuff in
Google Scholar
PubMed
Close
,
Claus H Gravholt Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Claus H Gravholt in
Google Scholar
PubMed
Close
, and
Anne Skakkebæk Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Anne Skakkebæk in
Google Scholar
PubMed
Close

Sex chromosome abnormalities (SCAs) are chromosomal disorders with either a complete or partial loss or gain of sex chromosomes. The most frequent SCAs include Turner syndrome (45,X), Klinefelter syndrome (47,XXY), Trisomy X syndrome (47,XXX), and Double Y syndrome (47,XYY). The phenotype seen in SCAs is highly variable and may not merely be due to the direct genomic imbalance from altered sex chromosome gene dosage but also due to additive alterations in gene networks and regulatory pathways across the genome as well as individual genetic modifiers. This review summarizes the current insight into the genomics of SCAs. In addition, future directions of research that can contribute to decipher the genomics of SCA are discussed such as single-cell omics, spatial transcriptomics, system biology thinking, human-induced pluripotent stem cells, and animal models, and how these data may be combined to bridge the gap between genomics and the clinical phenotype.

Open access
Anita Hokken-Koelega Erasmus University Medical Centre, Rotterdam, The Netherlands

Search for other papers by Anita Hokken-Koelega in
Google Scholar
PubMed
Close
,
Aart-Jan van der Lely Erasmus University Medical Centre, Rotterdam, The Netherlands

Search for other papers by Aart-Jan van der Lely in
Google Scholar
PubMed
Close
,
Berthold Hauffa University Children’s Hospital, Essen, Germany

Search for other papers by Berthold Hauffa in
Google Scholar
PubMed
Close
,
Gabriele Häusler Medical University and General Hospital of Vienna, Vienna, Austria

Search for other papers by Gabriele Häusler in
Google Scholar
PubMed
Close
,
Gudmundur Johannsson Sahlgrenska University Hospital, Göteborg, Sweden

Search for other papers by Gudmundur Johannsson in
Google Scholar
PubMed
Close
,
Mohamad Maghnie Istituto Giannina Gaslini, University of Genova, Genova, Italy

Search for other papers by Mohamad Maghnie in
Google Scholar
PubMed
Close
,
Jesús Argente Hospital Infantil Universitario Niño Jesús, Madrid, Spain

Search for other papers by Jesús Argente in
Google Scholar
PubMed
Close
,
Jean DeSchepper University Hospital Brussels, Brussels, Belgium

Search for other papers by Jean DeSchepper in
Google Scholar
PubMed
Close
,
Helena Gleeson Queen Elizabeth Hospital, Birmingham, UK

Search for other papers by Helena Gleeson in
Google Scholar
PubMed
Close
,
John W Gregory Cardiff University School of Medicine, Cardiff, UK

Search for other papers by John W Gregory in
Google Scholar
PubMed
Close
,
Charlotte Höybye Department of Molecular Medicine and Surgery, Karolinska Institute and Department of Endocrinology, Metabolism and Diabetology, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Charlotte Höybye in
Google Scholar
PubMed
Close
,
Fahrettin Keleştimur Department of Endocrinology, School of Medicine, Erciyes University, Kayseri, Turkey

Search for other papers by Fahrettin Keleştimur in
Google Scholar
PubMed
Close
,
Anton Luger Sahlgrenska University Hospital, Göteborg, Sweden

Search for other papers by Anton Luger in
Google Scholar
PubMed
Close
,
Hermann L Müller Department of Pediatrics, Klinikum Oldenburg, Medical Campus University Oldenburg, Oldenburg, Germany

Search for other papers by Hermann L Müller in
Google Scholar
PubMed
Close
,
Sebastian Neggers University Children’s Hospital, Essen, Germany

Search for other papers by Sebastian Neggers in
Google Scholar
PubMed
Close
,
Vera Popovic-Brkic Belgrade University School of Medicine, Belgrade, Serbia

Search for other papers by Vera Popovic-Brkic in
Google Scholar
PubMed
Close
,
Eleonora Porcu University of Bologna, Bologna, Italy

Search for other papers by Eleonora Porcu in
Google Scholar
PubMed
Close
,
Lars Sävendahl Department of Women’s and Children’s Health, Karolinska Institutet, and Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Lars Sävendahl in
Google Scholar
PubMed
Close
,
Stephen Shalet The Christie Hospital, Manchester, UK

Search for other papers by Stephen Shalet in
Google Scholar
PubMed
Close
,
Bessie Spiliotis University of Patras School of Medicine, Patras, Greece

Search for other papers by Bessie Spiliotis in
Google Scholar
PubMed
Close
, and
Maithé Tauber Hôpital des Enfants, Toulouse, France

Search for other papers by Maithé Tauber in
Google Scholar
PubMed
Close

Objective

Seamless transition of endocrine patients from the paediatric to adult setting is still suboptimal, especially in patients with complex disorders, i.e., small for gestational age, Turner or Prader–Willi syndromes; Childhood Cancer Survivors, and those with childhood-onset growth hormone deficiency.

Methods

An expert panel meeting comprised of European paediatric and adult endocrinologists was convened to explore the current gaps in managing the healthcare of patients with endocrine diseases during transition from paediatric to adult care settings.

Results

While a consensus was reached that a team approach is best, discussions revealed that a ‘one size fits all’ model for transition is largely unsuccessful in these patients. They need more tailored care during adolescence to prevent complications like failure to achieve target adult height, reduced bone mineral density, morbid obesity, metabolic perturbations (obesity and body composition), inappropriate/inadequate puberty, compromised fertility, diminished quality of life and failure to adapt to the demands of adult life. Sometimes it is difficult for young people to detach emotionally from their paediatric endocrinologist and/or the abrupt change from an environment of parental responsibility to one of autonomy. Discussions about impending transition and healthcare autonomy should begin in early adolescence and continue throughout young adulthood to ensure seamless continuum of care and optimal treatment outcomes.

Conclusions

Even amongst a group of healthcare professionals with a great interest in improving transition services for patients with endocrine diseases, there is still much work to be done to improve the quality of healthcare for transition patients.

Open access