Search Results

You are looking at 11 - 20 of 472 items for

  • Abstract: adrenarche x
  • Abstract: amenorrhoea x
  • Abstract: fertility x
  • Abstract: Gender x
  • Abstract: Hypogonadism x
  • Abstract: infertility x
  • Abstract: Kallmann x
  • Abstract: Klinefelter x
  • Abstract: menopause x
  • Abstract: puberty x
  • Abstract: testes x
  • Abstract: transsexual x
  • Abstract: Turner x
  • Abstract: sperm* x
  • Abstract: ovary x
Clear All Modify Search
Frederic Schrøder Arendrup Department of Neurology, Danish Headache Center, Rigshospitalet, University of Copenhagen, Denmark

Search for other papers by Frederic Schrøder Arendrup in
Google Scholar
PubMed
Close
,
Severine Mazaud-Guittot Inserm (Institut National de la Santé et de la Recherche Médicale), Irset – Inserm, UMR 1085, Rennes, France

Search for other papers by Severine Mazaud-Guittot in
Google Scholar
PubMed
Close
,
Bernard Jégou Inserm (Institut National de la Santé et de la Recherche Médicale), Irset – Inserm, UMR 1085, Rennes, France
EHESP-School of Public Health, Rennes, France

Search for other papers by Bernard Jégou in
Google Scholar
PubMed
Close
, and
David Møbjerg Kristensen Department of Neurology, Danish Headache Center, Rigshospitalet, University of Copenhagen, Denmark
Inserm (Institut National de la Santé et de la Recherche Médicale), Irset – Inserm, UMR 1085, Rennes, France

Search for other papers by David Møbjerg Kristensen in
Google Scholar
PubMed
Close

Concern has been raised over chemical-induced disruption of ovary development during fetal life resulting in long-lasting consequences only manifesting themselves much later during adulthood. A growing body of evidence suggests that prenatal exposure to the mild analgesic acetaminophen/paracetamol can cause such a scenario. Therefore, in this review, we discuss three recent reports that collectively indicate that prenatal exposure in a period of 13.5 days post coitum in both rats and mouse can result in reduced female reproductive health. The combined data show that the exposure results in the reduction of primordial follicles, irregular menstrual cycle, premature absence of corpus luteum, as well as reduced fertility, resembling premature ovarian insufficiency syndrome in humans that is linked to premature menopause. This could especially affect the Western parts of the world, where the age for childbirth is continuously being increased and acetaminophen is recommended during pregnancy for pain and fever. We therefore highlight an urgent need for more studies to verify these data including both experimental and epidemiological approaches.

Open access
Masatada Watanabe Laboratory of Tissue Regeneration, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa, Tokyo, Japan

Search for other papers by Masatada Watanabe in
Google Scholar
PubMed
Close
,
Shuji Ohno Division of Research for Pharmacy Students Education, Hoshi University, Shinagawa, Tokyo, Japan

Search for other papers by Shuji Ohno in
Google Scholar
PubMed
Close
, and
Hiroshi Wachi Laboratory of Tissue Regeneration, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa, Tokyo, Japan

Search for other papers by Hiroshi Wachi in
Google Scholar
PubMed
Close

Emerging evidence suggests that sex steroids are important for human skin health. In particular, estrogen improves skin thickness, elasticity and moisture of older women. The major source of circulating estrogen is the ovary; however, local estrogen synthesis and secretion have important roles in, for example, bone metabolism and breast cancer development. We hypothesized that infiltrated peripheral monocytes are one of the sources of estrogen in skin tissues. We also hypothesized that, during atopic dermatitis under stress, a decline in the hypothalamus–pituitary–adrenal axis (HPA) and facilitation of the (hypothalamus)–sympathetic–adrenomedullary system (SAM) attenuates estrogen secretion from monocytes. Based on this hypothesis, we tested aromatase expression in the human peripheral monocyte-derived cell line THP-1 in response to the synthetic glucocorticoid dexamethasone (Dex), the synthetic β-agonist isoproterenol (Iso) and the β-antagonist propranolol (Pro). Dex mimics glucocorticoid secreted during excitation of the HPA, and Iso mimics catecholamine secreted during excitation of the SAM. We found that aromatase activity and the CYP19A1 gene transcript were both upregulated in THP-1 cells in the presence of Dex. Addition of Iso induced their downregulation and further addition of Pro rescued aromatase expression. These results may suggest that attenuation of estrogen secretion from peripheral monocytes could be a part of the pathology of stress-caused deterioration of atopic dermatitis. Further examination using an in vitro human skin model including THP-1 cells might be a valuable tool for investigating the therapeutic efficacy and mechanism of estrogen treatment for skin health.

Open access
Luigi Laino Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Luigi Laino in
Google Scholar
PubMed
Close
,
Silvia Majore Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Silvia Majore in
Google Scholar
PubMed
Close
,
Nicoletta Preziosi Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Nicoletta Preziosi in
Google Scholar
PubMed
Close
,
Barbara Grammatico Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Barbara Grammatico in
Google Scholar
PubMed
Close
,
Carmelilia De Bernardo Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Carmelilia De Bernardo in
Google Scholar
PubMed
Close
,
Salvatore Scommegna Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Salvatore Scommegna in
Google Scholar
PubMed
Close
,
Anna Maria Rapone Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Anna Maria Rapone in
Google Scholar
PubMed
Close
,
Giacinto Marrocco Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Giacinto Marrocco in
Google Scholar
PubMed
Close
,
Irene Bottillo Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Irene Bottillo in
Google Scholar
PubMed
Close
, and
Paola Grammatico
Search for other papers by Paola Grammatico in
Google Scholar
PubMed
Close

Sex development is a process under genetic control directing both the bi-potential gonads to become either a testis or an ovary, and the consequent differentiation of internal ducts and external genitalia. This complex series of events can be altered by a large number of genetic and non-genetic factors. Disorders of sex development (DSD) are all the medical conditions characterized by an atypical chromosomal, gonadal, or phenotypical sex. Incomplete knowledge of the genetic mechanisms involved in sex development results in a low probability of determining the molecular definition of the genetic defect in many of the patients. In this study, we describe the clinical, cytogenetic, and molecular study of 88 cases with DSD, including 29 patients with 46,XY and disorders in androgen synthesis or action, 18 with 46,XX and disorders in androgen excess, 17 with 46,XY and disorders of gonadal (testicular) development, 11 classified as 46,XX other, eight with 46,XX and disorders of gonadal (ovarian) development, and five with sex chromosome anomalies. In total, we found a genetic variant in 56 out of 88 of them, leading to the clinical classification of every patient, and we outline the different steps required for a coherent genetic testing approach. In conclusion, our results highlight the fact that each category of DSD is related to a large number of different DNA alterations, thus requiring multiple genetic studies to achieve a precise etiological diagnosis for each patient.

Open access
Christian Trummer Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria

Search for other papers by Christian Trummer in
Google Scholar
PubMed
Close
,
Stefan Pilz Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria

Search for other papers by Stefan Pilz in
Google Scholar
PubMed
Close
,
Verena Schwetz Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria

Search for other papers by Verena Schwetz in
Google Scholar
PubMed
Close
,
Barbara Obermayer-Pietsch Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria

Search for other papers by Barbara Obermayer-Pietsch in
Google Scholar
PubMed
Close
, and
Elisabeth Lerchbaum Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria

Search for other papers by Elisabeth Lerchbaum in
Google Scholar
PubMed
Close

Background

Accumulating evidence from animal and human studies suggests that vitamin D is involved in many functions of the reproductive system in both genders.

Aim

The aim of this review was to provide an overview on the effects of vitamin D on polycystic ovary syndrome (PCOS) in women and androgen metabolism in men.

Methods

We performed a systematic literature search in PubMed for relevant English language publications published from January 2012 until September 2017.

Results and discussion

The vitamin D receptor and vitamin D-metabolizing enzymes are found in reproductive tissues of women and men. In women, vitamin D status has been associated with several features of PCOS. In detail, cross-sectional data suggest a regulatory role of vitamin D in PCOS-related aspects such as ovulatory dysfunction, insulin resistance as well as hyperandrogenism. Moreover, results from randomized controlled trials (RCTs) suggest that vitamin D supplementation may be beneficial for metabolic, endocrine and fertility aspects in PCOS. In men, vitamin D status has been associated with androgen levels and hypogonadism. Further, there is some evidence for a favorable effect of vitamin D supplementation on testosterone concentrations, although others failed to show a significant effect on testosterone levels.

Conclusion

In summary, vitamin D deficiency is associated with adverse fertility outcomes including PCOS and hypogonadism, but the evidence is insufficient to establish causality. High-quality RCTs are needed to further evaluate the effects of vitamin D supplementation in PCOS women as well as on androgen levels in men.

Open access
Signe Kirkegaard Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark

Search for other papers by Signe Kirkegaard in
Google Scholar
PubMed
Close
,
Nanna Maria Uldall Torp Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark

Search for other papers by Nanna Maria Uldall Torp in
Google Scholar
PubMed
Close
,
Stig Andersen Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
Department of Geriatrics, Aalborg University Hospital, Aalborg, Denmark

Search for other papers by Stig Andersen in
Google Scholar
PubMed
Close
, and
Stine Linding Andersen Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark

Search for other papers by Stine Linding Andersen in
Google Scholar
PubMed
Close

Endometriosis and polycystic ovary syndrome (PCOS) are common gynecological disorders that constitute a significant burden of disease in women of fertile age. The disorders share a link to female reproduction and infertility; however, divergent effects on menstrual cycle, related hormones, and body composition have been proposed. Disorders of the thyroid gland including abnormal thyroid dysfunction (hyperthyroidism or hypothyroidism) and/or markers of thyroid autoimmunity similarly show a female predominance and onset in younger age groups. We reviewed the literature on the association between endometriosis, PCOS, and thyroid disease up until July 1, 2023, and identified 8 original studies on endometriosis and thyroid disease and 30 original studies on PCOS and thyroid disease. The studies were observational and heterogeneous regarding the design, sample size, and definitions of exposure and outcome; however, a tendency was seen toward an association between hyperthyroidism and endometriosis. Especially an association between endometriosis and slightly elevated levels of thyroid-stimulating hormone receptor antibodies has been found and corroborated in studies from different populations. On the other hand, the literature review turned a focus toward an association between hypothyroidism and PCOS, however, with uncertainties as to whether the association is caused by hypothyroidism per se and/or the thyroid autoantibodies (thyroid peroxidase and thyroglobulin antibodies). More evidence is needed to substantiate an association between endometriosis, PCOS, and thyroid disease, and to differentiate between the role of thyroid function and thyroid autoimmunity. Furthermore, studies are warranted to extend knowledge on the different disease characteristics and underlying mechanisms.

Open access
Maki Igarashi Medical Support Center for Japan Environmental and Children’s Study, National Center for Child Health and Development, Setagaya, Tokyo, Japan
Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Maki Igarashi in
Google Scholar
PubMed
Close
,
Tadayuki Ayabe Medical Support Center for Japan Environmental and Children’s Study, National Center for Child Health and Development, Setagaya, Tokyo, Japan
Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Tadayuki Ayabe in
Google Scholar
PubMed
Close
,
Kiwako Yamamoto-Hanada Medical Support Center for Japan Environmental and Children’s Study, National Center for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Kiwako Yamamoto-Hanada in
Google Scholar
PubMed
Close
,
Keiko Matsubara Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Keiko Matsubara in
Google Scholar
PubMed
Close
,
Hatoko Sasaki Medical Support Center for Japan Environmental and Children’s Study, National Center for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Hatoko Sasaki in
Google Scholar
PubMed
Close
,
Mayako Saito-Abe Medical Support Center for Japan Environmental and Children’s Study, National Center for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Mayako Saito-Abe in
Google Scholar
PubMed
Close
,
Miori Sato Medical Support Center for Japan Environmental and Children’s Study, National Center for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Miori Sato in
Google Scholar
PubMed
Close
,
Nathan Mise Department of Environmental and Preventive Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan

Search for other papers by Nathan Mise in
Google Scholar
PubMed
Close
,
Akihiko Ikegami Department of Environmental and Preventive Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan

Search for other papers by Akihiko Ikegami in
Google Scholar
PubMed
Close
,
Masayuki Shimono Regional Center for Pilot Study of Japan Environment and Children’s Study, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan

Search for other papers by Masayuki Shimono in
Google Scholar
PubMed
Close
,
Reiko Suga Regional Center for Pilot Study of Japan Environment and Children’s Study, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan

Search for other papers by Reiko Suga in
Google Scholar
PubMed
Close
,
Shouichi Ohga Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
Research Center for Environment and Developmental Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan

Search for other papers by Shouichi Ohga in
Google Scholar
PubMed
Close
,
Masafumi Sanefuji Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
Research Center for Environment and Developmental Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan

Search for other papers by Masafumi Sanefuji in
Google Scholar
PubMed
Close
,
Masako Oda Department of Public Health, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan

Search for other papers by Masako Oda in
Google Scholar
PubMed
Close
,
Hiroshi Mitsubuchi Department of Neonatology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan

Search for other papers by Hiroshi Mitsubuchi in
Google Scholar
PubMed
Close
,
Takehiro Michikawa Japan Environment and Children’s Study Programme Office, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan

Search for other papers by Takehiro Michikawa in
Google Scholar
PubMed
Close
,
Shin Yamazaki Japan Environment and Children’s Study Programme Office, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan

Search for other papers by Shin Yamazaki in
Google Scholar
PubMed
Close
,
Shoji Nakayama Japan Environment and Children’s Study Programme Office, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan

Search for other papers by Shoji Nakayama in
Google Scholar
PubMed
Close
,
Yukihiro Ohya Medical Support Center for Japan Environmental and Children’s Study, National Center for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Yukihiro Ohya in
Google Scholar
PubMed
Close
, and
Maki Fukami Medical Support Center for Japan Environmental and Children’s Study, National Center for Child Health and Development, Setagaya, Tokyo, Japan
Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan

Search for other papers by Maki Fukami in
Google Scholar
PubMed
Close

Objective

Ultra-sensitive hormone assays have detected slight sex differences in blood estradiol (E2) levels in young children before adrenarche. However, the origin of circulating E2 in these individuals remains unknown. This study aimed to clarify how E2 is produced in young girls before adrenarche.

Design

This is a satellite project of the Japan Environment and Children’s Study organized by the National Institute for Environmental Studies.

Methods

We collected blood samples from healthy 6-year-old Japanese children (79 boys and 71 girls). Hormone measurements and data analysis were performed in the National Institute for Environmental Studies and the Medical Support Center of the Japan Environment and Children’s Study, respectively.

Results

E2 and follicle stimulating hormone (FSH) levels were significantly higher in girls than in boys, while dehydroepiandrosterone sulfate (DHEA-S) and testosterone levels were comparable between the two groups. Girls showed significantly higher E2/testosterone ratios than boys. In children of both sexes, a correlation was observed between E2 and testosterone levels and between testosterone and DHEA-S levels. Moreover, E2 levels were correlated with FSH levels only in girls.

Conclusions

The results indicate that in 6-year-old girls, circulating E2 is produced primarily in the ovary from adrenal steroids through FSH-induced aromatase upregulation. This study provides evidence that female-dominant E2 production starts several months or years before adrenarche. The biological significance of E2 biosynthesis in these young children needs to be clarified in future studies.

Open access
Henrik Falhammar Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

Search for other papers by Henrik Falhammar in
Google Scholar
PubMed
Close
,
Hedi Claahsen-van der Grinten Department of Pediatric Endocrine Disease, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

Search for other papers by Hedi Claahsen-van der Grinten in
Google Scholar
PubMed
Close
,
Nicole Reisch Medizinische Klinik and Poliklinik IV, Department of Endocrinology, University Hospital Munich, Munich, Germany

Search for other papers by Nicole Reisch in
Google Scholar
PubMed
Close
,
Jolanta Slowikowska-Hilczer Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland

Search for other papers by Jolanta Slowikowska-Hilczer in
Google Scholar
PubMed
Close
,
Anna Nordenström Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
Department of Paediatric Endocrinology, Astrid Lindgren Children Hospital, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Anna Nordenström in
Google Scholar
PubMed
Close
,
Robert Roehle Coordinating Center for Clinical Studies, Charité Universitätsmedizin, Berlin, Germany

Search for other papers by Robert Roehle in
Google Scholar
PubMed
Close
,
Claire Bouvattier Paris-Sud University, Orsay, France
Department of Pediatric Endocrinology, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France

Search for other papers by Claire Bouvattier in
Google Scholar
PubMed
Close
,
Baudewijntje P C Kreukels Department of Medical Psychology, VU University Medical Center, Amsterdam, The Netherlands

Search for other papers by Baudewijntje P C Kreukels in
Google Scholar
PubMed
Close
,
Birgit Köhler Department of Paediatric Endocrinology and Diabetology, Charité Universitätsmedizin, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany

Search for other papers by Birgit Köhler in
Google Scholar
PubMed
Close
, and
on behalf of the dsd-LIFE group
Search for other papers by on behalf of the dsd-LIFE group in
Google Scholar
PubMed
Close

Objective

The knowledge about health status in adults with disorder of sex development (DSD) is scarce.

Design and methods

A cross-sectional observational study in 14 European tertiary centers recruited 1040 participants (717 females, 311 males, 12 others) with DSD. Mean age was 32.4 ± 13.6 year (range 16–75). The cohort was divided into: Turner (n = 301), Klinefelter (n = 224), XY-DSD (n = 222), XX-DSD (excluding congenital adrenal hyperplasia (CAH) and 46,XX males) (n = 21), 46,XX-CAH (n = 226) and 45,X/46,XY (n = 45). Perceived and objective health statuses were measured and compared to European control data.

Results

In DSD, fair to very good general health was reported by 91.4% and only 8.6% reported (very) bad general health (controls 94.0% and 6.0%, P < 0.0001). Longstanding health issues other than DSD and feeling limited in daily life were reported in 51.0% and 38.6%, respectively (controls 24.5% and 13.8%, P < 0.0001 both). Any disorder except DSD was present in 84.3% (controls 24.6%, P < 0.0001). Males reported worse health than females. In the subgroup analysis, Klinefelter and 46,XX-DSD patients reported bad general health in 15.7% and 16.7%, respectively (Turner 3.2% and CAH 7.4%). Comorbidities were prevalent in all DSD subgroups but Klinefelter and Turner were most affected. Early diagnosis of DSD and a healthy lifestyle were associated with less comorbidities.

Conclusions

Overall, general health appeared to be good but a number of medical problems were reported, especially in Klinefelter and Turner. Early diagnosis of DSD and a healthy lifestyle seemed to be important. Lifelong follow-up at specialized centers is necessary.

Open access
Teresa Vilariño-García Department of Medical Biochemistry, Molecular Biology and Immunology. Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain

Search for other papers by Teresa Vilariño-García in
Google Scholar
PubMed
Close
,
Antonio Pérez-Pérez Department of Medical Biochemistry, Molecular Biology and Immunology. Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain

Search for other papers by Antonio Pérez-Pérez in
Google Scholar
PubMed
Close
,
Esther Santamaría-López Valencian Infertility Institute (IVI), Seville, Spain

Search for other papers by Esther Santamaría-López in
Google Scholar
PubMed
Close
,
Nicolás Prados Valencian Infertility Institute (IVI), Seville, Spain

Search for other papers by Nicolás Prados in
Google Scholar
PubMed
Close
,
Manuel Fernández-Sánchez Valencian Infertility Institute (IVI), Seville, Spain

Search for other papers by Manuel Fernández-Sánchez in
Google Scholar
PubMed
Close
, and
Víctor Sánchez-Margalet Department of Medical Biochemistry, Molecular Biology and Immunology. Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain

Search for other papers by Víctor Sánchez-Margalet in
Google Scholar
PubMed
Close

Introduction

Polycystic ovary syndrome (PCOS) is a complex metabolic disorder associated with ovulatory dysfunction, hyperandrogenism, obesity, and insulin resistance, that leads to subfertility. Sam68 is an RNA-binding protein with signaling functions that is ubiquitously expressed, including gonads. Sam68 is recruited to leptin signaling, mediating different leptin actions.

Objective

We aimed to investigate the role of Sam68 in leptin signaling, mediating the effect on aromatase expression in granulosa cells and the posible implication of Sam68 in the leptin resistance in PCOS.

Materials and methods

Granulosa cells were from healthy donors (n = 25) and women with PCOS (n = 25), within the age range of 20 to 40 years, from Valencian Infertility Institute (IVI), Seville, Spain. Sam68 expression was inhibited by siRNA method and overexpressed by expression vector. Expression level was analysed by qPCR and immunoblot. Statistical significance was assessed by ANOVA followed by different post-hoc tests. A P value of <0.05 was considered statistically significant.

Results

We have found that leptin stimulation increases phosphorylation and expression level of Sam68 and aromatase in granulosa cells from normal donors. Downregulation of Sam68 expression resulted in a lower activation of MAPK and PI3K pathways in response to leptin, whereas overexpression of Sam68 increased leptin stimulation of signaling, enhancing aromatase expression. Granulosa cells from women with PCOS presented lower expression of Sam68 and were resistant to the leptin effect on aromatase expression.

Conclusions

These results suggest the participation of Sam68 in leptin receptor signaling, mediating the leptin effect on aromatase expression in granulosa cells, and point to a new target in leptin resistance in PCOS.

Open access
Hamidreza Mani Diabetes Research Centre, Leicester Diabetes Centre, University of Leicester, Leicester General Hospital, Leicester, UK
Department of Diabetes and Endocrinology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK

Search for other papers by Hamidreza Mani in
Google Scholar
PubMed
Close
,
Yogini Chudasama Diabetes Research Centre, Leicester Diabetes Centre, University of Leicester, Leicester General Hospital, Leicester, UK

Search for other papers by Yogini Chudasama in
Google Scholar
PubMed
Close
,
Michelle Hadjiconstantinou Diabetes Research Centre, Leicester Diabetes Centre, University of Leicester, Leicester General Hospital, Leicester, UK

Search for other papers by Michelle Hadjiconstantinou in
Google Scholar
PubMed
Close
,
Danielle H Bodicoat Diabetes Research Centre, Leicester Diabetes Centre, University of Leicester, Leicester General Hospital, Leicester, UK

Search for other papers by Danielle H Bodicoat in
Google Scholar
PubMed
Close
,
Charlotte Edwardson Diabetes Research Centre, Leicester Diabetes Centre, University of Leicester, Leicester General Hospital, Leicester, UK
The Leicester Biomedical Research Centre, Leicester and Loughborough, UK

Search for other papers by Charlotte Edwardson in
Google Scholar
PubMed
Close
,
Miles J Levy Department of Diabetes and Endocrinology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK

Search for other papers by Miles J Levy in
Google Scholar
PubMed
Close
,
Laura J Gray Department of Health Sciences, University of Leicester, Leicester, UK

Search for other papers by Laura J Gray in
Google Scholar
PubMed
Close
,
Janette Barnett Department of Diabetes and Endocrinology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK

Search for other papers by Janette Barnett in
Google Scholar
PubMed
Close
,
Heather Daly Leicester Medical Group, Thurmaston Health Centre, Leicester, UK

Search for other papers by Heather Daly in
Google Scholar
PubMed
Close
,
Trevor A Howlett Department of Diabetes and Endocrinology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK

Search for other papers by Trevor A Howlett in
Google Scholar
PubMed
Close
,
Kamlesh Khunti Diabetes Research Centre, Leicester Diabetes Centre, University of Leicester, Leicester General Hospital, Leicester, UK

Search for other papers by Kamlesh Khunti in
Google Scholar
PubMed
Close
, and
Melanie J Davies Diabetes Research Centre, Leicester Diabetes Centre, University of Leicester, Leicester General Hospital, Leicester, UK

Search for other papers by Melanie J Davies in
Google Scholar
PubMed
Close

Objective

To evaluate the effectiveness of a structured education programmes in women with polycystic ovary syndrome (PCOS).

Methods

Single-centre, randomised controlled trial, testing a single exposure to a group-based, face-to-face, structured education programme. Inclusion criteria were women with PCOS, aged 18–49 years inclusive and body mass index ≥23 kg/m2 for black and minority ethnicities or ≥25 kg/m2 for white Europeans. Primary outcome was step-count/day at 12 months. Secondary outcomes included indices of physical activity, cardiovascular risk factors, quality of life (QoL) and illness perception (IP).

Results

161 women were included (78 control, 83 intervention); 69% white; mean age 33.4 (s.d. 7.6) years, of whom 100 (48 intervention; 52 control) attended their 12-month visit (38% attrition). 77% of the intervention arm attended the education programme. No significant change in step-count was observed at 12 months (mean difference: +351 steps/day (95% confidence interval −481, +1183); P = 0.40). No differences were found in biochemical or anthropometric outcomes. The education programme improved participants’ IP in 2 dimensions: understanding their PCOS (P < 0.001) and sense of control (P < 0.01) and improved QoL in 3 dimensions: emotions (P < 0.05), fertility (P < 0.05), weight (P < 0.01) and general mental well-being (P < 0.01).

Discussion

A single exposure to structured education programme did not increase physical activity or improve biochemical markers in overweight and obese women with PCOS. However, providing a structured education in parallel to routine medical treatment can be beneficial for participants’ understanding of their condition, reducing their anxiety and improving their QoL.

Open access
Kaisu Luiro Department of Obstetrics and Gynecology, Reproductive Medicine Unit, Helsinki University Hospital and University of Helsinki, Helsinki, Finland

Search for other papers by Kaisu Luiro in
Google Scholar
PubMed
Close
,
Kristiina Aittomäki Department of Medical Genetics, Helsinki University Hospital, Helsinki, Finland

Search for other papers by Kristiina Aittomäki in
Google Scholar
PubMed
Close
,
Pekka Jousilahti Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland

Search for other papers by Pekka Jousilahti in
Google Scholar
PubMed
Close
, and
Juha S Tapanainen Department of Obstetrics and Gynecology, Reproductive Medicine Unit, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
Department of Obstetrics and Gynecology, University of Oulu and Oulu University Hospital, Medical Research Center, PEDEGO Research Unit, Oulu, Finland

Search for other papers by Juha S Tapanainen in
Google Scholar
PubMed
Close

Objective

To study the use of hormone therapy (HT), morbidity and reproductive outcomes of women with primary ovarian insufficiency (POI) due to FSH-resistant ovaries (FSHRO).

Design

A prospective follow-up study in a university-based tertiary clinic setting.

Methods

Twenty-six women with an inactivating A189V FSH receptor mutation were investigated by means of a health questionnaire and clinical examination. Twenty-two returned the health questionnaire and 14 were clinically examined. Main outcome measures in the health questionnaire were reported as HT, morbidity, medication and infertility treatment outcomes. In the clinical study, risk factors for cardiovascular disease (CVD) and metabolic syndrome (MetS) were compared to age-matched controls from a national population survey (FINRISK). Average number of controls was 326 per FSHRO subject (range 178–430). Bone mineral density and whole-body composition were analyzed with DXA. Psychological and sexual well-being was assessed with Beck Depression Inventory (BDI21), Generalized Anxiety Disorder 7 (GAD-7) and Female Sexual Function Index (FSFI) questionnaires.

Results

HT was initiated late (median 18 years of age) compared with normal puberty and the median time of use was shorter (20–22 years) than the normal fertile period. Osteopenia was detected in 9/14 of the FSHRO women despite HT. No major risk factors for CVD or diabetes were found.

Conclusions

HT of 20 years seems to be associated with a similar cardiovascular and metabolic risk factor profile as in the population control group. However, optimal bone health may require an early-onset and longer period of HT, which would better correspond to the natural fertile period.

Open access