Search Results

You are looking at 1 - 10 of 239 items for

  • Abstract: Adrenal x
  • Abstract: Adrenaline x
  • Abstract: Androgens x
  • Abstract: Catecholamines x
  • Abstract: hyperplasia x
  • Abstract: Cortex x
  • Abstract: Glucocorticoids x
  • Abstract: Noradrenaline x
Clear All Modify Search
Tatiana V Novoselova Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK

Search for other papers by Tatiana V Novoselova in
Google Scholar
PubMed
Close
,
Peter J King Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK

Search for other papers by Peter J King in
Google Scholar
PubMed
Close
,
Leonardo Guasti Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK

Search for other papers by Leonardo Guasti in
Google Scholar
PubMed
Close
,
Louise A Metherell Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK

Search for other papers by Louise A Metherell in
Google Scholar
PubMed
Close
,
Adrian J L Clark Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK

Search for other papers by Adrian J L Clark in
Google Scholar
PubMed
Close
, and
Li F Chan Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK

Search for other papers by Li F Chan in
Google Scholar
PubMed
Close

The melanocortin-2-receptor (MC2R), also known as the ACTH receptor, is a critical component of the hypothalamic–pituitary–adrenal axis. The importance of MC2R in adrenal physiology is exemplified by the condition familial glucocorticoid deficiency (FGD), a potentially fatal disease characterised by isolated cortisol deficiency. MC2R mutations cause ~25% of cases. The discovery of a MC2R accessory protein MRAP, mutations of which account for ~20% of FGD, has provided insight into MC2R trafficking and signalling. MRAP is a single transmembrane domain accessory protein highly expressed in the adrenal gland and essential for MC2R expression and function. Mouse models helped elucidate the action of ACTH. The Mc2r-knockout (Mc2r / ) mice was the first mouse model developed to have adrenal insufficiency with deficiencies in glucocorticoid, mineralocorticoid and catecholamines. We recently reported the generation of the Mrap / mice which better mimics the human FGD phenotype with isolated glucocorticoid deficiency alone. The adrenal glands of adult Mrap / mice were grossly dysmorphic with a thickened capsule, deranged zonation and deranged WNT4/beta-catenin and sonic hedgehog (SHH) pathway signalling. Collectively, these mouse models of FGD highlight the importance of ACTH and MRAP in adrenal progenitor cell regulation, cortex maintenance and zonation.

Open access
Sophie Howarth Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, UK
Department of Endocrinology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK

Search for other papers by Sophie Howarth in
Google Scholar
PubMed
Close
,
Luca Giovanelli Department of Endocrinology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK

Search for other papers by Luca Giovanelli in
Google Scholar
PubMed
Close
,
Catherine Napier Department of Endocrinology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK

Search for other papers by Catherine Napier in
Google Scholar
PubMed
Close
, and
Simon H Pearce Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, UK
Department of Endocrinology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK

Search for other papers by Simon H Pearce in
Google Scholar
PubMed
Close

Autoimmune Addison’s disease (AAD) is defined as primary adrenal insufficiency due to immune-mediated destruction of the adrenal cortex. This destruction of steroid-producing cells has historically been thought of as an irreversible process, with linear progression from an ACTH-driven compensated phase to overt adrenal insufficiency requiring lifelong glucocorticoid replacement. However, a growing body of evidence suggests that this process may be more heterogeneous than previously thought, with potential for complete or partial recovery of glucocorticoid secretion. Although patients with persistent mineralocorticoid deficiency despite preserved or recovered glucocorticoid function are anecdotally mentioned, few well-documented cases have been reported to date. We present three patients in the United Kingdom who further challenge the long-standing hypothesis that AAD is a progressive, irreversible disease process. We describe one patient with a 4-year history of mineralocorticoid-only Addison’s disease, a patient with spontaneous recovery of adrenal function and one patient with clinical features of adrenal insufficiency despite significant residual cortisol function. All three patients show varying degrees of mineralocorticoid deficiency, suggesting that recovery of zona fasciculata function in the adrenal cortex may occur independently to that of the zona glomerulosa. We outline the current evidence for heterogeneity in the natural history of AAD and discuss possible mechanisms for the recovery of adrenal function.

Open access
Henrik Falhammar Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

Search for other papers by Henrik Falhammar in
Google Scholar
PubMed
Close
,
Magnus Kjellman Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
Department of Breast and Endocrine Surgery, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Magnus Kjellman in
Google Scholar
PubMed
Close
, and
Jan Calissendorff Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

Search for other papers by Jan Calissendorff in
Google Scholar
PubMed
Close

Background

With the increasing access to imaging more pheochromocytomas are diagnosed in the workup of adrenal incidentalomas. This may have changed the occurrence of the classic presentation with hypertension and the classic triad (headaches, sweating and palpitation).

Methods

We reviewed 94 consecutive cases of pheochromocytomas. Two cases of ectopic ACTH-syndrome were subsequently excluded.

Results

Of the 92 cases included 64% had presented as an incidentaloma, 32% as a suspected pheochromocytoma and 4% had been screened because of previously diagnosed MEN2A. Those screened were youngest while those with incidentalomas were oldest. The females were more common in the incidentaloma and the screening groups, and males in the suspected pheochromocytoma group. Measurements of noradrenaline/normetanephrine levels were highest in the suspected pheocromocytoma group and lowest in the screening group. Hypertension was present in 63% of the incidentalomas, 79% of suspected pheochromocytomas and in none of the screening group. Paroxysmal symptoms were present in almost all with suspected pheochromocytoma while only in half of the other groups. The suspected pheocromocytoma group had most symptoms and the screening group least. The classic triad was present in 14% of the incidentalomas, in 28% of the suspected and in none of the screening group, while no symptoms at all was present in 12%, 0% and 25%, respectively. Pheochromocytoma crisis occurred in 5%. There was a positive correlation between tumor size vs hormone levels, and catecholamine levels vs blood pressure.

Conclusion

Clinicians need to be aware of the modern presentation of pheochromocytomas since early identification can be life-saving.

Open access
Janko Sattler Adrenal Steroid Group, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Department of Rheumatology and Clinical Immunology, Charité-University Medicine, Berlin, Germany

Search for other papers by Janko Sattler in
Google Scholar
PubMed
Close
,
Jinwen Tu Adrenal Steroid Group, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Concord Clinical School, The University of Sydney, Sydney, Australia

Search for other papers by Jinwen Tu in
Google Scholar
PubMed
Close
,
Shihani Stoner Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia

Search for other papers by Shihani Stoner in
Google Scholar
PubMed
Close
,
Jingbao Li Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Shaanxi, China

Search for other papers by Jingbao Li in
Google Scholar
PubMed
Close
,
Frank Buttgereit Department of Rheumatology and Clinical Immunology, Charité-University Medicine, Berlin, Germany

Search for other papers by Frank Buttgereit in
Google Scholar
PubMed
Close
,
Markus J Seibel Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Concord Clinical School, The University of Sydney, Sydney, Australia
Department of Endocrinology & Metabolism, Concord Hospital, Sydney, Australia

Search for other papers by Markus J Seibel in
Google Scholar
PubMed
Close
,
Hong Zhou Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Concord Clinical School, The University of Sydney, Sydney, Australia

Search for other papers by Hong Zhou in
Google Scholar
PubMed
Close
, and
Mark S Cooper Adrenal Steroid Group, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Concord Clinical School, The University of Sydney, Sydney, Australia
Department of Endocrinology & Metabolism, Concord Hospital, Sydney, Australia

Search for other papers by Mark S Cooper in
Google Scholar
PubMed
Close

Patients with chronic immune-mediated arthritis exhibit abnormal hypothalamo-pituitary-adrenal (HPA) axis activity. The basis for this abnormality is not known. Immune-mediated arthritis is associated with increased extra-adrenal synthesis of active glucocorticoids by the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme. 11β-HSD1 is expressed in the central nervous system, including regions involved in HPA axis regulation. We examined whether altered 11β-HSD1 expression within these regions contributes to HPA axis dysregulation during arthritis. The expression of 11β-HSD1, and other components of glucocorticoid signaling, were examined in various brain regions and the pituitary gland of mice with experimentally induced arthritis. Two arthritis protocols were employed: The K/BxN spontaneous arthritis model for chronic arthritis and the K/BxN serum transfer arthritis model for acute arthritis. 11β-HSD1 mRNA (Hsd11b1) was expressed in the hippocampus, hypothalamus, cortex, cerebellum and pituitary gland. Hypothalamic Hsd11b1 expression did not change in response to arthritis in either model. Pituitary Hsd11b1 expression was however significantly increased in both chronic and acute arthritis models. Hippocampal Hsd11b1 was decreased in acute but not chronic arthritis. Chronic, but not acute, arthritis was associated with a reduction in hypothalamic corticotropin-releasing hormone and arginine vasopressin expression. In both models, serum adrenocorticotropic hormone and corticosterone levels were no different from non-inflammatory controls. These findings demonstrate inflammation-dependent regulation of Hsd11b1 expression in the pituitary gland and hippocampus. The upregulation of 11β-HSD1 expression in the pituitary during both chronic and acute arthritis, and thus, an increase in glucocorticoid negative feedback, could contribute to the abnormalities in HPA axis activity seen in immune-mediated arthritis.

Open access
Annelies van’t Westeinde Department of Women’s and Children’s Health, Karolinska Institutet and Division of Pediatrics, Unit for Pediatric Endocrinology and Metabolic Disorders, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Annelies van’t Westeinde in
Google Scholar
PubMed
Close
,
Leif Karlsson Department of Women’s and Children’s Health, Karolinska Institutet and Division of Pediatrics, Unit for Pediatric Endocrinology and Metabolic Disorders, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Leif Karlsson in
Google Scholar
PubMed
Close
,
Valeria Messina Department of Women’s and Children’s Health, Karolinska Institutet and Division of Pediatrics, Unit for Pediatric Endocrinology and Metabolic Disorders, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Valeria Messina in
Google Scholar
PubMed
Close
,
Lena Wallensteen Department of Women’s and Children’s Health, Karolinska Institutet and Division of Pediatrics, Unit for Pediatric Endocrinology and Metabolic Disorders, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Lena Wallensteen in
Google Scholar
PubMed
Close
,
Manuela Brösamle European Patient Advocacy Group for Adrenal Diseases, European Reference Network on Rare Endocrine Conditions (Endo ERN), Endo ERN Coordinating Centre, Leiden, The Netherlands

Search for other papers by Manuela Brösamle in
Google Scholar
PubMed
Close
,
Giorgio Dal Maso ArfSAG (Associazione Refionale Famiglie Sindrome Adreno Genitale) c/o Unita Operativa di Pediatria, Azienda Ospedaliero Universitaria di Bologna, Policlinico S Orsala-Malpighi, Bologna, Italy

Search for other papers by Giorgio Dal Maso in
Google Scholar
PubMed
Close
,
Alessandro Lazzerini Spanish Association of Congenital Adrenal Hyperplasia (CAH), Spain

Search for other papers by Alessandro Lazzerini in
Google Scholar
PubMed
Close
,
Jette Kristensen ePAG & Chair of Danish Addison Patient Association, Aarhus, Denmark

Search for other papers by Jette Kristensen in
Google Scholar
PubMed
Close
,
Diana Kwast Dutch Adrenal Society NVACP, Nijkerk, The Netherlands

Search for other papers by Diana Kwast in
Google Scholar
PubMed
Close
,
Lea Tschaidse Department of Endocrinology, Medizinische Klinik IV, Klinikum der Universität München, Munich, Germany

Search for other papers by Lea Tschaidse in
Google Scholar
PubMed
Close
,
Matthias K Auer Department of Endocrinology, Medizinische Klinik IV, Klinikum der Universität München, Munich, Germany

Search for other papers by Matthias K Auer in
Google Scholar
PubMed
Close
,
Hanna F Nowotny Department of Endocrinology, Medizinische Klinik IV, Klinikum der Universität München, Munich, Germany

Search for other papers by Hanna F Nowotny in
Google Scholar
PubMed
Close
,
Luca Persani Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy

Search for other papers by Luca Persani in
Google Scholar
PubMed
Close
,
Nicole Reisch Department of Endocrinology, Medizinische Klinik IV, Klinikum der Universität München, Munich, Germany

Search for other papers by Nicole Reisch in
Google Scholar
PubMed
Close
, and
Svetlana Lajic Department of Women’s and Children’s Health, Karolinska Institutet and Division of Pediatrics, Unit for Pediatric Endocrinology and Metabolic Disorders, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Svetlana Lajic in
Google Scholar
PubMed
Close

First-trimester prenatal treatment with glucocorticoid (GC) dexamethasone (DEX) in pregnancies at risk for classic congenital adrenal hyperplasia (CAH) is associated with ethical dilemmas. Though effective in reducing virilisation in girls with CAH, it entails exposure to high doses of GC in fetuses that do not benefit from the treatment. The current paper provides an update on the literature on outcomes of prenatal DEX treatment in CAH cases and unaffected subjects. Long-term follow-up research is still needed to determine treatment safety. In addition, advances in early prenatal diagnostics for CAH and sex-typing as well as studies assessing dosing effects of DEX may avoid unnecessary treatment and improve treatment safety.

Open access
Peter Ergang Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Search for other papers by Peter Ergang in
Google Scholar
PubMed
Close
,
Anna Mikulecká Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Search for other papers by Anna Mikulecká in
Google Scholar
PubMed
Close
,
Martin Vodicˇka Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic

Search for other papers by Martin Vodicˇka in
Google Scholar
PubMed
Close
,
Karla Vagnerová Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Search for other papers by Karla Vagnerová in
Google Scholar
PubMed
Close
,
Ivan Mikšík Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Search for other papers by Ivan Mikšík in
Google Scholar
PubMed
Close
, and
Jirˇí Pácha Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic

Search for other papers by Jirˇí Pácha in
Google Scholar
PubMed
Close

Stress is an important risk factors for human diseases. It activates the hypothalamic–pituitary–adrenal (HPA) axis and increases plasma glucocorticoids, which are powerful regulators of immune system. The response of the target cells to glucocorticoids depends not only on the plasma concentrations of cortisol and corticosterone but also on their local metabolism. This metabolism is catalyzed by 11β-hydroxysteroid dehydrogenases type 1 and 2, which interconvert glucocorticoid hormones cortisol and corticosterone and their 11-oxo metabolites cortisone and 11-dehydrocorticosterone. The goal of this study was to determine whether stress modulates glucocorticoid metabolism within lymphoid organs – the structures where immune cells undergo development and activation. Using the resident-intruder paradigm, we studied the effect of social stress on glucocorticoid metabolism in primary and secondary lymphoid organs of Fisher 344 (F344) and Lewis (LEW) rats, which exhibit marked differences in their HPA axis response to social stressors and inflammation. We show that repeated social defeat increased the regeneration of corticosterone from 11-dehydrocorticosterone in the thymus, spleen and mesenteric lymphatic nodes (MLN). Compared with the F344 strain, LEW rats showed higher corticosterone regeneration in splenocytes of unstressed rats and in thymic and MLN mobile cells after stress but corticosterone regeneration in the stroma of all lymphoid organs was similar in both strains. Inactivation of corticosterone to 11-dehydrocorticosterone was found only in the stroma of lymphoid organs but not in mobile lymphoid cells and was not upregulated by stress. Together, our findings demonstrate the tissue- and strain-dependent regeneration of glucocorticoids following social stress.

Open access
Johan G Beun AdrenalNET, The Netherlands

Search for other papers by Johan G Beun in
Google Scholar
PubMed
Close
,
Pia Burman Department of Endocrinology, Skåne University Hospital, Lund University, Sweden

Search for other papers by Pia Burman in
Google Scholar
PubMed
Close
,
Olle Kämpe Department of Medicine (Solna), Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
Department of Endocrinology, Diabetes and Metabolism, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Olle Kämpe in
Google Scholar
PubMed
Close
,
Eystein S Husebye Department of Clinical Science, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway

Search for other papers by Eystein S Husebye in
Google Scholar
PubMed
Close
,
Stephanie Hahner Division of Endocrinology and Diabetes, University Hospital of Wuerzburg, Germany

Search for other papers by Stephanie Hahner in
Google Scholar
PubMed
Close
,
Jette Kristensen Addison Foreningen i Danmark, Denmark

Search for other papers by Jette Kristensen in
Google Scholar
PubMed
Close
,
Alida Noordzij AdrenalNET, The Netherlands

Search for other papers by Alida Noordzij in
Google Scholar
PubMed
Close
, and
Per Dahlqvist Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden

Search for other papers by Per Dahlqvist in
Google Scholar
PubMed
Close

Adrenal insufficiency is a life-threatening condition requiring chronic glucocorticoid replacement therapy, as well as stress adaptation to prevent adrenal crises. To increase patients’ self-sustainability, education on how to tackle an adrenal crisis is crucial. All patients should carry the European Emergency Card.

Open access
Muriel Houang Laboratoire des Explorations Fonctionnelles Endocriniennes, Hôpital Armand Trousseau, AP-HP Sorbonne Université, Paris, France

Search for other papers by Muriel Houang in
Google Scholar
PubMed
Close
,
Thao Nguyen-Khoa Centre Régional de Dépistage Néonatal-Ile de France, Hôpital Necker-Enfants Malades, AP-HP Centre Université de Paris, Paris, France

Search for other papers by Thao Nguyen-Khoa in
Google Scholar
PubMed
Close
,
Thibaut Eguether Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
Département de Métabolomique Clinique, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France

Search for other papers by Thibaut Eguether in
Google Scholar
PubMed
Close
,
Bettina Ribault Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
Département de Métabolomique Clinique, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France

Search for other papers by Bettina Ribault in
Google Scholar
PubMed
Close
,
Séverine Brabant Laboratoire d’Explorations Fonctionnelles, Hôpital Necker-Enfants Malades, AP-HP Centre Université de Paris, Paris, France

Search for other papers by Séverine Brabant in
Google Scholar
PubMed
Close
,
Michel Polak Centre Régional de Dépistage Néonatal-Ile de France, Hôpital Necker-Enfants Malades, AP-HP Centre Université de Paris, Paris, France
Université de Paris, INSERM, Institut IMAGINE, Hôpital Necker-Enfants Malades, AP-HP, Paris, France

Search for other papers by Michel Polak in
Google Scholar
PubMed
Close
,
Irène Netchine Laboratoire des Explorations Fonctionnelles Endocriniennes, Hôpital Armand Trousseau, AP-HP Sorbonne Université, Paris, France
Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
Hôpital Armand Trousseau, AP-HP Sorbonne Université, Paris, France

Search for other papers by Irène Netchine in
Google Scholar
PubMed
Close
, and
Antonin Lamazière Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
Département de Métabolomique Clinique, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France

Search for other papers by Antonin Lamazière in
Google Scholar
PubMed
Close

Neonatal screening for congenital adrenal hyperplasia (CAH) faces many specific challenges. It must be done using a performant analytical approach that combines sensitivity and specificity to capture the potential causes of mortality during the first week of life, such as salt wasting and glucocorticoid deficiency. Here, we confirm that maternal inhaled corticosteroid intake during pregnancy is a possible cause of missed CAH diagnosis. Thanks to liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis, we were able to quantify endogenous steroid metabolites and also detect the presence of exogenous steroids in the dried blood spot of a newborn. Adding LC-MS/MS analysis as second-tier test, especially one that includes both 17-hydroxyprogesterone and 21-deoxycortisol measurements, would probably improve CAH diagnosis. In familial neonatal screening one could also look for maternal corticosteroid therapies that are hidden to prevent false-negative tests.

Open access
Ditte Sofie Dahl Sørensen Department of Endocrinology and Metabolism, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Ditte Sofie Dahl Sørensen in
Google Scholar
PubMed
Close
,
Jesper Krogh Department of Endocrinology and Metabolism, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Jesper Krogh in
Google Scholar
PubMed
Close
,
Åse Krogh Rasmussen Department of Endocrinology and Metabolism, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Åse Krogh Rasmussen in
Google Scholar
PubMed
Close
, and
Mikkel Andreassen Department of Endocrinology and Metabolism, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Mikkel Andreassen in
Google Scholar
PubMed
Close

Background

There is no consensus regarding markers of optimal treatment or timing between glucocorticoid intake and assessment of hormone levels in the follow-up of female 21-hydroxylase deficient patients.

Objective

To examine visit-to-visit repeatability in levels of adrenal hormones in adult female patients, to identify predictors of repeatability in hormone levels and to examine concordance between levels of different adrenal hormones.

Method

All patients with confirmed 21-hydroxylase deficiency treated with glucocorticoids, were included. The two most recent blood samples collected on a stable dose of glucocorticoid replacement were compared. Complete concordance was defined as all measured adrenal hormones either within, below or above normal range evaluated in a single-day measurement.

Results

Sixty-two patients, median age of 35 (range 18–74) years were included. All hormone levels showed moderate to excellent repeatability with an intraclass correlation coefficient between 0.80 and 0.99. Repeatability of hormone levels was not affected by the use of long-acting glucocorticoids or time of day for blood sample collection. The median difference in time between the two sample collections was 1.5 (range 0–7.5) h. Complete concordance between 17-hydroxyprogesterone, androstenedione, and testosterone was found in 21% of cases.

Conclusion

During everyday, clinical practice hormone levels in adult female patients with 21-hydroxylase deficiency showed a moderate to excellent repeatability, despite considerable variation in time of day for blood sample collection. We found no major predictors of hormone level variation. Future studies are needed to address the relationship between the timing of glucocorticoid intake vs adrenal hormone levels and clinical outcome in both adults and children.

Open access
Kathrin Zopf Department of Endocrinology, Diabetes and Nutrition, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany

Search for other papers by Kathrin Zopf in
Google Scholar
PubMed
Close
,
Kathrin R Frey Department of Medicine I, Endocrine and Diabetes Unit, University Hospital, University of Würzburg, Würzburg, Germany

Search for other papers by Kathrin R Frey in
Google Scholar
PubMed
Close
,
Tina Kienitz Department of Endocrinology, Diabetes and Nutrition, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany

Search for other papers by Tina Kienitz in
Google Scholar
PubMed
Close
,
Manfred Ventz Department of Endocrinology, Diabetes and Nutrition, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany

Search for other papers by Manfred Ventz in
Google Scholar
PubMed
Close
,
Britta Bauer Endocrinology in Charlottenburg, Berlin, Germany

Search for other papers by Britta Bauer in
Google Scholar
PubMed
Close
, and
Marcus Quinkler Endocrinology in Charlottenburg, Berlin, Germany

Search for other papers by Marcus Quinkler in
Google Scholar
PubMed
Close

Context

Patients with primary adrenal insufficiency (PAI) or congenital adrenal hyperplasia (CAH) are at a high risk of adrenal crisis (AC). Glucocorticoid sensitivity is at least partially genetically determined by polymorphisms of the glucocorticoid receptor (GR).

Objectives

To determine if a number of intercurrent illnesses and AC are associated with the GR gene polymorphism BclI in patients with PAI and CAH.

Design and patients

This prospective, longitudinal study over 37.7 ± 10.1 months included 47 PAI and 25 CAH patients. During the study period, intercurrent illness episodes and AC were documented.

Results

The study period covered 223 patient years in which 21 AC occurred (9.4 AC/100 pat years). There were no significant differences between BclI polymorphisms (CC (n = 29), CG (n = 34) and GG (n = 9)) regarding BMI, hydrocortisone equivalent daily dose and blood pressure. We did not find a difference in the number of intercurrent illnesses/patient year among BclI polymorphisms (CC (1.5 ± 1.4/pat year), CG (1.2 ± 1.2/pat year) and GG (1.6 ± 2.2/pat year)). The occurrence of AC was not significantly different among the homozygous (GG) genotype (32.5 AC/100 pat years), the CC genotype (6.7 AC/100 pat years) and the CG genotype (4.9 AC/100 pat years). Concomitant hypothyroidism was the highest in the GG genotype group (5/9), compared to others (CC (11/29) and CG (11/34)).

Conclusions

Although sample sizes were relatively small and results should be interpreted with caution, this study suggests that the GR gene polymorphism BclI may not be associated with the frequencies of intercurrent illnesses and AC.

Open access