Search for other papers by Christian Trummer in
Google Scholar
PubMed
Search for other papers by Stefan Pilz in
Google Scholar
PubMed
Search for other papers by Verena Schwetz in
Google Scholar
PubMed
Search for other papers by Barbara Obermayer-Pietsch in
Google Scholar
PubMed
Search for other papers by Elisabeth Lerchbaum in
Google Scholar
PubMed
-based studies found that in 30–40% of infertile couples, the underlying cause is the male factor ( 13 ). One major aspect regarding male fertility is the complex interaction between pituitary gland and testis. Of note, testosterone is not only an important
Search for other papers by Florian Schederecker in
Google Scholar
PubMed
Search for other papers by Alexander Cecil in
Google Scholar
PubMed
Search for other papers by Cornelia Prehn in
Google Scholar
PubMed
Search for other papers by Jana Nano in
Google Scholar
PubMed
Deutsches Herzzentrum München, Technische Universität München, DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
Search for other papers by Wolfgang Koenig in
Google Scholar
PubMed
Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
Search for other papers by Jerzy Adamski in
Google Scholar
PubMed
German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany
Search for other papers by Tanja Zeller in
Google Scholar
PubMed
German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich, Germany
Search for other papers by Annette Peters in
Google Scholar
PubMed
Search for other papers by Barbara Thorand in
Google Scholar
PubMed
cancers ( 1 , 2 , 3 ). In women with hyperandrogenism, an increased prevalence of metabolic risk factors and risk of type 2 diabetes (T2D) and cardiovascular disease (CVD) has been observed ( 4 , 5 , 6 ). In men, high testosterone levels are associated
Search for other papers by Morten Ruge in
Google Scholar
PubMed
Search for other papers by Tea Skaaby in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Anna-Maria Andersson in
Google Scholar
PubMed
Department of Clinical Experimental Research, Rigshospitalet, Copenhagen, Denmark
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Allan Linneberg in
Google Scholar
PubMed
Introduction Male hypogonadism is a condition in which the body produces little or no testosterone, and the risk is increased in the middle- and older-aged male population ( 1 ). The primary symptoms are reduced libido, lack of effect of
Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
Search for other papers by Claus H Gravholt in
Google Scholar
PubMed
Search for other papers by Alberto Ferlin in
Google Scholar
PubMed
Search for other papers by Joerg Gromoll in
Google Scholar
PubMed
Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Anders Juul in
Google Scholar
PubMed
Search for other papers by Armin Raznahan in
Google Scholar
PubMed
Search for other papers by Sophie van Rijn in
Google Scholar
PubMed
Search for other papers by Alan D Rogol in
Google Scholar
PubMed
Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
Search for other papers by Anne Skakkebæk in
Google Scholar
PubMed
Search for other papers by Nicole Tartaglia in
Google Scholar
PubMed
Search for other papers by Hanna Swaab in
Google Scholar
PubMed
found diminished bone mineral density (BMD) and increased risk of vertebral fractures in subjects with Klinefelter syndrome ( 18 , 19 , 20 ). Testosterone replacement therapy (TRT) increases BMD in men with Klinefelter syndrome ( 21 , 22 ), but there
Search for other papers by Cecilia Lundin in
Google Scholar
PubMed
Search for other papers by Agota Malmborg in
Google Scholar
PubMed
Search for other papers by Julia Slezak in
Google Scholar
PubMed
Search for other papers by Kristina Gemzell Danielsson in
Google Scholar
PubMed
Search for other papers by Marie Bixo in
Google Scholar
PubMed
Search for other papers by Hanna Bengtsdotter in
Google Scholar
PubMed
Search for other papers by Lena Marions in
Google Scholar
PubMed
Search for other papers by Ingela Lindh in
Google Scholar
PubMed
Search for other papers by Elvar Theodorsson in
Google Scholar
PubMed
Search for other papers by Mats Hammar in
Google Scholar
PubMed
Search for other papers by Inger Sundström-Poromaa in
Google Scholar
PubMed
established in COC users ( 2 , 4 ), many still believe that the COC-induced decrease in bioavailable testosterone may negatively affect sexual function ( 2 , 7 , 8 ). Hormone measurement in hair is a new method that allows non-invasive sampling of the
Search for other papers by Ditte Sofie Dahl Sørensen in
Google Scholar
PubMed
Search for other papers by Jesper Krogh in
Google Scholar
PubMed
Search for other papers by Åse Krogh Rasmussen in
Google Scholar
PubMed
Search for other papers by Mikkel Andreassen in
Google Scholar
PubMed
focusing on time of day for blood sample collection, phenotype and long-acting vs short-acting glucocorticoid replacement; (iii) to assess concordance between serum levels of 17-hydroxyprogesterone, androstenedione and testosterone in relation to normal
Department of Infectious Diseases, Copenhagen University Hospital – Amager and Hvidovre, Hvidovre, Denmark
Search for other papers by Clara Lundetoft Clausen in
Google Scholar
PubMed
Search for other papers by Trine Holm Johannsen in
Google Scholar
PubMed
Search for other papers by Niels Erik Skakkebæk in
Google Scholar
PubMed
Search for other papers by Hanne Frederiksen in
Google Scholar
PubMed
Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
Search for other papers by Camilla Koch Ryrsø in
Google Scholar
PubMed
Search for other papers by Arnold Matovu Dungu in
Google Scholar
PubMed
Search for other papers by Maria Hein Hegelund in
Google Scholar
PubMed
Search for other papers by Daniel Faurholt-Jepsen in
Google Scholar
PubMed
Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
Search for other papers by Rikke Krogh-Madsen in
Google Scholar
PubMed
Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Birgitte Lindegaard in
Google Scholar
PubMed
Center for Clinical Research and Prevention, Copenhagen University Hospital – Bispebjerg and Frederiksberg, Copenhagen, Denmark
Search for other papers by Allan Linneberg in
Google Scholar
PubMed
Search for other papers by Line Lund Kårhus in
Google Scholar
PubMed
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Anders Juul in
Google Scholar
PubMed
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Thomas Benfield in
Google Scholar
PubMed
in disease progression. Studies have reported association of the hypothalamic–pituitary–gonadal (HPG) axis in men hospitalized with COVID-19 with severely suppressed concentrations of testosterone and increased concentrations of estradiol with a
Search for other papers by M von Wolff in
Google Scholar
PubMed
Laboratory of Biometry, University of Thessaly, Volos, Greece
Search for other papers by C T Nakas in
Google Scholar
PubMed
Division of Pneumology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
Search for other papers by M Tobler in
Google Scholar
PubMed
Search for other papers by T M Merz in
Google Scholar
PubMed
Search for other papers by M P Hilty in
Google Scholar
PubMed
Search for other papers by J D Veldhuis in
Google Scholar
PubMed
Search for other papers by A R Huber in
Google Scholar
PubMed
Search for other papers by J Pichler Hefti in
Google Scholar
PubMed
−80°C thereafter. Cortisol, prolactin, thyroid-stimulating hormone (TSH), free tetraiodothyronine (fT4), free triiodothyronine (fT3), follicle-stimulating hormone (FSH), luteinizing hormone (LH) and total testosterone (testosterone) were analysed
Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
Search for other papers by M P Schuijt in
Google Scholar
PubMed
Search for other papers by C G J Sweep in
Google Scholar
PubMed
Search for other papers by R van der Steen in
Google Scholar
PubMed
Search for other papers by A J Olthaar in
Google Scholar
PubMed
Search for other papers by N M M L Stikkelbroeck in
Google Scholar
PubMed
Search for other papers by H A Ross in
Google Scholar
PubMed
Search for other papers by A E van Herwaarden in
Google Scholar
PubMed
Introduction In women, small amounts of testosterone are synthesized in the ovaries ( 1 ). Next to the gonads, testosterone is also produced and secreted from the adrenal glands in both sexes. Most testosterone circulates tightly bound to sex
Department of Urology, Foundation IRCCS Ca’ Granda – Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
Search for other papers by Luca Boeri in
Google Scholar
PubMed
Search for other papers by Paolo Capogrosso in
Google Scholar
PubMed
University Vita-Salute San Raffaele, Milan, Italy
Search for other papers by Walter Cazzaniga in
Google Scholar
PubMed
University Vita-Salute San Raffaele, Milan, Italy
Search for other papers by Edoardo Pozzi in
Google Scholar
PubMed
University Vita-Salute San Raffaele, Milan, Italy
Search for other papers by Luigi Candela in
Google Scholar
PubMed
University Vita-Salute San Raffaele, Milan, Italy
Search for other papers by Federico Belladelli in
Google Scholar
PubMed
University Vita-Salute San Raffaele, Milan, Italy
Search for other papers by Davide Oreggia in
Google Scholar
PubMed
Search for other papers by Eugenio Ventimiglia in
Google Scholar
PubMed
University Vita-Salute San Raffaele, Milan, Italy
Search for other papers by Nicolò Schifano in
Google Scholar
PubMed
University Vita-Salute San Raffaele, Milan, Italy
Search for other papers by Giuseppe Fallara in
Google Scholar
PubMed
Search for other papers by Marina Pontillo in
Google Scholar
PubMed
Search for other papers by Costantino Abbate in
Google Scholar
PubMed
Search for other papers by Emanuele Montanari in
Google Scholar
PubMed
University Vita-Salute San Raffaele, Milan, Italy
Search for other papers by Francesco Montorsi in
Google Scholar
PubMed
University Vita-Salute San Raffaele, Milan, Italy
Search for other papers by Andrea Salonia in
Google Scholar
PubMed
Introduction In postpuberal males the testes contribute to more than 95% of total testosterone (tT) in serum, where it equilibrates between protein-bound (98%) and free hormone (1–2%) fractions ( 1 ). Circulating testosterone is bound either