Search Results

You are looking at 1 - 5 of 5 items for :

  • Abstract: Carotid x
  • Abstract: Circulation x
  • Abstract: Ghrelin x
  • Abstract: Veins x
  • Abstract: Heart x
  • Abstract: cardiac* x
Clear All Modify Search
Randi Ugleholdt Department of Endocrinology, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Randi Ugleholdt in
Google Scholar
PubMed
Close
,
Åse Krogh Rasmussen Department of Endocrinology and Metabolism, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark

Search for other papers by Åse Krogh Rasmussen in
Google Scholar
PubMed
Close
,
Pernille A H Haderslev Department of Anaesthesiology, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark

Search for other papers by Pernille A H Haderslev in
Google Scholar
PubMed
Close
,
Bjarne Kromann-Andersen Department of Urology, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark

Search for other papers by Bjarne Kromann-Andersen in
Google Scholar
PubMed
Close
, and
Claus Larsen Feltoft Department of Endocrinology, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark

Search for other papers by Claus Larsen Feltoft in
Google Scholar
PubMed
Close

Patients with pheochromocytoma and paraganglioma (PPGL) are treated with α-adrenoceptor antagonists to improve peroperative hemodynamics. However, preoperative blood pressure targets differ between institutions. We retrospectively compared per- and postoperative hemodynamics in 30 patients with PPGL that were pretreated with phenoxybenzamine aiming at different blood pressure targets at two separate endocrine departments. All patients were subsequently undergoing laparoscopic surgery at Department of Urology, Herlev University hospital. Fourteen patients were treated targeting to symptomatic and significant orthostatic hypotension and 16 patients to a seated blood pressure below 130/80 mmHg. As a control group, we included 34 patients undergoing laparoscopic adrenalectomy for other reasons. The group titrated to orthostatic hypotension required a higher dose of phenoxybenzamine to achieve the blood pressure target. This group had less intraoperative systolic and diastolic blood pressure fluctuation (Mann–Whitney U test; P  < 0.05) and less periods with heart rate above 100 b.p.m. (Mann–Whitney U test; P = 0.04) as compared to the group with a preoperative blood pressure target below 130/80 mmHg. Peroperative use of intravenous fluids were similar between the two groups, but postoperatively more intravenous fluids were administered in the group with a target of ortostatism. Overall, the control group was more hemodynamic stable as compared to either group treated for PPGL. We conclude that phenoxybenzamine pretreatment targeting ortostatic hypotension may improve peroperative hemodynamic stability but causes a higher postoperative requirement for intravenous fluids. Overall, PPGL surgery is related to greater hemodynamic instability compared to adrenalectomy for other reasons.

Open access
Richard W Carroll Endocrine, Diabetes, and Research Centre, Wellington Regional Hospital, New Zealand

Search for other papers by Richard W Carroll in
Google Scholar
PubMed
Close
,
Brian Corley Endocrine, Diabetes, and Research Centre, Wellington Regional Hospital, New Zealand
Department of Medicine, University of Otago, Wellington, New Zealand

Search for other papers by Brian Corley in
Google Scholar
PubMed
Close
,
Joe Feltham Department of Radiology, Wellington Regional Hospital, New Zealand

Search for other papers by Joe Feltham in
Google Scholar
PubMed
Close
,
Patricia Whitfield Endocrine, Diabetes, and Research Centre, Wellington Regional Hospital, New Zealand
Department of Medicine, University of Otago, Wellington, New Zealand

Search for other papers by Patricia Whitfield in
Google Scholar
PubMed
Close
,
William Park University of Otago, Wellington, New Zealand

Search for other papers by William Park in
Google Scholar
PubMed
Close
,
Rowena Howard Diabetes and Endocrinology Service, Hutt Hospital, New Zealand

Search for other papers by Rowena Howard in
Google Scholar
PubMed
Close
,
Melissa Yssel Department of Biochemistry & Endocrinology, Awanui Labs, New Zealand

Search for other papers by Melissa Yssel in
Google Scholar
PubMed
Close
,
Ian Phillips Department of Biochemistry, Awanui Labs, Dunedin, New Zealand

Search for other papers by Ian Phillips in
Google Scholar
PubMed
Close
,
Simon Harper Department of Surgery & Anaesethesia, University of Otago, Wellington, New Zealand
Department of General Surgery, Wellington Regional Hospital, New Zealand

Search for other papers by Simon Harper in
Google Scholar
PubMed
Close
, and
Jun Yang Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
Department of Medicine, Monash University, Clayton, Victoria, Australia

Search for other papers by Jun Yang in
Google Scholar
PubMed
Close

Objective

The assessment of primary aldosteronism incorporates adrenal vein sampling (AVS) to lateralize aldosterone excess. Current adrenal vein sampling protocols rely on concurrent cortisol measurements to assess successful cannulation and lateralization and may be inaccurate in the setting of autonomous cortisol secretion. We aimed to compare the measurement of plasma cortisol and metanephrine concentrations to assess cannulation and lateralization during AVS.

Design

This is a diagnostic accuracy study in a tertiary referral endocrinology department.

Methods

Forty-one consecutive patients with confirmed primary aldosteronism undergoing AVS (49 procedures) were included. None had cortisol autonomy. The use of plasma metanephrine-based ratios were compared with standard cortisol-based ratios to assess cannulation and lateralization during ACTH-stimulated AVS.

Results

There was strong agreement between a cortisol selectivity index (SI) ≥5.0 and an adrenal vein (AV) to peripheral vein (PV) plasma metanephrine ratio (AVmet–PVmet) of ≥12.0 to indicate successful cannulation of the AV (n = 117, sensitivity 98%, specificity 89%, positive predictive value (PPV) 95%, negative predictive value (NPV) 94%). There was strong agreement between the standard cortisol-based SI and an AV plasma metanephrine-to-normetanephrine ratio (AVmet–AVnormet) of ≥2.0 to indicate successful cannulation (n = 117, sensitivity 93%, specificity 86%, PPV 94%, NPV 84%). There was strong agreement between the cortisol- or metanephrine-derived lateralization index (LI) > 4.0 for determining lateralization (n = 26, sensitivity 100%, specificity 94.1%, PPV 91.6%, NPV 100%).

Conclusions

Ratios incorporating plasma metanephrines provide comparable outcomes to standard cortisol-based measurements for interpretation of AVS. Further studies are required to assess the use of metanephrine-derived ratios in the context of confirmed cortisol autonomy.

Significance statement

Primary aldosteronism is a common cause of secondary hypertension, and adrenal vein sampling remains the gold standard test to assess lateralization. Cortisol-derived ratios to assess cannulation and lateralization may be affected by concurrent cortisol dysfunction, which is not uncommon in the context of primary aldosteronism. Our study showed comparable outcomes when using accepted cortisol-derived or metanephrine-derived ratios to determine cannulation and lateralization during adrenal vein sampling. Further research is required to validate these findings and to assess the use of metanephrine-derived ratios in the context of confirmed concurrent cortisol dysfunction.

Open access
Tomaž Kocjan Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia

Search for other papers by Tomaž Kocjan in
Google Scholar
PubMed
Close
,
Gaj Vidmar Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
University Rehabilitation Institute, Ljubljana, Slovenia
FAMNIT, University of Primorska, Koper, Slovenia

Search for other papers by Gaj Vidmar in
Google Scholar
PubMed
Close
,
Peter Popović Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
Clinical Institute of Radiology, University Medical Centre Ljubljana, Ljubljana, Slovenia

Search for other papers by Peter Popović in
Google Scholar
PubMed
Close
, and
Milenko Stanković Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
Clinical Institute of Radiology, University Medical Centre Ljubljana, Ljubljana, Slovenia

Search for other papers by Milenko Stanković in
Google Scholar
PubMed
Close

The 20-point clinical prediction SPACE score, the aldosterone-to-lowest potassium ratio (APR), aldosterone concentration (AC) and the AC relative reduction rate after saline infusion test (SIT) have recently been proposed for primary aldosteronism (PA) subtyping prior to adrenal vein sampling (AVS). To validate those claims, we performed a retrospective cross-sectional study that included all patients at our center who had positive SIT to confirm PA and were diagnosed with either bilateral disease (BPA) according to AVS or with lateralized disease (LPA) if biochemically cured after adrenalectomy from November 2004 to the end of 2019. Final diagnoses were used to evaluate the diagnostic performance of proposed clinical prediction tools. Our cohort included 144 patients (40 females), aged 32–72 years (mean 54 years); 59 with LPA and 85 with BPA. The originally suggested SPACE score ≤8 and SPACE score >16 rules yielded about 80% positive predictive value (PPV) for BPA and LPA, respectively. Multivariate analyses with the predictors constituting the SPACE score highlighted post-SIT AC as the most important predictor of PA subtype for our cohort. APR-based tool of <5 for BPA and >15 for LPA yielded about 75% PPV for LPA and BPA. The proposed post-SIT AC <8.79 ng/dL criterion yielded 41% sensitivity and 90% specificity, while the relative post-SIT AC reduction rate of >33.8% criterion yielded 80% sensitivity and 51% specificity for BPA prediction. The application of any of the validated clinical prediction tools to our cohort did not predict the PA subtype with the high diagnostic performance originally reported.

Open access
Sharmin Jahan Department of Medicine, Monash University, Melbourne, Victoria, Australia
Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Victoria, Australia
Department of Endocrinology and Metabolism, BSMMU, Dhaka, Bangladesh

Search for other papers by Sharmin Jahan in
Google Scholar
PubMed
Close
,
Jun Yang Department of Medicine, Monash University, Melbourne, Victoria, Australia
Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Victoria, Australia

Search for other papers by Jun Yang in
Google Scholar
PubMed
Close
,
Jinbo Hu Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Search for other papers by Jinbo Hu in
Google Scholar
PubMed
Close
,
Qifu Li Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Search for other papers by Qifu Li in
Google Scholar
PubMed
Close
, and
Peter J Fuller Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Victoria, Australia

Search for other papers by Peter J Fuller in
Google Scholar
PubMed
Close

Primary aldosteronism (PA) is the most common cause of endocrine hypertension and is often underdiagnosed. This condition is associated with increased cardiovascular morbidity and mortality in comparison to age and blood pressure matched individuals with essential hypertension (EH). The diagnostic pathway for PA consists of three phases: screening, confirmatory testing, and subtyping. The lack of specificity in the screening step, which relies on the aldosterone to renin ratio, necessitates confirmatory testing. The Endocrine Society’s clinical practice guideline suggests four confirmatory tests, including the fludrocortisone suppression test (FST), saline suppression test (SST), captopril challenge test (CCT), and oral sodium loading test (SLT). There is no universally accepted choice of confirmatory test, with practices varying among centers. The SST and FST are commonly used, but they can be resource-intensive, carry risks such as volume overload or hypokalemia, and are contraindicated in severe/uncontrolled HTN as well as in cardiac and renal impairment. In contrast, CCT is a safe and inexpensive alternative that can be performed in an outpatient setting and can be applied when other tests are contraindicated. Despite its simplicity and convenience, the variability in captopril dose, testing posture, and diagnostic threshold limit its widespread use. This narrative review evaluates the diagnostic accuracy of the CCT across different populations, addresses controversies in its usage, and proposes recommendations for its use in the diagnosis of PA. Furthermore, suggestions for future research aimed at promoting the wider utilization of the CCT as a simpler, safer, and more cost-effective diagnostic test are discussed.

Open access
Arno Téblick Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Arno Téblick in
Google Scholar
PubMed
Close
,
Ilse Vanhorebeek Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Ilse Vanhorebeek in
Google Scholar
PubMed
Close
,
Inge Derese Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Inge Derese in
Google Scholar
PubMed
Close
,
An Jacobs Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by An Jacobs in
Google Scholar
PubMed
Close
,
Renata Haghedooren Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Renata Haghedooren in
Google Scholar
PubMed
Close
,
Sofie Maebe Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Sofie Maebe in
Google Scholar
PubMed
Close
,
Gerdien A Zeilmaker-Roest Department of Neonatal & Pediatric Intensive Care, Division of Pediatric Intensive Care, Erasmus MC – Sophia Children’s Hospital, Rotterdam, the Netherlands

Search for other papers by Gerdien A Zeilmaker-Roest in
Google Scholar
PubMed
Close
,
Enno D Wildschut Department of Neonatal & Pediatric Intensive Care, Division of Pediatric Intensive Care, Erasmus MC – Sophia Children’s Hospital, Rotterdam, the Netherlands

Search for other papers by Enno D Wildschut in
Google Scholar
PubMed
Close
,
Lies Langouche Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Lies Langouche in
Google Scholar
PubMed
Close
, and
Greet Van den Berghe Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Greet Van den Berghe in
Google Scholar
PubMed
Close

In critically ill adults, high plasma cortisol in the face of low ACTH coincides with high pro-opiomelanocortin (POMC) levels. Glucocorticoids further lower ACTH without affecting POMC. We hypothesized that in pediatric cardiac surgery-induced critical illness, plasma POMC is elevated, plasma ACTH transiently rises intraoperatively but becomes suppressed post-operatively, and glucocorticoid administration amplifies this phenotype. From 53 patients (0–36 months), plasma was obtained pre-operatively, intraoperatively, and on post-operative days 1 and 2. Plasma was also collected from 24 healthy children. In patients, POMC was supra-normal pre-operatively (P < 0.0001) but no longer thereafter (P > 0.05). ACTH was never high in patients. While in glucocorticoid-naive patients ACTH became suppressed by post-operative day 1 (P < 0.0001), glucocorticoid-treated patients had already suppressed ACTH intraoperatively (P ≤ 0.0001). Pre-operatively high POMC, not accompanied by increased plasma ACTH, suggests a centrally activated HPA axis with reduced pituitary processing of POMC into ACTH. Increasing systemic glucocorticoid availability with glucocorticoid treatment accelerated the suppression of plasma ACTH.

Significance statement

Glucocorticoids are often administered during pediatric cardiac surgery. In critically ill children, endogenous systemic glucocorticoid availability is elevated already upon ICU admission while ACTH levels are normal. This hormonal constellation suggests the presence of active feedback inhibition of ACTH. In this study, we have documented that intraoperative administration of glucocorticoids accelerates the suppression of ACTH, resulting in low plasma ACTH already upon ICU admission. Pre-operative plasma POMC, the ACTH precursor, but not ACTH, was increased. This is compatible with a centrally activated HPA axis prior to surgery in young children but reduced processing of POMC into ACTH within the pituitary. These findings suggest that glucocorticoid treatment in the context of pediatric cardiac surgery may amplify pre-existing impaired pituitary processing of the prohormone POMC.

Open access