Search Results

You are looking at 1 - 2 of 2 items for :

  • Abstract: Birth defect x
  • Abstract: Bisphenol-A x
  • Abstract: Drugs x
  • Abstract: endocrine disrupters x
  • Metabolic Syndrome and Diabetes x
Clear All Modify Search
Zhenyu Liu Department of Clinical Medicine, Beijing Luhe Hospital, Capital Medical University, Tongzhou District, Beijing, China

Search for other papers by Zhenyu Liu in
Google Scholar
PubMed
Close
,
Huixi Kong Department of Clinical Medicine, Beijing Shijitan Hospital, Capital Medical University, Haidian District, Beijing, China

Search for other papers by Huixi Kong in
Google Scholar
PubMed
Close
, and
Baoyu Zhang Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Tongzhou District, Beijing, China

Search for other papers by Baoyu Zhang in
Google Scholar
PubMed
Close

To optimize the treatment plan for patients with type 2 diabetes mellitus (T2DM) and hyperuricemia, this narrative literature review summarizes the effect of antidiabetic drugs on serum uric acid (SUA) levels using data from observational studies, prospective clinical trials, post hoc analyses, and meta-analyses. SUA is an independent risk factor for T2DM, and evidence has shown that patients with both gout and T2DM exhibit a mutually interdependent effect on higher incidences. We find that insulin and dipeptidyl peptidase 4 inhibitor (DPP-4i) except linagliptin could increase the SUA and other drugs including metformin, thiazolidinediones (TZDs), glucagon-like peptide-1 receptor agonists (GLP-1 RAs), linagliptin, sodium–glucose cotransporter 2 inhibitors (SGLT2i), and α-glucosidase inhibitors have a reduction effect on SUA. We explain the mechanisms of different antidiabetic drugs above on SUA and analyze them compared with actual data. For sulfonylureas, meglitinides, and amylin analogs, the underlying mechanism remains unclear. We think the usage of linagliptin and SGLT2i is the most potentially effective treatment of patients with T2DM and hyperuricemia currently. Our review is a comprehensive summary of the effects of antidiabetic drugs on SUA, which includes actual data, the mechanisms of SUA regulation, and the usage rate of drugs.

Open access
Xinge Tao Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China

Search for other papers by Xinge Tao in
Google Scholar
PubMed
Close
,
Yanbin Xue Computer Net Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Search for other papers by Yanbin Xue in
Google Scholar
PubMed
Close
,
Rui Niu Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China

Search for other papers by Rui Niu in
Google Scholar
PubMed
Close
,
Wenjing Lu Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China

Search for other papers by Wenjing Lu in
Google Scholar
PubMed
Close
,
Huayan Yao Computer Net Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Search for other papers by Huayan Yao in
Google Scholar
PubMed
Close
,
Chunmei He Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China

Search for other papers by Chunmei He in
Google Scholar
PubMed
Close
,
Bin Cui Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Search for other papers by Bin Cui in
Google Scholar
PubMed
Close
, and
Changqin Liu Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
Xiamen Key Laboratory for Clinical Efficacy and Evidence-Based Research of Traditional Chinese Medicine, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
Fujian Province Key Laboratory of Diabetes Translational Medicine, The First Affiliated Hospital of Xiamen University, School of medicine, Xiamen University, Xiamen, China

Search for other papers by Changqin Liu in
Google Scholar
PubMed
Close

Objective

The aim of this study was to compare the differences in incident population, comorbidities, and glucose-lowering drug prescriptions between newly diagnosed patients with early-onset type 2 diabetes mellitus (T2DM) and those with late-onset T2DM to provide real-world evidence for clinical practice.

Methods

This study was based on the Shanghai Hospital Link Database (SHLD). Anonymized electronic medical record (EHR) data from 2013 to 2021 were included in this study. Newly diagnosed patients with T2DM were defined as those without related diagnostic records or glucose-lowering medicine prescriptions in the past 3 years. Early-onset T2DM was defined as patients who were aged 18–40 years old at the first visit for T2DM to represent those who were born after the 1980s. And late-onset T2DM was defined as those aged 65–80 years old to represent those who were born in a relatively undeveloped period. Descriptive statistical analyses were performed to describe their incidence number, glucose-lowering drug prescriptions, and comorbidities at the first visit to the hospital between two T2DM groups.

Results

There were a total of 35,457 newly diagnosed patients with early-onset T2DM and 149,108 newly diagnosed patients with late-onset T2DM included in this study. Patients with late-onset T2DM constituted the majority and their number increased by 2.5% on average by years, while the number of patients with early-onset T2DM remained stable each year. Compared with late-onset T2DM patients, more early-onset T2DM patients had dyslipidemia at the first visit to hospitals (9.5% vs 7.7%, P < 0.01) despite their significant age differences. Patients with early-onset T2DM were more likely to use metformin (74.8% vs 46.5, P < 0.01), dipeptidyl peptidase-4 inhibitors (DDP-4i) (16.7% vs 11.2%, P < 0.01), thiazolidinediones (TZD) (14.9% vs 8.4%, P < 0.01), sodium glucose cotransporter 2 inhibitors (SGLT2-i) (0.8% vs 0.3%, P < 0.01), and glucagon-like peptide 1 receptor agonists (GLP-1 RA) (3.7% vs 0.5%, P < 0.01) at their first visit to the hospital.

Conclusions

Different characteristics were observed between patients with early-onset T2DM and those with late-onset T2DM. Compared with patients with late-onset T2DM, those with early-onset T2DM were more prone to dyslipidemia and had novel organ-protective drugs prescribed.

Open access