Search Results
Search for other papers by Gabriella Oliveira Lima in
Google Scholar
PubMed
Search for other papers by Alex Luiz Menezes da Silva in
Google Scholar
PubMed
Search for other papers by Julianne Elba Cunha Azevedo in
Google Scholar
PubMed
Search for other papers by Chirlene Pinheiro Nascimento in
Google Scholar
PubMed
Search for other papers by Luana Rodrigues Vieira in
Google Scholar
PubMed
Search for other papers by Akira Otake Hamoy in
Google Scholar
PubMed
Search for other papers by Luan Oliveira Ferreira in
Google Scholar
PubMed
Search for other papers by Verônica Regina Lobato Oliveira Bahia in
Google Scholar
PubMed
Search for other papers by Nilton Akio Muto in
Google Scholar
PubMed
Search for other papers by Dielly Catrina Favacho Lopes in
Google Scholar
PubMed
Search for other papers by Moisés Hamoy in
Google Scholar
PubMed
Low plasma levels of vitamin D causes bone mineral change that can precipitate osteopenia and osteoporosis and could aggravate autoimmune diseases, hypertension and diabetes. The demand for vitamin D supplementation becomes necessary; however, the consumption of vitamin D is not without risks, which its toxicity could have potentially serious consequences related to hypervitaminosis D, such as hypercalcemia and cerebral alterations. Thus, the present study describes the electroencephalographic changes caused by supraphysiological doses of vitamin D in the brain electrical dynamics and the electrocardiographic changes. After 4 days of treatment with vitamin D at a dose of 25,000 IU/kg, the serum calcium levels found were increased in comparison with the control group. The electrocorticogram analysis found a reduction in wave activity in the delta, theta, alpha and beta frequency bands. For ECG was observed changes with shortened QT follow-up, which could be related to serum calcium concentration. This study presented important evidence about the cerebral and cardiac alterations caused by high doses of vitamin D, indicating valuable parameters in the screening and decision-making process for diagnosing patients with symptoms suggestive of intoxication.
Search for other papers by Shatha Alharazy in
Google Scholar
PubMed
Search for other papers by M Denise Robertson in
Google Scholar
PubMed
Search for other papers by Susan Lanham-New in
Google Scholar
PubMed
Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
Search for other papers by Muhammad Imran Naseer in
Google Scholar
PubMed
Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
Centre for Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
Search for other papers by Adeel G Chaudhary in
Google Scholar
PubMed
Search for other papers by Eman Alissa in
Google Scholar
PubMed
Background
Measurement of free 25-hydroyvitamin D (25(OH)D) status has been suggested as a more representative marker of vitamin D status than that of total 25(OH)D. Previously, free 25(OH)D could only be calculated indirectly; however, a newly developed direct assay for the measurement of free 25(OH)D is now available. The aim of this study therefore was to investigate directly measured total and free vitamin D levels association with metabolic health in postmenopausal healthy women living in Saudi Arabia.
Methods
A sample of 302 postmenopausal women aged ≥50 years (n = 302) living in Saudi Arabia were recruited in a cross-sectional study design. Blood samples were collected from subjects for measurement of serum levels of total 25(OH)D, directly measured free 25(OH)D, metabolic bone parameters, lipid profile, and other biochemical tests.
Results
A positive correlation was found between directly measured free and total 25(OH)D (r = 0.64, P< 0.0001). Total but not free 25(OH)D showed significant association with serum intact parathyroid hormone (P = 0.004), whilst free 25(OH)D but not total 25(OH)D showed a significant association with total cholesterol and LDL-C (P = 0.032 and P = 0.045, respectively).
Conclusions
Free 25(OH)D and total 25(OH)D were found to be consistently correlated but with different associations to metabolic health parameters. Further research is needed to determine which marker of vitamin D status would be the most appropriate in population studies.
The University of Warwick, Coventry, UK
Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
Search for other papers by Sharon A Huish in
Google Scholar
PubMed
Search for other papers by Carl Jenkinson in
Google Scholar
PubMed
Search for other papers by Janet A Dunn in
Google Scholar
PubMed
Search for other papers by David J Meredith in
Google Scholar
PubMed
Search for other papers by Rosemary Bland in
Google Scholar
PubMed
Search for other papers by Martin Hewison in
Google Scholar
PubMed
Low serum 1,25-dihydroxyvitamin D (1,25(OH)2D) in end-stage renal disease (ESRD) is considered a consequence of elevated fibroblast growth factor 23 (FGF23) and concomitant reduced activity of renal 1α-hydroxylase (CYP27B1). Current ESRD treatment strategies to increase serum calcium and suppress secondary hyperparathyroidism involve supplementation with vitamin D analogues that circumvent 1α-hydroxylase. This overlooks the potential importance of 25-hydroxyvitamin D (25(OH)D) deficiency as a contributor to low serum 1,25(OH)2D. We investigated the effects of vitamin D (cholecalciferol) supplementation (40,000 IU for 12 weeks and maintenance dose of 20,000 IU fortnightly), on multiple serum vitamin D metabolites (25(OH)D, 1,25(OH)2D3 and 24,25(OH)2D3) in 55 haemodialysis patients. Baseline and 12 month data were compared using related-samples Wilcoxon signed rank test. All patients remained on active vitamin D analogues as part of routine ESRD care. 1,25(OH)2D3 levels were low at baseline (normal range: 60–120 pmol/L). Cholecalciferol supplementation normalised both serum 25(OH)D and 1,25(OH)2D3. Median serum 25(OH)D increased from 35.1 nmol/L (IQR: 23.0–47.5 nmol/L) to 119.9 nmol/L (IQR: 99.5–143.3 nmol/L) (P < 0.001). Median serum 1,25(OH)2D3 and 24,25(OH)2D3 increased from 48.3 pmol/L (IQR: 35.9–57.9 pmol/L) and 3.8 nmol/L (IQR: 2.3–6.0 nmol/L) to 96.2 pmol/L (IQR: 77.1–130.6 pmol/L) and 12.3 nmol/L (IQR: 9–16.4 nmol/L), respectively (P < 0.001). A non-significant reduction in daily active vitamin D analogue dose occurred, 0.94 µmcg at baseline to 0.77 µmcg at 12 months (P = 0.73). The ability to synthesise 1,25(OH)2D3 in ESRD is maintained but is substrate dependent, and serum 25(OH)D was a limiting factor at baseline. Therefore, 1,25(OH)2D3 deficiency in ESRD is partly a consequence of 25(OH)D deficiency, rather than solely due to reduced 1α-hydroxylase activity as suggested by current treatment strategies.
Search for other papers by Stan Ursem in
Google Scholar
PubMed
Search for other papers by Vito Francic in
Google Scholar
PubMed
Search for other papers by Martin Keppel in
Google Scholar
PubMed
Search for other papers by Verena Schwetz in
Google Scholar
PubMed
Search for other papers by Christian Trummer in
Google Scholar
PubMed
Search for other papers by Marlene Pandis in
Google Scholar
PubMed
Search for other papers by Felix Aberer in
Google Scholar
PubMed
Search for other papers by Martin R Grübler in
Google Scholar
PubMed
Search for other papers by Nicolas D Verheyen in
Google Scholar
PubMed
Search for other papers by Winfried März in
Google Scholar
PubMed
Search for other papers by Andreas Tomaschitz in
Google Scholar
PubMed
Search for other papers by Stefan Pilz in
Google Scholar
PubMed
Search for other papers by Barbara Obermayer-Pietsch in
Google Scholar
PubMed
Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, Endocrine Laboratory, Amsterdam, Netherlands
Search for other papers by Annemieke C Heijboer in
Google Scholar
PubMed
Objective
PTH can be oxidised in vivo, rendering it biologically inactive. Non-oxidised PTH (n-oxPTH) may therefore give a better image of the hormonal status of the patient. While vitamin D supplementation decreases total PTH (tPTH) concentration, the effect on n-oxPTH concentration is unexplored. We investigated the effect of vitamin D on n-oxPTH concentration in comparison to tPTH and compared the correlations between parameters of calcium, bone and lipid metabolism with n-oxPTH and tPTH.
Methods
N-oxPTH was measured in 108 vitamin D-insufficient (25(OH)D <75 nmol/L) hypertensive patients, treated with vitamin D (2800 IE daily) or placebo for 8 weeks in the Styrian Vitamin D Hypertension Trial (NCT02136771). We calculated the treatment effect and performed correlation analyses of n-oxPTH and tPTH with parameters of calcium, bone and lipid metabolism and oxidative stress.
Results
After treatment, compared to placebo, 25(OH)D concentrations increased, tPTH decreased by 9% (P < 0.001), n-oxPTH by 7% (P = 0.025) and the ratio of n-oxPTH/tPTH increased (P = 0.027). Changes in phosphate and HDL concentration correlated with changes in n-oxPTH, but not tPTH.
Conclusions
tPTH and n-oxPTH decrease upon vitamin D supplementation. Our study suggests that vitamin D supplementation reduces the oxidation of PTH, as we observed a small but significant increase in the non-oxidised proportion of PTH upon treatment. In addition, we found that changes in phosphate and HDL concentration showed a relationship with changes in n-oxPTH, but not tPTH. This may be explained by the biological activity of n-oxPTH. Further research should be carried out to establish the clinical relevance of n-oxPTH.
Search for other papers by A Chinoy in
Google Scholar
PubMed
Search for other papers by M Skae in
Google Scholar
PubMed
Search for other papers by A Babiker in
Google Scholar
PubMed
Search for other papers by D Kendall in
Google Scholar
PubMed
Search for other papers by M Z Mughal in
Google Scholar
PubMed
Search for other papers by R Padidela in
Google Scholar
PubMed
Background
Hypoparathyroidism is characterised by hypocalcaemia, and standard management is with an active vitamin D analogue and adequate oral calcium intake (dietary and/or supplements). Little is described in the literature about the impact of intercurrent illnesses on calcium homeostasis in children with hypoparathyroidism.
Methods
We describe three children with hypoparathyroidism in whom intercurrent illnesses led to hypocalcaemia and escalation of treatment with alfacalcidol (1-hydroxycholecalciferol) and calcium supplements.
Results
Three infants managed with standard treatment for hypoparathyroidism (two with homozygous mutations in GCMB2 gene and one with Sanjad-Sakati syndrome) developed symptomatic hypocalcaemia (two infants developed seizures) following respiratory or gastrointestinal illnesses. Substantial increases in alfacalcidol doses (up to three times their pre-illness doses) and calcium supplementation were required to achieve acceptable serum calcium concentrations. However, following resolution of illness, these children developed an increase in serum calcium and hypercalciuria, necessitating rapid reduction to pre-illness dosages of alfacalcidol and oral calcium supplementation.
Conclusion
Intercurrent illness may precipitate symptomatic hypocalcaemia in children with hypoparathyroidism, necessitating increase in dosages of alfacalcidol and calcium supplements. Close monitoring is required on resolution of the intercurrent illness, with timely reduction of dosages of active analogues of vitamin D and calcium supplements to prevent hypercalcaemia, hypercalciuria and nephrocalcinosis.
Search for other papers by Mirjam M Oosterwerff in
Google Scholar
PubMed
Search for other papers by Rosa Meijnen in
Google Scholar
PubMed
Search for other papers by Natasja M Van Schoor in
Google Scholar
PubMed
Search for other papers by Dirk L Knol in
Google Scholar
PubMed
Search for other papers by Mark H H Kramer in
Google Scholar
PubMed
Search for other papers by Mireille N M Van Poppel in
Google Scholar
PubMed
Search for other papers by Paul Lips in
Google Scholar
PubMed
Search for other papers by E Marelise W Eekhoff in
Google Scholar
PubMed
Vitamin D deficiency is highly prevalent among non-western immigrants in The Netherlands and associated with poor physical performance. The aim of this study was to assess the effect of vitamin D supplementation on physical performance, exercise capacity, and daily physical activity in vitamin D-deficient, overweight non-western immigrants. A randomized double-blind, placebo-controlled trial was conducted to assess the effect of vitamin D on physical performance. A total of 130 participants were included. Eligibility criteria included overweight (BMI >27 kg/m2), 25-hydroxy vitamin D (25(OH)D) ≤50 nmol/l, and an age range of 20–65 years. The intervention group received 1200 IU vitamin D3 daily for 4 months; the control group received placebo. Both groups received 500 mg calcium daily. Outcome measures included physical performance (physical performance score), exercise capacity (a 6-min walk test (6-MWT)), and daily physical activity (questionnaire and accelerometer). There was no significant effect on physical performance, exercise capacity, or physical activity in the intention to treat analysis. In an explorative post hoc analysis restricted to participants reaching a serum 25(OH)D concentration of >60 nmol/l after intervention, there was an improvement of 19 m in the 6-MWT compared with the control group (P=0.053). Moderate dose vitamin D supplementation did not significantly improve physical performance, exercise capacity, or physical activity. However, when 25(OH)D concentrations reached >60 nmol/l after intervention, there was a borderline significant improvement in exercise capacity. Although the clinical relevance is not clear, this is a promising result, as all participants were overweight and did not improve their overall activity levels.
Department of Clinical Chemistry, Hematology and Immunology, Noordwest Ziekenhuis, Alkmaar, The Netherlands
Search for other papers by Niek F Dirks in
Google Scholar
PubMed
Search for other papers by Etienne Cavalier in
Google Scholar
PubMed
Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, The Netherlands
Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam, The Netherlands
Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
Search for other papers by Annemieke C Heijboer in
Google Scholar
PubMed
The measurement of vitamin D metabolites aids in assessing vitamin D status and in diagnosing disorders of calcium homeostasis. Most laboratories measure total 25-hydroxyvitamin D (25(OH)D), while others have taken the extra effort to measure 25(OH)D2 and 25(OH)D3 separately and additional metabolites such as 1,25-dihydroxyvitamin D and 24,25-dihydroxyvitamin D. The aim of this review is to provide an updated overview of the main markers of vitamin D metabolism, define the intended measurands, and discuss the advantages and disadvantages of the two most widely used assays, automated assays and liquid chromatography–tandem mass spectrometry (LC-MS/MS). Whether using the easy and fast automated assays or the more complex LC-MS/MS, one should know the pitfalls of the used technique in order to interpret the measurements. In conclusion, automated assays are unable to accurately measure 25(OH)D in all patient groups, including persons using D2. In these cases, an LC-MS/MS method, when appropriately developed and standardized, produces a more reliable measurement.
Search for other papers by Mateo Amaya-Montoya in
Google Scholar
PubMed
Search for other papers by Daniela Duarte-Montero in
Google Scholar
PubMed
Search for other papers by Luz D Nieves-Barreto in
Google Scholar
PubMed
Search for other papers by Angélica Montaño-Rodríguez in
Google Scholar
PubMed
Search for other papers by Eddy C Betancourt-Villamizar in
Google Scholar
PubMed
Search for other papers by María P Salazar-Ocampo in
Google Scholar
PubMed
Fundación Santa Fe de Bogotá, Section of Endocrinology, Bogotá, Colombia
Search for other papers by Carlos O Mendivil in
Google Scholar
PubMed
Data on dietary calcium and vitamin D intake from Latin America are scarce. We explored the main correlates and dietary sources of calcium and vitamin D in a probabilistic, population-based sample from Colombia. We studied 1554 participants aged 18–75 from five different geographical regions. Dietary intake was assessed by employing a 157-item semi-quantitative food frequency questionnaire and national and international food composition tables. Daily vitamin D intake decreased with increasing age, from 230 IU/day in the 18–39 age group to 184 IU/day in the 60–75 age group (P -trend < 0.001). Vitamin D intake was positively associated with socioeconomic status (SES) (196 IU/day in lowest vs 234 in highest SES, P-trend < 0.001), and with educational level (176 IU/day in lowest vs 226 in highest education level, P-trend < 0.001). Daily calcium intake also decreased with age, from 1376 mg/day in the 18–39 age group to 1120 mg/day in the 60–75 age group (P -trend < 0.001). Calcium intake was lowest among participants with only elementary education, but the absolute difference in calcium intake between extreme education categories was smaller than for vitamin D (1107 vs 1274 mg/day, P-trend = 0.023). Daily calcium intake did not correlate with SES (P -trend = 0.74). Eggs were the main source of overall vitamin D, albeit their contribution decreased with increasing age. Dairy products contributed at least 48% of dietary calcium in all subgroups, mostly from cheese-containing traditional foods. SES and education were the key correlates of vitamin D and calcium intake. These findings may contribute to shape public health interventions in Latin American countries.
Search for other papers by Haojie Zhang in
Google Scholar
PubMed
Search for other papers by Yuke Cui in
Google Scholar
PubMed
Search for other papers by Ruihua Dong in
Google Scholar
PubMed
Search for other papers by Wen Zhang in
Google Scholar
PubMed
Search for other papers by Shihan Chen in
Google Scholar
PubMed
Search for other papers by Heng Wan in
Google Scholar
PubMed
Search for other papers by Chi Chen in
Google Scholar
PubMed
Search for other papers by Yi Chen in
Google Scholar
PubMed
Search for other papers by Yuying Wang in
Google Scholar
PubMed
Search for other papers by Chunfang Zhu in
Google Scholar
PubMed
Search for other papers by Bo Chen in
Google Scholar
PubMed
Search for other papers by Ningjian Wang in
Google Scholar
PubMed
Search for other papers by Yingli Lu in
Google Scholar
PubMed
Background
Bone is thought to be the reservoir of the human lead burden, and vitamin D is associated with bone turnover. We aimed to explore whether exposure to lower 25-hydroxy vitamin D (25(OH)D) levels was associated with higher blood lead levels (BLLs) by increasing the bone turnover rate in individuals with type 2 diabetes.
Methods
A total of 4103 type 2 diabetic men and postmenopausal women in Shanghai, China, were enrolled in 2018. Their 25(OH)D, β-C-terminal telopeptide (β-CTX), N-MID osteocalcin and procollagen type 1 N-peptide (P1NP) levels were detected. Their BLLs were determined by atomic absorption spectrometry. Mediation analyses were performed to identify the possible role that bone turnover played in the underlying mechanisms.
Results
In both the men and postmenopausal women, all three bone turnover markers were inversely associated with 25(OH)D and positively associated with the BLL (all P < 0.01) after adjusting for age, current smoking habits, metabolic parameters, duration of diabetes, vitamin D intake, and use of anti-osteoporosis medication. In the mediation analyses, none of the direct associations between 25(OH)D and BLL was significant for the three bone turnover markers, but all three bone turnover markers were found to be significant mediators of the indirect associations between 25(OH)D and BLL.
Conclusion
The association between vitamin D and BLL was fully mediated by bone turnover markers in type 2 diabetic patients (mediation effect). This finding suggested that vitamin D may protect against blood lead exposure from the bone reservoir by decreasing bone turnover in individuals with type 2 diabetes.
Search for other papers by Melissa Braga in
Google Scholar
PubMed
Search for other papers by Zena Simmons in
Google Scholar
PubMed
Search for other papers by Keith C Norris in
Google Scholar
PubMed
Department of Health & Life Sciences, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
Search for other papers by Monica G Ferrini in
Google Scholar
PubMed
Department of Health & Life Sciences, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
Search for other papers by Jorge N Artaza in
Google Scholar
PubMed
Skeletal muscle wasting is a serious disorder associated with health conditions such as aging, chronic kidney disease and AIDS. Vitamin D is most widely recognized for its regulation of calcium and phosphate homeostasis in relation to bone development and maintenance. Recently, vitamin D supplementation has been shown to improve muscle performance and reduce the risk of falls in vitamin D deficient older adults. However, little is known of the underlying molecular mechanism(s) or the role it plays in myogenic differentiation. We examined the effect of 1,25-D3 on myogenic cell differentiation in skeletal muscle derived stem cells. Primary cultures of skeletal muscle satellite cells were isolated from the tibialis anterior, soleus and gastrocnemius muscles of 8-week-old C57/BL6 male mice and then treated with 1,25-D3. The efficiency of satellite cells isolation determined by PAX7+ cells was 81%, and they expressed VDR. Incubation of satellite cells with 1,25-D3 induces increased expression of: (i) MYOD, (ii) MYOG, (iii) MYC2, (iv) skeletal muscle fast troponin I and T, (v) MYH1, (vi) IGF1 and 2, (vii) FGF1 and 2, (viii) BMP4, (ix) MMP9 and (x) FST. It also promotes myotube formation and decreases the expression of MSTN. In conclusion, 1,25-D3 promoted a robust myogenic effect on satellite cells responsible for the regeneration of muscle after injury or muscle waste. This study provides a mechanistic justification for vitamin D supplementation in conditions characterized by loss of muscle mass and also in vitamin D deficient older adults with reduced muscle mass and strength, and increased risk of falls.