Search Results
Search for other papers by Yusaku Mori in
Google Scholar
PubMed
Maebashi Hirosegawa Clinic, Maebashi, Gunma, Japan
Search for other papers by Hiroyuki Shimizu in
Google Scholar
PubMed
Search for other papers by Hideki Kushima in
Google Scholar
PubMed
Search for other papers by Tomomi Saito in
Google Scholar
PubMed
Search for other papers by Munenori Hiromura in
Google Scholar
PubMed
Search for other papers by Michishige Terasaki in
Google Scholar
PubMed
Search for other papers by Masakazu Koshibu in
Google Scholar
PubMed
Search for other papers by Hirokazu Ohtaki in
Google Scholar
PubMed
Search for other papers by Tsutomu Hirano in
Google Scholar
PubMed
Nesfatin-1 is a novel anorexic peptide hormone that also exerts cardiovascular protective effects in rodent models. However, nesfatin-1 treatment at high doses also exerts vasopressor effects, which potentially limits its therapeutic application. Here, we evaluated the vasoprotective and vasopressor effects of nesfatin-1 at different doses in mouse models. Wild-type mice and those with the transgene nucleobindin-2, a precursor of nesfatin-1, were employed. Wild-type mice were randomly assigned to treatment with vehicle or nesfatin-1 at 0.2, 2.0 or 10 μg/kg/day (Nes-0.2, Nes-2, Nes-10, respectively). Subsequently, mice underwent femoral artery wire injury to induce arterial remodeling. After 4 weeks, injured arteries were collected for morphometric analysis. Compared with vehicle, nesfatin-1 treatments at 2.0 and 10 μg/kg/day decreased body weights and elevated plasma nesfatin-1 levels with no changes in systolic blood pressure. Furthermore, these treatments reduced neointimal hyperplasia without inducing undesirable remodeling in injured arteries. However, nesfatin-1 treatment at 0.2 μg/kg/day was insufficient to elevate plasma nesfatin-1 levels and showed no vascular effects. In nucleobindin-2-transgenic mice, blood pressure was slightly higher but neointimal area was lower than those observed in littermate controls. In cultured human vascular endothelial cells, nesfatin-1 concentration-dependently increased nitric oxide production. Additionally, nesfatin-1 increased AMP-activated protein kinase phosphorylation, which was abolished by inhibiting liver kinase B1. We thus demonstrated that nesfatin-1 treatment at appropriate doses suppressed arterial remodeling without affecting blood pressure. Our findings indicate that nesfatin-1 can be a therapeutic target for improved treatment of peripheral artery disease.
Search for other papers by Rachel D C A Diniz in
Google Scholar
PubMed
Search for other papers by Renata M Souza in
Google Scholar
PubMed
Search for other papers by Roberto Salvatori in
Google Scholar
PubMed
Search for other papers by Alex Franca in
Google Scholar
PubMed
Search for other papers by Elenilde Gomes-Santos in
Google Scholar
PubMed
Search for other papers by Thiago O Ferrão in
Google Scholar
PubMed
Search for other papers by Carla R P Oliveira in
Google Scholar
PubMed
Search for other papers by João A M Santana in
Google Scholar
PubMed
Search for other papers by Francisco A Pereira in
Google Scholar
PubMed
Search for other papers by Rita A A Barbosa in
Google Scholar
PubMed
Search for other papers by Anita H O Souza in
Google Scholar
PubMed
Search for other papers by Rossana M C Pereira in
Google Scholar
PubMed
Search for other papers by Alécia A Oliveira-Santos in
Google Scholar
PubMed
Search for other papers by Allysson M P Silva in
Google Scholar
PubMed
Search for other papers by Francisco J Santana-Júnior in
Google Scholar
PubMed
Search for other papers by Eugênia H O Valença in
Google Scholar
PubMed
Search for other papers by Viviane C Campos in
Google Scholar
PubMed
Search for other papers by Manuel H Aguiar-Oliveira in
Google Scholar
PubMed
Nonalcoholic fatty liver disease (NAFLD) is known to be associated with insulin resistance, atherosclerosis, and low serum IGF1 levels. We have described a large cohort of patients with isolated GH deficiency (IGHD) due to the c.57+1G→A mutation in the GHRH receptor gene. These subjects have increased insulin sensitivity (IS), delayed atherosclerosis, and normal longevity. We hypothesized that, despite visceral obesity, NAFLD would be absent or mild due to the increased IS. To assess the prevalence and severity of NAFLD in adult subjects with lifetime, congenital, untreated IGHD, we studied 22 IGHD adults and 25 controls (COs) matched for age and sex. NAFLD was assessed by a comprehensive liver function panel, and ultrasonographic pattern (hyperechogenic pattern, HP) coded as follows: 0, absent; 1, mild; 2, moderate; and 3, severe. Compared with COs, IGHD individual had lower serum IGF1 (P<0.0001), higher total cholesterol (P=0.027), lower prothrombin time (P=0.017), and similar activated partial thromboplastin time and fibrinogen values. Alanine transaminase (ALT) values were similar in the two groups, but aspartate transaminase was higher in IGHD (P=0.013). However, more IGHD subjects (7/22) than COs (3/23) had ALT above the upper limit of normal (P=0.044). The prevalence of NAFLD was higher in IGHD than COs (61 vs 29%, P=0.032), and the HP score was higher in IGHD than COs (P=0.041), but severe NAFLD was not observed in any IGHD (or CO) individual. Liver HP score is increased in lifetime, untreated, congenital IGHD, but the increase in transaminases is mild, suggesting a lack of advanced forms of NAFLD.
Search for other papers by Michaela Keuper in
Google Scholar
PubMed
The crosstalk between macrophages (MΦ) and adipocytes within white adipose tissue (WAT) influences obesity-associated insulin resistance and other associated metabolic disorders, such as atherosclerosis, hypertension and type 2 diabetes. MΦ infiltration is increased in WAT during obesity, which is linked to decreased mitochondrial content and activity. The mechanistic interplay between MΦ and mitochondrial function of adipocytes is under intense investigation, as MΦ and inflammatory pathways exhibit a pivotal role in the reprogramming of WAT metabolism in physiological responses during cold, fasting and exercise. Thus, the underlying immunometabolic pathways may offer therapeutic targets to correct obesity and metabolic disease. Here, I review the current knowledge on the quantity and the quality of human adipose tissue macrophages (ATMΦ) and their impact on the bioenergetics of human adipocytes. The effects of ATMΦ and their secreted factors on mitochondrial function of white adipocytes are discussed, including recent research on MΦ as part of an immune signaling cascade involved in the ‘browning’ of WAT, which is defined as the conversion from white, energy-storing adipocytes into brown, energy-dissipating adipocytes.
Search for other papers by Angelo Maria Patti in
Google Scholar
PubMed
Search for other papers by Kalliopi Pafili in
Google Scholar
PubMed
Search for other papers by Nikolaos Papanas in
Google Scholar
PubMed
Search for other papers by Manfredi Rizzo in
Google Scholar
PubMed
Hormonal changes during pregnancy can trigger gestational diabetes (GDM), which is constantly increasing. Its main characteristic is pronounced insulin resistance, but it appears to be a multifactorial process involving several metabolic factors; taken together, the latter leads to silent or clinically evident cardiovascular (CV) events. Insulin resistance and central adiposity are of crucial importance in the development of metabolic syndrome, and they appear to correlate with CV risk factors, including hypertension and atherogenic dyslipidaemia. Hypertensive disease of pregnancy (HDP) is more likely to be an accompanying co-morbidity in pregnancies complicated with GDM. There is still inconsistent evidence as to whether or not co-existent GDM and HDP have a synergistic effects on postpartum risk of cardiometabolic disease; however, this synergism is becoming more accepted since both these conditions may promote endothelial inflammation and early atherosclerosis. Regardless of the presence or absence of the synergism between GDM and HDP, these conditions need to be dealt early enough, in order to reduce CV morbidity and to improve health outcomes for both women and their offspring.
Search for other papers by Ermina Bach in
Google Scholar
PubMed
Search for other papers by Niels Møller in
Google Scholar
PubMed
Search for other papers by Jens Otto L Jørgensen in
Google Scholar
PubMed
Search for other papers by Mads Buhl in
Google Scholar
PubMed
Search for other papers by Holger Jon Møller in
Google Scholar
PubMed
Aims/hypothesis
The macrophage-specific glycoprotein sCD163 has emerged as a biomarker of low-grade inflammation in the metabolic syndrome and related disorders. High sCD163 levels are seen in acute sepsis as a result of direct lipopolysaccharide-mediated shedding of the protein from macrophage surfaces including Kupffer cells. The aim of this study was to investigate if low-grade endotoxinemia in human subjects results in increasing levels of sCD163 in a cortisol-dependent manner.
Methods
We studied eight male hypopituitary patients and eight age- and gender-matched healthy controls during intravenous low-dose LPS or placebo infusion administered continuously over 360 min. Furthermore, we studied eight healthy volunteers with bilateral femoral vein and artery catheters during a 360-min infusion with saline and low-dose LPS in each leg respectively.
Results:
Systemic low-grade endotoxinemia resulted in a gradual increase in sCD163 from 1.65 ± 0.51 mg/L (placebo) to 1.92 ± 0.46 mg/L (LPS) at 220 min, P = 0.005 and from 1.66 ± 0.42 mg/L (placebo) to 2.19 ± 0.56 mg/L (LPS) at 340 min, P = 0.006. A very similar response was observed in hypopituitary patients: from 1.59 ± 0.53 mg/L (placebo) to 1.83 ± 0.45 mg/L (LPS) at 220 min, P = 0.021 and from 1.52 ± 0.53 mg/L (placebo) to 2.03 ± 0.44 mg/L (LPS) at 340 min, P < 0.001. As opposed to systemic treatment, continuous femoral artery infusion did not result in increased sCD163.
Conclusion:
Systemic low-grade endotoxinemia resulted in increased sCD163 to levels seen in the metabolic syndrome in both controls and hypopituitary patients. This suggests a direct and cortisol-independent effect of LPS on the shedding of sCD163. We observed no effect of local endotoxinemia on levels of serum sCD163.
Search for other papers by Henrik H Thomsen in
Google Scholar
PubMed
Search for other papers by Holger J Møller in
Google Scholar
PubMed
Search for other papers by Christian Trolle in
Google Scholar
PubMed
Search for other papers by Kristian A Groth in
Google Scholar
PubMed
Search for other papers by Anne Skakkebæk in
Google Scholar
PubMed
Search for other papers by Anders Bojesen in
Google Scholar
PubMed
Search for other papers by Christian Høst in
Google Scholar
PubMed
Medical Research Laboratories, Departments of Clinical Biochemistry, Molecular Medicine, Department of Clinical Genetics, Department of Endocrinology and Internal Medicine, Clinical Institute, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark
Search for other papers by Claus H Gravholt in
Google Scholar
PubMed
Soluble CD163 (sCD163) is a novel marker linked to states of low-grade inflammation such as diabetes, obesity, liver disease, and atherosclerosis, all prevalent in subjects with Turner syndrome (TS) and Klinefelter syndrome (KS). We aimed to assess the levels of sCD163 and the regulation of sCD163 in regards to treatment with sex hormone therapy in males with and without KS and females with and without TS. Males with KS (n=70) and age-matched controls (n=71) participating in a cross-sectional study and 12 healthy males from an experimental hypogonadism study. Females with TS (n=8) and healthy age-matched controls (n=8) participating in a randomized crossover trial. The intervention comprised of treatment with sex steroids. Males with KS had higher levels of sCD163 compared with controls (1.75 (0.47–6.90) and 1.36 (0.77–3.11) respectively, P<0.001) and the levels correlated to plasma testosterone (r=−0.31, P<0.01), BMI (r=0.42, P<0.001), and homeostasis model of assessment insulin resistance (r=0.46, P<0.001). Treatment with testosterone did not significantly lower sCD163. Females with TS not receiving hormone replacement therapy (HRT) had higher levels of sCD163 than those of their age-matched healthy controls (1.38±0.44 vs 0.91±0.40, P=0.04). HRT and oral contraceptive therapy decreased sCD163 in TS by 22% (1.07±0.30) and in controls by 39% (0.55±0.36), with significance in both groups (P=0.01 and P=0.04). We conclude that levels of sCD163 correlate with endogenous testosterone in KS and are higher in KS subjects compared with controls, but treatment did not significantly lower levels. Both endogenous and exogenous estradiol in TS was associated with lower levels of sCD163.
Department of Endocrinology, Austin Health, Melbourne, Australia
Division of Endocrinology, Diabetes and Metabolism, Northwell, Great Neck, New York, USA
Search for other papers by Yee-Ming M Cheung in
Google Scholar
PubMed
Search for other papers by Rudolf Hoermann in
Google Scholar
PubMed
Search for other papers by Karen Van in
Google Scholar
PubMed
Search for other papers by Damian Wu in
Google Scholar
PubMed
Search for other papers by Jenny Healy in
Google Scholar
PubMed
Search for other papers by Bella Halim in
Google Scholar
PubMed
Search for other papers by Manjri Raval in
Google Scholar
PubMed
Search for other papers by Maria McGill in
Google Scholar
PubMed
Department of Cardiology, Austin Health, Melbourne Australia
Search for other papers by Ali Al-Fiadh in
Google Scholar
PubMed
Search for other papers by Michael Chao in
Google Scholar
PubMed
Search for other papers by Shane White in
Google Scholar
PubMed
Olivia Newton-John Cancer Research Institute, Austin Health, Melbourne, Australia
Search for other papers by Belinda Yeo in
Google Scholar
PubMed
Department of Endocrinology, Austin Health, Melbourne, Australia
Search for other papers by Jeffrey D Zajac in
Google Scholar
PubMed
Department of Endocrinology, Austin Health, Melbourne, Australia
Search for other papers by Mathis Grossmann in
Google Scholar
PubMed
Purpose
We previously demonstrated that 12 months of aromatase inhibitor (AI) treatment was not associated with a difference in body composition or other markers of cardiometabolic health when compared to controls. Here we report on the pre-planned extension of the study. The pre-specified primary hypothesis was that AI therapy for 24 months would lead to increased visceral adipose tissue (VAT) area when compared to controls.
Methods
We completed a 12-month extension to our prospective 12-month cohort study of 52 women commencing AI treatment (median age 64.5 years) and 52 women with breast pathology not requiring endocrine therapy (63.5 years). Our primary outcome of interest was VAT area. Secondary and exploratory outcomes included other measures of body composition, hepatic steatosis, measures of atherosclerosis and vascular reactivity. Using mixed models and the addition of a fourth time point, we increased the number of study observations by 79 and were able to rigorously determine the treatment effect.
Results
Among study completers (AI = 39, controls = 40), VAT area was comparable between groups over 24 months, the mean-adjusted difference was −1.54 cm2 (95% CI: −14.9; 11.9, P = 0.79). Both groups demonstrated parallel and continuous increases in VAT area over the observation period that did not diverge or change between groups. No statistically significant difference in our secondary and exploratory outcomes was observed between groups.
Conclusions
While these findings provide reassurance that short-to-medium-term exposure to AI therapy is not associated with metabolically adverse changes when compared to controls, risk evolution should be less focussed on the AI-associated effect and more on the general development of cardiovascular risk over time.
Tanaka Medical Clinic, Yoichi, Japan
Search for other papers by Marenao Tanaka in
Google Scholar
PubMed
Search for other papers by Tomohito Gohda in
Google Scholar
PubMed
Institute for Clinical Research, NHO Kure Medical Center and Chugoku Cancer Center, Hiroshima, Japan
Search for other papers by Nozomu Kamei in
Google Scholar
PubMed
Search for other papers by Maki Murakoshi in
Google Scholar
PubMed
Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
Search for other papers by Tatsuya Sato in
Google Scholar
PubMed
Search for other papers by Mitsunobu Kubota in
Google Scholar
PubMed
Search for other papers by Michiyoshi Sanuki in
Google Scholar
PubMed
Search for other papers by Erika Ishiwata in
Google Scholar
PubMed
Search for other papers by Keisuke Endo in
Google Scholar
PubMed
Search for other papers by Yusuke Suzuki in
Google Scholar
PubMed
Search for other papers by Masato Furuhashi in
Google Scholar
PubMed
Background
Fatty acid-binding protein 4 (FABP4) is an adipokine that plays significant roles in the development of insulin resistance and atherosclerosis. High levels of soluble tumor necrosis factor receptors (TNFRs) including TNFR1 and TNFR2 are associated with renal dysfunction and increased mortality in patients with diabetes mellitus (DM). However, the association between circulating levels of FABP4 and TNFRs remains unclear.
Methods
We investigated the associations of FABP4 with TNFRs and metabolic markers in Japanese patients with type 1 DM (T1DM, n = 76, men/women: 31/45) and type 2 DM (T2DM, n = 575, men/women: 312/263).
Results
FABP4 concentration was positively correlated with levels of TNFR1 and TNFR2 in both patients with T1DM and those with T2DM. Multivariable regression analyses showed that there were independent associations of FABP4 concentration with body mass index (BMI) and estimated glomerular filtration rate (eGFR) after adjustment for age and sex in both patients with T1DM and those with T2DM. FABP4 concentration was independently associated with circulating levels of TNFR1 and TNFR2 after adjustment for the confounders in patients with T2DM but not in those with T1DM. Similarly, levels of TNFR1 and TNFR2 were independently associated with FABP4 concentration after adjustment for age, sex, systolic blood pressure, duration of DM and levels of eGFR, high-density lipoprotein cholesterol, and C-reactive protein in patients with T2DM but not in those with T1DM.
Conclusion
FABP4 concentration is independently associated with levels of TNFRs in patients with DM, but the association is more evident in patients with T2DM than in those with T1DM.
Search for other papers by Ladan Younesi in
Google Scholar
PubMed
Search for other papers by Zeinab Safarpour Lima in
Google Scholar
PubMed
Search for other papers by Azadeh Akbari Sene in
Google Scholar
PubMed
Search for other papers by Zahra Hosseini Jebelli in
Google Scholar
PubMed
Search for other papers by Ghazaleh Amjad in
Google Scholar
PubMed
Polycystic ovarian syndrome (PCOS) is one of the most common endocrine disorders. The aim of this study was to find the correlation between color Doppler ultrasound and serum tests as auxiliary diagnostic criteria in areas where there is no possibility of some tests. A total of 108 patients were enrolled. They were divided into three groups including patients with PCOS, patients with PCOA ultrasound, patients with ovaries and normal hormone tests. Transvaginal sonography was performed from three groups and the results were evaluated in gray scale. The volume of the ovary, the number of follicles and the placement of follicles were recorded using using Doppler spectrum of uterine artery and ovarian stroma. Their arterial resistance index was also calculated. In the next step, serum samples were evaluated to determine the level of LH, FSH, free testosterone, DHEAS and 17-OHP hormones in the early follicular phase. Gray scale ultrasonographic findings (volume and number of ovarian follicles) as well as LH values were higher in patients with PCOS than those in the other two groups. These results proved the reliability of using these factors in the prediction of PCOS. In this study, Doppler indexes did not correlate with the size of the ovaries, the number of ovarian follicles and the measured hormone levels. The findings of transvaginal ultrasound and investigating the relationship with clinical and laboratory outcomes, a more suitable pattern could be chosen for more accurate patient selection and, leading to timely treatment and reducing the complications of the disease.
Search for other papers by Isabel M Abreu in
Google Scholar
PubMed
Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar S. João, Alameda Professor Hernâni Monteiro, Porto, Portugal
Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
Search for other papers by Eva Lau in
Google Scholar
PubMed
Search for other papers by Bernardo de Sousa Pinto in
Google Scholar
PubMed
Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar S. João, Alameda Professor Hernâni Monteiro, Porto, Portugal
Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
Search for other papers by Davide Carvalho in
Google Scholar
PubMed
Previous studies suggested that subclinical hypothyroidism has a detrimental effect on cardiovascular risk factors, and that its effective treatment may have a beneficial impact on overall health. The main purpose of this review and meta-analysis was to assess whether subclinical hypothyroidism treatment is of clinical relevance, based on cardiovascular risk parameters correction. A systemic research of the literature using MEDLINE tool was performed to identify the relevant studies. Only placebo-controlled randomized control trials were included. A quantitative analysis was also performed. This systematic review and meta-analysis of randomized placebo-controlled trials assess the different impact of levothyroxine vs placebo treatment. A significant decrease in serum thyroid-stimulating hormone and total and low-density lipoprotein cholesterol was obtained with levothyroxine therapy (66, 9 and 14%, respectively) and, although modest, this could be significant in terms of reduction of the incidence of coronary artery disease. Other significant results of lipid parameters were not obtained. This systematic review provides a strong evidence-based data in favour of specific changes and beneficial effects of levothyroxine treatment.