Search Results

You are looking at 1 - 10 of 189 items for

  • Abstract: Bone x
  • Abstract: Mineral x
  • Abstract: Calcium x
  • Abstract: Hyperparathyroidism x
  • Abstract: Menopause x
  • Abstract: Osteo* x
  • Abstract: Skeleton x
Clear All Modify Search
Athanasios D Anastasilakis Department of Endocrinology, 424 General Military Hospital, Thessaloniki, Greece

Search for other papers by Athanasios D Anastasilakis in
Google Scholar
PubMed
Close
,
Marina Tsoli 1st Propaedeutic Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece

Search for other papers by Marina Tsoli in
Google Scholar
PubMed
Close
,
Gregory Kaltsas 1st Propaedeutic Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece

Search for other papers by Gregory Kaltsas in
Google Scholar
PubMed
Close
, and
Polyzois Makras Department of Endocrinology and Diabetes, 251 Hellenic Air Force & VA General Hospital, Athens, Greece

Search for other papers by Polyzois Makras in
Google Scholar
PubMed
Close

Langerhans cell histiocytosis (LCH) is a rare disease of not well-defined etiology that involves immune cell activation and frequently affects the skeleton. Bone involvement in LCH usually presents in the form of osteolytic lesions along with low bone mineral density. Various molecules involved in bone metabolism are implicated in the pathogenesis of LCH or may be affected during the course of the disease, including interleukins (ILs), tumor necrosis factor α, receptor activator of NF-κB (RANK) and its soluble ligand RANKL, osteoprotegerin (OPG), periostin and sclerostin. Among them IL-17A, periostin and RANKL have been proposed as potential serum biomarkers for LCH, particularly as the interaction between RANK, RANKL and OPG not only regulates bone homeostasis through its effects on the osteoclasts but also affects the activation and survival of immune cells. Significant changes in circulating and lesional RANKL levels have been observed in LCH patients irrespective of bone involvement. Standard LCH management includes local or systematic administration of corticosteroids and chemotherapy. Given the implication of RANK, RANKL and OPG in the pathogenesis of the disease and the osteolytic nature of bone lesions, agents aiming at inhibiting the RANKL pathway and/or osteoclastic activation, such as bisphosphonates and denosumab, may have a role in the therapeutic approach of LCH although further clinical investigation is warranted.

Open access
Huda M Elsharkasi Developmental Endocrinology Research Group, University of Glasgow, Glasgow, UK

Search for other papers by Huda M Elsharkasi in
Google Scholar
PubMed
Close
,
Suet C Chen Developmental Endocrinology Research Group, University of Glasgow, Glasgow, UK

Search for other papers by Suet C Chen in
Google Scholar
PubMed
Close
,
Lewis Steell Developmental Endocrinology Research Group, University of Glasgow, Glasgow, UK

Search for other papers by Lewis Steell in
Google Scholar
PubMed
Close
,
Shuko Joseph Developmental Endocrinology Research Group, University of Glasgow, Glasgow, UK
Paediatric Neurosciences Research Group, Royal Hospital for Children, NHS Greater Glasgow & Clyde, Glasgow, UK

Search for other papers by Shuko Joseph in
Google Scholar
PubMed
Close
,
Naiemh Abdalrahaman Developmental Endocrinology Research Group, University of Glasgow, Glasgow, UK

Search for other papers by Naiemh Abdalrahaman in
Google Scholar
PubMed
Close
,
Christie McComb Department of Clinical Physics, NHS Greater Glasgow & Clyde, Glasgow, UK

Search for other papers by Christie McComb in
Google Scholar
PubMed
Close
,
Blair Johnston Department of Clinical Physics, NHS Greater Glasgow & Clyde, Glasgow, UK

Search for other papers by Blair Johnston in
Google Scholar
PubMed
Close
,
John Foster Department of Clinical Physics, NHS Greater Glasgow & Clyde, Glasgow, UK

Search for other papers by John Foster in
Google Scholar
PubMed
Close
,
Sze Choong Wong Developmental Endocrinology Research Group, University of Glasgow, Glasgow, UK

Search for other papers by Sze Choong Wong in
Google Scholar
PubMed
Close
, and
S Faisal Ahmed Developmental Endocrinology Research Group, University of Glasgow, Glasgow, UK

Search for other papers by S Faisal Ahmed in
Google Scholar
PubMed
Close

Objective

The aim of this study is to investigate the role of 3T-MRI in assessing musculoskeletal health in children and young people.

Design

Bone, muscle and bone marrow imaging was performed in 161 healthy participants with a median age of 15.0 years (range, 8.0, 30.0).

Methods

Detailed assessment of bone microarchitecture (constructive interference in the steady state (CISS) sequence, voxel size 0.2 × 0.2 × 0.4 mm3), bone geometry (T1-weighted turbo spin echo (TSE) sequence, voxel size 0.4 × 0.4 × 2 mm3) and bone marrow (1H-MRS, point resolved spectroscopy sequence (PRESS) (single voxel size 20 × 20 × 20 mm3) size and muscle adiposity (Dixon, voxel size 1.1 × 1.1 × 2 mm3).

Results

There was an inverse association of apparent bone volume/total volume (appBV/TV) with age (r = −0.5, P < 0.0005). Cortical area, endosteal and periosteal circumferences and muscle cross-sectional area showed a positive association to age (r > 0.49, P < 0.0001). In those over 17 years of age, these parameters were also higher in males than females (P < 0.05). This sex difference was also evident for appBV/TV and bone marrow adiposity (BMA) in the older participants (P < 0.05). AppBV/TV showed a negative correlation with BMA (r = −0.22, P =  0.01) which also showed an association with muscle adiposity (r = 0.24, P = 0.04). Cortical geometric parameters were highly correlated with muscle area (r > 0.57, P < 0.01).

Conclusions

In addition to providing deep insight into the normal relationships between bone, fat and muscle in young people, these novel data emphasize the role of MRI as a non-invasive method for performing a comprehensive and integrated assessment of musculoskeletal health in the growing skeleton.

Open access
Alessandro Brancatella Endocrine Unit 1, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy

Search for other papers by Alessandro Brancatella in
Google Scholar
PubMed
Close
and
Claudio Marcocci Endocrine Unit 2, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy

Search for other papers by Claudio Marcocci in
Google Scholar
PubMed
Close

Thyroid hormones stimulate bone turnover in adults by increasing osteoclastic bone resorption. TSH suppressive therapy is usually applied in patients with differentiated thyroid cancer (DTC) to improve the disease outcome. Over the last decades several authors have closely monitored the potential harm suffered by the skeletal system. Several studies and meta-analyses have shown that chronic TSH suppressive therapy is safe in premenopausal women and men. Conversely, in postmenopausal women TSH suppressive therapy is associated with a decrease of bone mineral density, deterioration of bone architecture (quantitative CT, QCT; trabecular bone score, TBS), and, possibly, an increased risk of fractures. The TSH receptor is expressed in bone cells and the results of experimental studies in TSH receptor knockout mice and humans on whether low TSH levels, as opposed to solely high thyroid hormone levels, might contribute to bone loss in endogenous or exogenous thyrotoxicosis remain controversial. Recent guidelines on the use of TSH suppressive therapy in patients with DTC give value not only to its benefit on the outcome of the disease, but also to the risks associated with exogenous thyrotoxicosis, namely menopause, osteopenia or osteoporosis, age >60 years, and history of atrial fibrillation. Bone health (BMD and/or preferably TBS) should be evaluated in postmenopausal women under chronic TSH suppressive therapy or in those patients planning to be treated for several years. Antiresorptive therapy could also be considered in selected cases (increased risk of fracture or significant decline of BMD/TBS during therapy) to prevent bone loss.

Open access
Keina Nishio Department of Obstetrics and Gynecology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-city, Osaka 569-8686, Japan

Search for other papers by Keina Nishio in
Google Scholar
PubMed
Close
,
Akiko Tanabe Department of Obstetrics and Gynecology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-city, Osaka 569-8686, Japan

Search for other papers by Akiko Tanabe in
Google Scholar
PubMed
Close
,
Risa Maruoka Department of Obstetrics and Gynecology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-city, Osaka 569-8686, Japan

Search for other papers by Risa Maruoka in
Google Scholar
PubMed
Close
,
Kiyoko Nakamura Department of Obstetrics and Gynecology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-city, Osaka 569-8686, Japan

Search for other papers by Kiyoko Nakamura in
Google Scholar
PubMed
Close
,
Masaaki Takai Department of Obstetrics and Gynecology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-city, Osaka 569-8686, Japan

Search for other papers by Masaaki Takai in
Google Scholar
PubMed
Close
,
Tatsuharu Sekijima Department of Obstetrics and Gynecology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-city, Osaka 569-8686, Japan

Search for other papers by Tatsuharu Sekijima in
Google Scholar
PubMed
Close
,
Satoshi Tunetoh Department of Obstetrics and Gynecology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-city, Osaka 569-8686, Japan

Search for other papers by Satoshi Tunetoh in
Google Scholar
PubMed
Close
,
Yoshito Terai Department of Obstetrics and Gynecology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-city, Osaka 569-8686, Japan

Search for other papers by Yoshito Terai in
Google Scholar
PubMed
Close
, and
Masahide Ohmichi Department of Obstetrics and Gynecology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-city, Osaka 569-8686, Japan

Search for other papers by Masahide Ohmichi in
Google Scholar
PubMed
Close

Objective

Although surgical menopause may increase the risks of osteoporosis, few studies have investigated the influence of chemotherapy and radiation therapy. The aim of this study is to evaluate the effects of treatments for gynecological malignancies on bone mineral density (BMD).

Methods

This study enrolled 35 premenopausal women (15 ovarian cancers (OCs), 9 endometrial cancers (ECs), and 11 cervical cancers (CCs)) who underwent surgical treatment that included bilateral oophorectomy with or without adjuvant platinum-based chemotherapy in OC and EC patients, or concurrent chemo-radiation therapy (CCRT) in CC patients according to the established protocols at the Osaka Medical College Hospital between 2006 and 2008. The BMD of the lumbar spine (L1–L4) was measured by dual-energy X-ray absorptiometry, and urine cross-linked telopeptides of type I collagen (NTx) and bone alkaline phosphatase (BAP) were assessed for evaluation of bone resorption and bone formation respectively. These assessments were performed at baseline and 12 months after treatment.

Results

Although the serum BAP was significantly increased only in the CC group, a rapid increase in the bone resorption marker urinary NTx was observed in all groups. The BMD, 12 months after CCRT was significantly decreased in the CC group at 91.9±5.9% (P<0.05 in comparison to the baseline).

Conclusion

This research suggests that anticancer therapies for premenopausal women with gynecological malignancies increase bone resorption and may reduce BMD, particularly in CC patients who have received CCRT. Therefore, gynecologic cancer survivors should be educated about these potential risks and complications.

Open access
Nancy Martini Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM-UNLP-CICPBA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina

Search for other papers by Nancy Martini in
Google Scholar
PubMed
Close
,
Lucas Streckwall Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM-UNLP-CICPBA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina

Search for other papers by Lucas Streckwall in
Google Scholar
PubMed
Close
, and
Antonio Desmond McCarthy Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM-UNLP-CICPBA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina

Search for other papers by Antonio Desmond McCarthy in
Google Scholar
PubMed
Close

In post-menopausal women, aged individuals, and patients with diabetes mellitus or chronic renal disease, bone mineral density (BMD) decreases while the vasculature accumulates arterial calcifications (ACs). AC can be found in the tunica intima and/or in the tunica media. Prospective studies have shown that patients with initially low BMD and/or the presence of fragility fractures have at follow-up a significantly increased risk for coronary and cerebrovascular events and for overall cardiovascular mortality. Similarly, patients presenting with abdominal aorta calcifications (an easily quantifiable marker of vascular pathology) show a significant decrease in the BMD (and an increase in the fragility) of bones irrigated by branches of the abdominal aorta, such as the hip and lumbar spine. AC induction is an ectopic tissue biomineralization process promoted by osteogenic transdifferentiation of vascular smooth muscle cells as well as by local and systemic secreted factors. In many cases, the same regulatory molecules modulate bone metabolism but in reverse. Investigation of animal and in vitro models has identified several potential mechanisms for this reciprocal bone–vascular regulation, such as vitamin K and D sufficiency, advanced glycation end-products–RAGE interaction, osteoprotegerin/RANKL/RANK, Fetuin A, oestrogen deficiency and phytooestrogen supplementation, microbiota and its relation to diet, among others. Complete elucidation of these potential mechanisms, as well as their clinical validation via controlled studies, will provide a basis for pharmacological intervention that could simultaneously promote bone and vascular health.

Open access
Rong Xu Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital, Capital Medical University, Beijing, China
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China

Search for other papers by Rong Xu in
Google Scholar
PubMed
Close
,
Difei Lian Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital, Capital Medical University, Beijing, China
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China

Search for other papers by Difei Lian in
Google Scholar
PubMed
Close
,
Yan Xie Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital, Capital Medical University, Beijing, China
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China

Search for other papers by Yan Xie in
Google Scholar
PubMed
Close
,
Lin Mu Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital, Capital Medical University, Beijing, China
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China

Search for other papers by Lin Mu in
Google Scholar
PubMed
Close
,
Yali Wu Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital, Capital Medical University, Beijing, China
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China

Search for other papers by Yali Wu in
Google Scholar
PubMed
Close
,
Zhilei Chen Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital, Capital Medical University, Beijing, China
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China

Search for other papers by Zhilei Chen in
Google Scholar
PubMed
Close
, and
Baoyu Zhang Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital, Capital Medical University, Beijing, China
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China

Search for other papers by Baoyu Zhang in
Google Scholar
PubMed
Close

Osteoporosis (OP) is a systemic bone disease in which bone density and quality decrease and bone fragility increases due to a variety of causes, making it prone to fractures. The development of OP is closely related to oxidative stress. Uric acid (UA) is the end product of purine metabolism in the human body. Extracellular UA has antioxidant properties and is thought to have a protective effect on bone metabolism. However, the process of UA degradation can lead to intracellular oxidative stress, which together with UA-induced inflammatory factors, leads to increased bone destruction. In addition, UA can inhibit vitamin D production, resulting in secondary hyperparathyroidism and further exacerbating UA-associated bone loss. This review summarizes the relationship between serum UA levels and bone mineral density, bone turnover markers, and so on, in the hope of providing new insights into the pathogenesis and treatment of OP.

Open access
Marcela Moraes Mendes Department of Nutrition, Faculty of Health Sciences, University of Brasília, Distrito Federal, Brazil
Department of Nutrition, Institute of Life Sciences, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, Brazil
Department of Nutrition, Faculty of Health and Medical Sciences, University of Surrey, University of Surrey, Guildford, UK

Search for other papers by Marcela Moraes Mendes in
Google Scholar
PubMed
Close
,
Patricia Borges Botelho Department of Nutrition, Faculty of Health Sciences, University of Brasília, Distrito Federal, Brazil

Search for other papers by Patricia Borges Botelho in
Google Scholar
PubMed
Close
, and
Helena Ribeiro Department of Environmental Health, Faculty of Public Health, University of São Paulo, São Paulo, Brazil

Search for other papers by Helena Ribeiro in
Google Scholar
PubMed
Close

Vitamin D enhances calcium absorption and bone mineralisation, promotes maintenance of muscle function, and is crucial for musculoskeletal health. Low vitamin D status triggers secondary hyperparathyroidism, increases bone loss, and leads to muscle weakness. The primary physiologic function of vitamin D and its metabolites is maintaining calcium homeostasis for metabolic functioning, signal transduction, and neuromuscular activity. A considerable amount of human evidence supports the well-recognised contribution of adequate serum 25-hydroxyvitamin D concentrations for bone homeostasis maintenance and prevention and treatment strategies for osteoporosis when combined with adequate calcium intake. This paper aimed to review the literature published, mainly in the last 20 years, on the effect of vitamin D and its supplementation for musculoskeletal health in order to identify the aspects that remain unclear or controversial and therefore require further investigation and debate. There is a clear need for consistent data to establish realistic and meaningful recommendations of vitamin D status that consider different population groups and locations. Moreover, there is still a lack of consensus on thresholds for vitamin D deficiency and optimal status as well as toxicity, optimal intake of vitamin D, vitamin D supplement alone as a strategy to prevent fractures and falls, recommended sun exposure at different latitudes and for different skin pigmentations, and the extra skeletal effects of vitamin D.

Open access
Anna Gorbacheva Endocrinology Research Center, Moscow, Russian Federation

Search for other papers by Anna Gorbacheva in
Google Scholar
PubMed
Close
,
Anna Eremkina Endocrinology Research Center, Moscow, Russian Federation

Search for other papers by Anna Eremkina in
Google Scholar
PubMed
Close
,
Daria Goliusova Endocrinology Research Center, Moscow, Russian Federation

Search for other papers by Daria Goliusova in
Google Scholar
PubMed
Close
,
Julia Krupinova Endocrinology Research Center, Moscow, Russian Federation

Search for other papers by Julia Krupinova in
Google Scholar
PubMed
Close
, and
Natalia Mokrysheva Endocrinology Research Center, Moscow, Russian Federation

Search for other papers by Natalia Mokrysheva in
Google Scholar
PubMed
Close

Multiple endocrine neoplasia type 1 (MEN1) is the most common cause of hereditary primary hyperparathyroidism (PHPT). Bone disorders are considered one of the key symptoms in PHPT present with the significant reduction in bone mineral density and low-energy fractures. Previously, these bone disorders were believed to be caused solely by the increase in the level of parathyroid hormone and its subsequent effect on bone resorption. The current paradigm, however, states that the mutations in the menin gene, which cause the development of MEN1, can also affect the metabolism of the cells of the osteoid lineage. This review analyzes both the proven and the potential intracellular mechanisms through which menin can affect bone metabolism.

Open access
Elinor Chelsom Vogt Department of Clinical Science, University of Bergen, Bergen, Norway
K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway

Search for other papers by Elinor Chelsom Vogt in
Google Scholar
PubMed
Close
,
Francisco Gómez Real Department of Clinical Science, University of Bergen, Bergen, Norway
Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway

Search for other papers by Francisco Gómez Real in
Google Scholar
PubMed
Close
,
Eystein Sverre Husebye Department of Clinical Science, University of Bergen, Bergen, Norway
K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway

Search for other papers by Eystein Sverre Husebye in
Google Scholar
PubMed
Close
,
Sigridur Björnsdottir Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Sigridur Björnsdottir in
Google Scholar
PubMed
Close
,
Bryndis Benediktsdottir Medical Faculty, University of Iceland, Reykjavik, Iceland
Department of Sleep, Landspitali University Hospital Reykjavík, Reykjavik, Iceland

Search for other papers by Bryndis Benediktsdottir in
Google Scholar
PubMed
Close
,
Randi Jacobsen Bertelsen Department of Clinical Science, University of Bergen, Bergen, Norway

Search for other papers by Randi Jacobsen Bertelsen in
Google Scholar
PubMed
Close
,
Pascal Demoly University Hospital of Montpellier, IDESP, Univ Montpellier-Inserm, Montpellier, France

Search for other papers by Pascal Demoly in
Google Scholar
PubMed
Close
,
Karl Anders Franklin Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden

Search for other papers by Karl Anders Franklin in
Google Scholar
PubMed
Close
,
Leire Sainz de Aja Gallastegui Unit of Epidemiology and Public Health, Department of Health, Basque Government, Vitoria-Gasteiz, Spain

Search for other papers by Leire Sainz de Aja Gallastegui in
Google Scholar
PubMed
Close
,
Francisco Javier Callejas González Department of Respiratory Medicine, Albacete University Hospital, Albacete, Spain

Search for other papers by Francisco Javier Callejas González in
Google Scholar
PubMed
Close
,
Joachim Heinrich Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Joachim Heinrich in
Google Scholar
PubMed
Close
,
Mathias Holm Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Mathias Holm in
Google Scholar
PubMed
Close
,
Nils Oscar Jogi Department of Clinical Science, University of Bergen, Bergen, Norway

Search for other papers by Nils Oscar Jogi in
Google Scholar
PubMed
Close
,
Benedicte Leynaert Université Paris-Saclay, Inserm U1018, Center for Epidemiology and Population Health, Integrative Respiratory Epidemiology Team, Villejuif, France

Search for other papers by Benedicte Leynaert in
Google Scholar
PubMed
Close
,
Eva Lindberg Department of Medical Sciences, Respiratory, Allergy and Sleep Medicine, Uppsala University, Uppsala, Sweden

Search for other papers by Eva Lindberg in
Google Scholar
PubMed
Close
,
Andrei Malinovschi Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden

Search for other papers by Andrei Malinovschi in
Google Scholar
PubMed
Close
,
Jesús Martínez-Moratalla Pneumology Service of the General University Hospital of Albacete, Albacete, Spain
Albacete Faculty of Medicine, Castilla-La Mancha University, Albacete, Spain

Search for other papers by Jesús Martínez-Moratalla in
Google Scholar
PubMed
Close
,
Raúl Godoy Mayoral Department of Respiratory Medicine, Albacete University Hospital, Albacete, Spain

Search for other papers by Raúl Godoy Mayoral in
Google Scholar
PubMed
Close
,
Anna Oudin Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden

Search for other papers by Anna Oudin in
Google Scholar
PubMed
Close
,
Antonio Pereira-Vega Juan Ramón Jiménez University Hospital in Huelva, Huelva, Spain

Search for other papers by Antonio Pereira-Vega in
Google Scholar
PubMed
Close
,
Chantal Raherison Semjen INSERM, EpiCene Team U1219, University of Bordeaux, Talence, France

Search for other papers by Chantal Raherison Semjen in
Google Scholar
PubMed
Close
,
Vivi Schlünssen Department of Public Health, Environment, Work and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
The National Research Center for the Working Environment, Copenhagen, Denmark

Search for other papers by Vivi Schlünssen in
Google Scholar
PubMed
Close
,
Kai Triebner Department of Clinical Science, University of Bergen, Bergen, Norway

Search for other papers by Kai Triebner in
Google Scholar
PubMed
Close
, and
Marianne Øksnes Department of Clinical Science, University of Bergen, Bergen, Norway
K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway

Search for other papers by Marianne Øksnes in
Google Scholar
PubMed
Close

Objective

To investigate markers of premature menopause (<40 years) and specifically the prevalence of autoimmune primary ovarian insufficiency (POI) in European women.

Design

Postmenopausal women were categorized according to age at menopause and self-reported reason for menopause in a cross-sectional analysis of 6870 women.

Methods

Variables associated with the timing of menopause and hormone measurements of 17β-estradiol and follicle-stimulating hormone were explored using multivariable logistic regression analysis. Specific immunoprecipitating assays of steroidogenic autoantibodies against 21-hydroxylase (21-OH), side-chain cleavage enzyme (anti-SCC) and 17alpha-hydroxylase (17 OH), as well as NACHT leucine-rich-repeat protein 5 were used to identify women with likely autoimmune POI.

Results

Premature menopause was identified in 2.8% of women, and these women had higher frequencies of nulliparity (37.4% vs 19.7%), obesity (28.7% vs 21.4%), osteoporosis (17.1% vs 11.6%), hormone replacement therapy (59.1% vs 36.9%) and never smokers (60.1% vs 50.9%) (P < 0.05), compared to women with menopause ≥40 years. Iatrogenic causes were found in 91 (47%) and non-ovarian causes in 27 (14%) women, while 77 (39%) women were classified as POI of unknown cause, resulting in a 1.1% prevalence of idiopathic POI. After adjustments nulliparity was the only variable significantly associated with POI (odds ratio 2.46; 95% CI 1.63–3.42). Based on the presence of autoantibodies against 21 OH and SCC, 4.5% of POI cases were of likely autoimmune origin.

Conclusion

Idiopathic POI affects 1.1% of all women and almost half of the women with premature menopause. Autoimmunity explains 4.5% of these cases judged by positive steroidogenic autoantibodies.

Open access
Gabriella Oliveira Lima Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Gabriella Oliveira Lima in
Google Scholar
PubMed
Close
,
Alex Luiz Menezes da Silva Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Alex Luiz Menezes da Silva in
Google Scholar
PubMed
Close
,
Julianne Elba Cunha Azevedo Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Julianne Elba Cunha Azevedo in
Google Scholar
PubMed
Close
,
Chirlene Pinheiro Nascimento Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Chirlene Pinheiro Nascimento in
Google Scholar
PubMed
Close
,
Luana Rodrigues Vieira Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Luana Rodrigues Vieira in
Google Scholar
PubMed
Close
,
Akira Otake Hamoy Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Akira Otake Hamoy in
Google Scholar
PubMed
Close
,
Luan Oliveira Ferreira Laboratory of Experimental Neuropathology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Luan Oliveira Ferreira in
Google Scholar
PubMed
Close
,
Verônica Regina Lobato Oliveira Bahia Multidisciplinary Laboratory of Animal Morphology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Verônica Regina Lobato Oliveira Bahia in
Google Scholar
PubMed
Close
,
Nilton Akio Muto Amazon Bioactive Compounds Valorization Center, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Nilton Akio Muto in
Google Scholar
PubMed
Close
,
Dielly Catrina Favacho Lopes Laboratory of Experimental Neuropathology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Dielly Catrina Favacho Lopes in
Google Scholar
PubMed
Close
, and
Moisés Hamoy Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Moisés Hamoy in
Google Scholar
PubMed
Close

Low plasma levels of vitamin D causes bone mineral change that can precipitate osteopenia and osteoporosis and could aggravate autoimmune diseases, hypertension and diabetes. The demand for vitamin D supplementation becomes necessary; however, the consumption of vitamin D is not without risks, which its toxicity could have potentially serious consequences related to hypervitaminosis D, such as hypercalcemia and cerebral alterations. Thus, the present study describes the electroencephalographic changes caused by supraphysiological doses of vitamin D in the brain electrical dynamics and the electrocardiographic changes. After 4 days of treatment with vitamin D at a dose of 25,000 IU/kg, the serum calcium levels found were increased in comparison with the control group. The electrocorticogram analysis found a reduction in wave activity in the delta, theta, alpha and beta frequency bands. For ECG was observed changes with shortened QT follow-up, which could be related to serum calcium concentration. This study presented important evidence about the cerebral and cardiac alterations caused by high doses of vitamin D, indicating valuable parameters in the screening and decision-making process for diagnosing patients with symptoms suggestive of intoxication.

Open access