Search Results

You are looking at 51 - 60 of 189 items for

  • Abstract: Bone x
  • Abstract: Mineral x
  • Abstract: Calcium x
  • Abstract: Hyperparathyroidism x
  • Abstract: Menopause x
  • Abstract: Osteo* x
  • Abstract: Skeleton x
Clear All Modify Search
Souad Daamouch Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany

Search for other papers by Souad Daamouch in
Google Scholar
PubMed
Close
,
Sylvia Thiele Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany

Search for other papers by Sylvia Thiele in
Google Scholar
PubMed
Close
,
Lorenz Hofbauer Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany

Search for other papers by Lorenz Hofbauer in
Google Scholar
PubMed
Close
, and
Martina Rauner Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany

Search for other papers by Martina Rauner in
Google Scholar
PubMed
Close

The link between obesity and low bone strength has become a significant medical concern. The canonical Wnt signaling pathway is a key regulator of mesenchymal stem cell differentiation into either osteoblasts or adipocytes with active Wnt signaling promoting osteoblastogenesis. Our previous research indicated that Dickkopf-1 (Dkk1), a Wnt inhibitor, is upregulated in bone tissue in obesity and that osteoblast-derived Dkk1 drives obesity-induced bone loss. However, Dkk1 is also produced by adipocytes, but the impact of adipogenic Dkk1 on bone remodeling and its role in obesity-induced bone loss remain unclear. Thus, in this study, we investigated the influence of adipogenic Dkk1 on bone homeostasis and obesity-induced bone loss in mice. To that end, deletion of Dkk1 in adipocytes was induced by tamoxifen administration into 8-week-old male Dkk1fl/fl;AdipoQcreERT2 mice. Bone and fat mass were analyzed at 12 and 20 weeks of age. Obesity was induced in 8-week-old male Dkk1fl/fl;AdipoQcre mice with a high-fat diet (HFD) rich in saturated fats for 12 weeks. We observed that 12-week-old male mice without adipogenic Dkk1 had a significant increase in trabecular bone volume in the vertebrae and femoral bones. While histological and serological bone formation markers were not different, the number of osteoclasts and adipocytes was decreased in the vertebral bones of Dkk1fl/fl;AdipoQcre-positive mice. Despite the increased bone mass in 12-week-old male mice, at 20 weeks of age, there was no difference in the bone volume between the controls and Dkk1fl/fl;AdipoQcre-positive mice. Also, Dkk1fl/fl;AdipoQcre-positive mice were not protected from HFD-induced bone loss. Even though mRNA expression levels of Sost, another important Wnt inhibitor, in bone from Dkk1-deficient mice fed with HFD were decreased compared to Dkk1-sufficient mice on an HFD, this did not prevent the HFD-induced suppression of bone formation. In conclusion, adipogenic Dkk1 may play a transient role in bone mass regulation during adolescence, but it does not contribute to bone homeostasis or obesity-induced bone loss later in life.

Open access
Shuang Ye Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China

Search for other papers by Shuang Ye in
Google Scholar
PubMed
Close
,
Yuanyuan Xu Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China

Search for other papers by Yuanyuan Xu in
Google Scholar
PubMed
Close
,
Jiehao Li Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China

Search for other papers by Jiehao Li in
Google Scholar
PubMed
Close
,
Shuhui Zheng Research Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China

Search for other papers by Shuhui Zheng in
Google Scholar
PubMed
Close
,
Peng Sun Department of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China

Search for other papers by Peng Sun in
Google Scholar
PubMed
Close
, and
Tinghuai Wang Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China

Search for other papers by Tinghuai Wang in
Google Scholar
PubMed
Close

The role of G protein-coupled estrogen receptor 1 (GPER) signaling, including promotion of Ezrin phosphorylation (which could be activated by estrogen), has not yet been clearly identified in triple-negative breast cancer (TNBC). This study aimed to evaluate the prognostic value of GPER and Ezrin in TNBC patients. Clinicopathologic features including age, menopausal status, tumor size, nuclear grade, lymph node metastasis, AJCC TNM stage, and ER, PR and HER-2 expression were evaluated from 249 TNBC cases. Immunohistochemical staining of GPER and Ezrin was performed on TNBC pathological sections. Kaplan–Meier analyses, as well as logistic regressive and Cox regression model tests were applied to evaluate the prognostic significance between different subgroups. Compared to the GPER-low group, the GPER-high group exhibited higher TNM staging (P = 0.021), more death (P < 0.001), relapse (P < 0.001) and distant events (P < 0.001). Kaplan–Meier analysis showed that GPER-high patients had a decreased OS (P < 0.001), PFS (P < 0.001), LRFS (P < 0.001) and DDFS (P < 0.001) than GPER-low patients. However, these differences in prognosis were not statistically significant in post-menopausal patients (OS, P = 0.8617; PFS, P = 0.1905; LRFS, P = 0.4378; DDFS, P = 0.2538). There was a significant positive correlation between GPER and Ezrin expression level (R = 0.508, P < 0.001) and the effect of Ezrin on survival prognosis corresponded with GPER. Moreover, a multivariable analysis confirmed that GPER and Ezrin level were both significantly associated with poor DDFS (HR: 0.346, 95% CI 0.182–0.658, P = 0.001; HR: 0.320, 95% CI 0.162–0.631, P = 0.001). Thus, overexpression of GPER and Ezrin may contribute to aggressive behavior and indicate unfavorable prognosis in TNBC; this may correspond to an individual’s estrogen levels.

Open access
Kristin Ottarsdottir Primary Health Care, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Kristin Ottarsdottir in
Google Scholar
PubMed
Close
,
Margareta Hellgren Primary Health Care, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Margareta Hellgren in
Google Scholar
PubMed
Close
,
David Bock Biostatistics, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden

Search for other papers by David Bock in
Google Scholar
PubMed
Close
,
Anna G Nilsson Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden

Search for other papers by Anna G Nilsson in
Google Scholar
PubMed
Close
, and
Bledar Daka Primary Health Care, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Bledar Daka in
Google Scholar
PubMed
Close

Purpose

We aimed to investigate the association between SHBG and the homeostatic model assessment of insulin resistance (HOMA-Ir) in men and women in a prospective observational study.

Methods

The Vara-Skövde cohort is a random population of 2816 participants living in southwestern Sweden, aged 30–74. It was recruited between 2002 and 2005, and followed up in 2012–2014. After excluding participants on insulin therapy or hormone replacement therapy, 1193 individuals (649 men, 544 women) were included in the present study. Fasting blood samples were collected at both visits and stored in biobank. All participants were physically examined by a trained nurse. SHBG was measured with immunoassay technique. Linear regressions were computed to investigate the association between SHBG and HOMA-Ir both in cross-sectional and longitudinal analyses, adjusting for confounding factors.

Results

The mean follow-up time was 9.7 ± 1.4 years. Concentrations of SHBG were significantly inversely associated with log transformed HOMA-Ir in all groups with estimated standardized slopes (95% CI): men: −0.20 (−0.3;−0.1), premenopausal women: −0.26 (−0.4;−0.2), postmenopausal women: −0.13 (−0.3;−0.0) at visit 1. At visit 2 the results were similar. When comparing the groups, a statistically significant difference was found between men and post-menopausal women (0.12 (0.0;0.2) P value = 0.04). In the fully adjusted model, SHBG at visit 1 was also associated with HOMA-Ir at visit 2, and the estimated slopes were −0.16 (−0.2;−0.1), −0.16 (−0.3;−0.1) and −0.07 (−0.2;0.0) for men, premenopausal and postmenopausal women, respectively.

Main conclusion

Levels of SHBG predicted the development of insulin resistance in both men and women, regardless of menopausal state.

Open access
Bekir Cakir Department of Endocrinology and Metabolism, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey

Search for other papers by Bekir Cakir in
Google Scholar
PubMed
Close
,
F Neslihan Cuhaci Seyrek Department of Endocrinology and Metabolism, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey

Search for other papers by F Neslihan Cuhaci Seyrek in
Google Scholar
PubMed
Close
,
Oya Topaloglu Department of Endocrinology and Metabolism, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey

Search for other papers by Oya Topaloglu in
Google Scholar
PubMed
Close
,
Didem Ozdemir Department of Endocrinology and Metabolism, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey

Search for other papers by Didem Ozdemir in
Google Scholar
PubMed
Close
,
Ahmet Dirikoc Department of Endocrinology and Metabolism, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey

Search for other papers by Ahmet Dirikoc in
Google Scholar
PubMed
Close
,
Cevdet Aydin Department of Endocrinology and Metabolism, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey

Search for other papers by Cevdet Aydin in
Google Scholar
PubMed
Close
,
Sefika Burcak Polat Department of Endocrinology and Metabolism, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey

Search for other papers by Sefika Burcak Polat in
Google Scholar
PubMed
Close
,
Berna Evranos Ogmen Department of Endocrinology and Metabolism, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey

Search for other papers by Berna Evranos Ogmen in
Google Scholar
PubMed
Close
,
Ali Abbas Tam Department of Endocrinology and Metabolism, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey

Search for other papers by Ali Abbas Tam in
Google Scholar
PubMed
Close
,
Husniye Baser Department of Endocrinology and Metabolism, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey

Search for other papers by Husniye Baser in
Google Scholar
PubMed
Close
,
Aylin Kilic Yazgan Department of Pathology, Ankara Ataturk Education and Research Hospital, Ankara, Turkey

Search for other papers by Aylin Kilic Yazgan in
Google Scholar
PubMed
Close
,
Mehmet Kilic Department of General Surgery, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey

Search for other papers by Mehmet Kilic in
Google Scholar
PubMed
Close
,
Afra Alkan Department of Biostatistics, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey

Search for other papers by Afra Alkan in
Google Scholar
PubMed
Close
, and
Reyhan Ersoy Department of Endocrinology and Metabolism, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey

Search for other papers by Reyhan Ersoy in
Google Scholar
PubMed
Close

Background

Despite significant improvement in imaging quality and advanced scientific knowledge, it may still sometimes be difficult to distinguish different parathyroid lesions. The aims of this prospective study were to evaluate parathyroid lesions with ultrasound elastography and to determine whether strain index can help to differentiate parathyroid lesions.

Methods

Patients with biochemically confirmed hyperparathyroidism and localised parathyroid lesions in ultrasonography were included. All patients underwent B-mode US and USE examination. Ultrasound elastography scores and strain index of lesions were determined. Strain index was defined as the ratio of strain of the thyroid parenchyma to the strain of the parathyroid lesion.

Results

Data of 245 lesions of 230 patients were analysed. Histopathologically, there were 202 (82.45%) parathyroid adenomas, 26 (10.61%) atypical parathyroid adenomas, and 17 (6.94%) cases of parathyroid hyperplasia. Median serum Ca was significantly higher in atypical parathyroid adenoma patients than parathyroid hyperplasia patients (P = 0.019) and median PTH was significantly higher in APA compared to PA patients (P < 0.001). In 221 (90.2%) of the parathyroid lesions, USE score was 1 or 2. The median SI of atypical parathyroid adenomas was significantly higher than parathyroid adenomas and hyperplasia lesions (1.5 (0.56–4.86), 1.01 (0.21–8.43) and 0.91 (0.26–2.02), respectively, P = 0.003).

Conclusion

Our study revealed that SI of parathyroid lesions as well as serum calcium, parathyroid hormone levels, and B-mode US features may help to predict the atypical parathyroid adenoma. Ultrasound elastography can be used to differentiate among parathyroid lesions and guide a surgical approach.

Open access
Felix Haglund Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden
Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden

Search for other papers by Felix Haglund in
Google Scholar
PubMed
Close
,
Gustaf Rosin Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden
Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden
Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden

Search for other papers by Gustaf Rosin in
Google Scholar
PubMed
Close
,
Inga-Lena Nilsson Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden

Search for other papers by Inga-Lena Nilsson in
Google Scholar
PubMed
Close
,
C Christofer Juhlin Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden
Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden

Search for other papers by C Christofer Juhlin in
Google Scholar
PubMed
Close
,
Ylva Pernow Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden

Search for other papers by Ylva Pernow in
Google Scholar
PubMed
Close
,
Sophie Norenstedt Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden

Search for other papers by Sophie Norenstedt in
Google Scholar
PubMed
Close
,
Andrii Dinets Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden
Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden
Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden

Search for other papers by Andrii Dinets in
Google Scholar
PubMed
Close
,
Catharina Larsson Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden
Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden

Search for other papers by Catharina Larsson in
Google Scholar
PubMed
Close
,
Johan Hartman Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden
Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden

Search for other papers by Johan Hartman in
Google Scholar
PubMed
Close
, and
Anders Höög Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden
Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden

Search for other papers by Anders Höög in
Google Scholar
PubMed
Close

Primary hyperparathyroidism (PHPT) is a common endocrinopathy, frequently caused by a parathyroid adenoma, rarely by a parathyroid carcinoma that lacks effective oncological treatment. As the majority of cases are present in postmenopausal women, oestrogen signalling has been implicated in the tumourigenesis. Oestrogen receptor beta 1 (ERB1) and ERB2 have been recently identified in parathyroid adenomas, the former inducing genes coupled to tumour apoptosis. We applied immunohistochemistry and slide digitalisation to quantify nuclear ERB1 and ERB2 in 172 parathyroid adenomas, atypical adenomas and carcinomas, and ten normal parathyroid glands. All the normal parathyroid glands expressed ERB1 and ERB2. The majority of tumours expressed ERB1 (70.6%) at varying intensities, and ERB2 (96.5%) at strong intensities. Parathyroid carcinomas expressed ERB1 in three out of six cases and ERB2 in five out of six cases. The intensity of tumour nuclear ERB1 staining significantly correlated inversely with tumour weight (P=0.011), and patients whose tumours were classified as ERB1-negative had significantly greater tumour weight as well as higher serum calcium (P=0.002) and parathyroid hormone levels (P=0.003). Additionally, tumour nuclear ERB1 was not expressed differentially with respect to sex or age of the patient. Levels of tumour nuclear ERB2 did not correlate with clinical characteristics. In conclusion, decreased ERB1 immunoreactivity is associated with increased tumour weight in parathyroid adenomas. Given the previously reported correlation with tumour-suppressive signalling, selective oestrogen receptor modulation (SERMs) may play a role in the treatment of parathyroid carcinomas. Future studies of SERMs and oestrogen treatment in PHPT should consider tumour weight as a potential factor in pharmacological responsiveness.

Open access
Natércia Neves Marques de Queiroz University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Belem, Pará, Brazil

Search for other papers by Natércia Neves Marques de Queiroz in
Google Scholar
PubMed
Close
,
Franciane Trindade Cunha de Melo University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Belem, Pará, Brazil

Search for other papers by Franciane Trindade Cunha de Melo in
Google Scholar
PubMed
Close
,
Fabrício de Souza Resende University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Belem, Pará, Brazil

Search for other papers by Fabrício de Souza Resende in
Google Scholar
PubMed
Close
,
Luísa Corrêa Janaú University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Belem, Pará, Brazil

Search for other papers by Luísa Corrêa Janaú in
Google Scholar
PubMed
Close
,
Norberto Jorge Kzan de Souza Neto University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Belem, Pará, Brazil

Search for other papers by Norberto Jorge Kzan de Souza Neto in
Google Scholar
PubMed
Close
,
Manuela Nascimento de Lemos University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Belem, Pará, Brazil

Search for other papers by Manuela Nascimento de Lemos in
Google Scholar
PubMed
Close
,
Ana Carolina Lobato Virgolino University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Belem, Pará, Brazil

Search for other papers by Ana Carolina Lobato Virgolino in
Google Scholar
PubMed
Close
,
Maria Clara Neres Iunes de Oliveira University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Belem, Pará, Brazil

Search for other papers by Maria Clara Neres Iunes de Oliveira in
Google Scholar
PubMed
Close
,
Angélica Leite de Alcântara University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Belem, Pará, Brazil

Search for other papers by Angélica Leite de Alcântara in
Google Scholar
PubMed
Close
,
Lorena Vilhena de Moraes University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Belem, Pará, Brazil

Search for other papers by Lorena Vilhena de Moraes in
Google Scholar
PubMed
Close
,
Tiago Franco David University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Belem, Pará, Brazil

Search for other papers by Tiago Franco David in
Google Scholar
PubMed
Close
,
Wanderson Maia da Silva University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Belem, Pará, Brazil

Search for other papers by Wanderson Maia da Silva in
Google Scholar
PubMed
Close
,
Scarlatt Souza Reis University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Belem, Pará, Brazil

Search for other papers by Scarlatt Souza Reis in
Google Scholar
PubMed
Close
,
Márcia Costa dos Santos University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Belem, Pará, Brazil

Search for other papers by Márcia Costa dos Santos in
Google Scholar
PubMed
Close
,
Ana Carolina Contente Braga de Souza University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Belem, Pará, Brazil

Search for other papers by Ana Carolina Contente Braga de Souza in
Google Scholar
PubMed
Close
,
Pedro Paulo Freire Piani University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Belem, Pará, Brazil

Search for other papers by Pedro Paulo Freire Piani in
Google Scholar
PubMed
Close
,
Neyla Arroyo Lara Mourão University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Belem, Pará, Brazil

Search for other papers by Neyla Arroyo Lara Mourão in
Google Scholar
PubMed
Close
,
Karem Mileo Felício University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Belem, Pará, Brazil

Search for other papers by Karem Mileo Felício in
Google Scholar
PubMed
Close
,
João Felício Abrahão Neto University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Belem, Pará, Brazil

Search for other papers by João Felício Abrahão Neto in
Google Scholar
PubMed
Close
, and
João Soares Felício University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Belem, Pará, Brazil

Search for other papers by João Soares Felício in
Google Scholar
PubMed
Close

Objective:

Investigate the prevalence of vitamin D deficiency in an equatorial population through a large-sample study.

Methods:

Cross-sectional study with 30,224 healthy individuals from the North Region, in Brazil (Amazônia – state of Pará), who had 25-hydroxy-vitamin D (25(OH)D) and intact parathyroid hormone (PTH) serum levels measured by immunoassay method. Those with history of acute or chronic diseases were excluded. Abnormal levels of calcium, creatinine, glycemia and albumin were also exclusion criteria.

Results:

25(OH)D levels were 29.1 ± 8.2 ng/mL and values <12.7 ng/mL were equal to < −2 s.d. below average. Hypovitaminosis D was present in 10% of subjects according to the Institute of Medicine (values <20 ng/mL) and in 59%, in consonance with Endocrine Society (values 20–30 ng/mL as insufficiency and <20 ng/mL as deficiency) criteria. Individuals were divided according to four age brackets: children, adolescents, adults and elderly, and their 25(OH)D levels were: 33 ± 9; 28.5 ± 7.4; 28.3 ± 7.7; 29.3 ± 8.5 ng/mL, respectively. All groups differed in 25(OH)D, except adolescents vs adults. Regression model showed BMI, sex, living zone (urban or rural) and age as independent variables to 25(OH)D levels. Comparing subjects with vitamin D deficiency (<20 ng/mL) to those with vitamin D insufficiency (20–30 ng/mL), a difference between PTH levels in these two groups was observed (95.9 ± 24.7 pg/mL vs 44.2 ± 64.5 pg/mL; P < 0.01). Additionally, the most accurate predictive vitamin D level for subclinical hyperparathyroidism in ROC curve was 26 ng/mL.

Conclusion:

Our equatorial population showed low prevalence of vitamin D hypovitaminosis ranging with age bracket. The insufficient category by Endocrine Society was corroborated by our PTH data.

Open access
Haojie Zhang Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China

Search for other papers by Haojie Zhang in
Google Scholar
PubMed
Close
,
Yuke Cui Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China

Search for other papers by Yuke Cui in
Google Scholar
PubMed
Close
,
Ruihua Dong Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, China

Search for other papers by Ruihua Dong in
Google Scholar
PubMed
Close
,
Wen Zhang Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China

Search for other papers by Wen Zhang in
Google Scholar
PubMed
Close
,
Shihan Chen Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China

Search for other papers by Shihan Chen in
Google Scholar
PubMed
Close
,
Heng Wan Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China

Search for other papers by Heng Wan in
Google Scholar
PubMed
Close
,
Chi Chen Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China

Search for other papers by Chi Chen in
Google Scholar
PubMed
Close
,
Yi Chen Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China

Search for other papers by Yi Chen in
Google Scholar
PubMed
Close
,
Yuying Wang Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China

Search for other papers by Yuying Wang in
Google Scholar
PubMed
Close
,
Chunfang Zhu Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China

Search for other papers by Chunfang Zhu in
Google Scholar
PubMed
Close
,
Bo Chen Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, China

Search for other papers by Bo Chen in
Google Scholar
PubMed
Close
,
Ningjian Wang Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China

Search for other papers by Ningjian Wang in
Google Scholar
PubMed
Close
, and
Yingli Lu Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China

Search for other papers by Yingli Lu in
Google Scholar
PubMed
Close

Background

Bone is thought to be the reservoir of the human lead burden, and vitamin D is associated with bone turnover. We aimed to explore whether exposure to lower 25-hydroxy vitamin D (25(OH)D) levels was associated with higher blood lead levels (BLLs) by increasing the bone turnover rate in individuals with type 2 diabetes.

Methods

A total of 4103 type 2 diabetic men and postmenopausal women in Shanghai, China, were enrolled in 2018. Their 25(OH)D, β-C-terminal telopeptide (β-CTX), N-MID osteocalcin and procollagen type 1 N-peptide (P1NP) levels were detected. Their BLLs were determined by atomic absorption spectrometry. Mediation analyses were performed to identify the possible role that bone turnover played in the underlying mechanisms.

Results

In both the men and postmenopausal women, all three bone turnover markers were inversely associated with 25(OH)D and positively associated with the BLL (all P < 0.01) after adjusting for age, current smoking habits, metabolic parameters, duration of diabetes, vitamin D intake, and use of anti-osteoporosis medication. In the mediation analyses, none of the direct associations between 25(OH)D and BLL was significant for the three bone turnover markers, but all three bone turnover markers were found to be significant mediators of the indirect associations between 25(OH)D and BLL.

Conclusion

The association between vitamin D and BLL was fully mediated by bone turnover markers in type 2 diabetic patients (mediation effect). This finding suggested that vitamin D may protect against blood lead exposure from the bone reservoir by decreasing bone turnover in individuals with type 2 diabetes.

Open access
Stephen A Martin Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Stephen A Martin in
Google Scholar
PubMed
Close
,
Kenneth A Philbrick Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Kenneth A Philbrick in
Google Scholar
PubMed
Close
,
Carmen P Wong Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Carmen P Wong in
Google Scholar
PubMed
Close
,
Dawn A Olson Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Dawn A Olson in
Google Scholar
PubMed
Close
,
Adam J Branscum Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Adam J Branscum in
Google Scholar
PubMed
Close
,
Donald B Jump Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Donald B Jump in
Google Scholar
PubMed
Close
,
Charles K Marik Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Charles K Marik in
Google Scholar
PubMed
Close
,
Jonathan M DenHerder Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Jonathan M DenHerder in
Google Scholar
PubMed
Close
,
Jennifer L Sargent Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Jennifer L Sargent in
Google Scholar
PubMed
Close
,
Russell T Turner Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Russell T Turner in
Google Scholar
PubMed
Close
, and
Urszula T Iwaniec Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon, USA

Search for other papers by Urszula T Iwaniec in
Google Scholar
PubMed
Close

Mice are a commonly used model to investigate aging-related bone loss but, in contrast to humans, mice exhibit cancellous bone loss prior to skeletal maturity. The mechanisms mediating premature bone loss are not well established. However, our previous work in female mice suggests housing temperature is a critical factor. Premature cancellous bone loss was prevented in female C57BL/6J mice by housing the animals at thermoneutral temperature (where basal rate of energy production is at equilibrium with heat loss). In the present study, we determined if the protective effects of thermoneutral housing extend to males. Male C57BL/6J mice were housed at standard room temperature (22°C) or thermoneutral (32°C) conditions from 5 (rapidly growing) to 16 (slowly growing) weeks of age. Mice housed at room temperature exhibited reductions in cancellous bone volume fraction in distal femur metaphysis and fifth lumbar vertebra; these effects were abolished at thermoneutral conditions. Mice housed at thermoneutral temperature had higher levels of bone formation in distal femur (based on histomorphometry) and globally (serum osteocalcin), and lower global levels of bone resorption (serum C-terminal telopeptide of type I collagen) compared to mice housed at room temperature. Thermoneutral housing had no impact on bone marrow adiposity but resulted in higher abdominal white adipose tissue and serum leptin. The overall magnitude of room temperature housing-induced cancellous bone loss did not differ between male (current study) and female (published data) mice. These findings highlight housing temperature as a critical experimental variable in studies using mice of either sex to investigate aging-related changes in bone metabolism.

Open access
Herjan J T Coelingh Bennink Pantarhei Oncology, Zeist, The Netherlands

Search for other papers by Herjan J T Coelingh Bennink in
Google Scholar
PubMed
Close
,
Jan Krijgh Pantarhei Oncology, Zeist, The Netherlands

Search for other papers by Jan Krijgh in
Google Scholar
PubMed
Close
,
Jan F M Egberts Terminal 4 Communications, Hilversum, The Netherlands

Search for other papers by Jan F M Egberts in
Google Scholar
PubMed
Close
,
Maria Slootweg Independent Consultant, Zeist, The Netherlands

Search for other papers by Maria Slootweg in
Google Scholar
PubMed
Close
,
Harm H E van Melick Department of Urology, St. Antonius Hospital, Nieuwegein, The Netherlands

Search for other papers by Harm H E van Melick in
Google Scholar
PubMed
Close
,
Erik P M Roos Department of Urology, Antonius Hospital, Sneek, The Netherlands

Search for other papers by Erik P M Roos in
Google Scholar
PubMed
Close
,
Diederik M Somford Department of Urology, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands

Search for other papers by Diederik M Somford in
Google Scholar
PubMed
Close
,
Yvette Zimmerman Pantarhei Oncology, Zeist, The Netherlands

Search for other papers by Yvette Zimmerman in
Google Scholar
PubMed
Close
,
Iman J Schultz Pantarhei Oncology, Zeist, The Netherlands

Search for other papers by Iman J Schultz in
Google Scholar
PubMed
Close
,
Noel W Clarke The Christie and Salford Royal NHS Foundation Trusts, Manchester, UK

Search for other papers by Noel W Clarke in
Google Scholar
PubMed
Close
,
R Jeroen A van Moorselaar Department of Urology, Amsterdam UMC, VU University, Amsterdam, The Netherlands

Search for other papers by R Jeroen A van Moorselaar in
Google Scholar
PubMed
Close
, and
Frans M J Debruyne Andros Clinics, Arnhem, The Netherlands

Search for other papers by Frans M J Debruyne in
Google Scholar
PubMed
Close

The purpose of androgen deprivation therapy (ADT) in prostate cancer (PCa), using luteinizing hormone-releasing hormone agonists (LHRHa) or gonadotrophin-releasing hormone antagonists, is to suppress the levels of testosterone. Since testosterone is the precursor of estradiol (E2), one of the major undesired effects of ADT is the concomitant loss of E2, causing among others an increased bone turnover and bone loss and an increased risk of osteoporosis and fractures. Therefore, the guidelines for ADT indicate to combine ADT routinely with bone-sparing agents such as bisphosphonates, denosumab or selective estrogen receptor modulators. However, these compounds may have side effects and some require inconvenient parenteral administration. Co-treatment with estrogens is an alternative approach to prevent bone loss and at the same time, to avoid other side effects caused by the loss of estrogens, which is the topic explored in the present narrative review. Estrogens investigated in PCa patients include parenteral or transdermal E2, diethylstilbestrol (DES), and ethinylestradiol (EE) as monotherapy, or high-dose estetrol (HDE4) combined with ADT. Cardiovascular adverse events have been reported with parenteral E2, DES and EE. Encouraging effects on bone parameters have been obtained with transdermal E2 (tE2) and HDE4, in the tE2 development program (PATCH study), and in the LHRHa/HDE4 co-treatment study (PCombi), respectively. Confirmation of the beneficial effects of estrogen therapy with tE2 or HDE4 on bone health in patients with advanced PCa is needed, with special emphasis on bone mass and fracture rate.

Open access
Kaisa K Ivaska
Search for other papers by Kaisa K Ivaska in
Google Scholar
PubMed
Close
,
Maikki K Heliövaara Department of Cell Biology and Anatomy, Department of Medicine, Turku PET Centre, Department of Radiology, Medical Imaging Centre of Southwest Finland, Department of Endocrinology, Abdominal Center: Endocrinology, Minerva Foundation Institute for Medical Research, Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland

Search for other papers by Maikki K Heliövaara in
Google Scholar
PubMed
Close
,
Pertti Ebeling Department of Cell Biology and Anatomy, Department of Medicine, Turku PET Centre, Department of Radiology, Medical Imaging Centre of Southwest Finland, Department of Endocrinology, Abdominal Center: Endocrinology, Minerva Foundation Institute for Medical Research, Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland

Search for other papers by Pertti Ebeling in
Google Scholar
PubMed
Close
,
Marco Bucci Department of Cell Biology and Anatomy, Department of Medicine, Turku PET Centre, Department of Radiology, Medical Imaging Centre of Southwest Finland, Department of Endocrinology, Abdominal Center: Endocrinology, Minerva Foundation Institute for Medical Research, Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland

Search for other papers by Marco Bucci in
Google Scholar
PubMed
Close
,
Ville Huovinen Department of Cell Biology and Anatomy, Department of Medicine, Turku PET Centre, Department of Radiology, Medical Imaging Centre of Southwest Finland, Department of Endocrinology, Abdominal Center: Endocrinology, Minerva Foundation Institute for Medical Research, Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland
Department of Cell Biology and Anatomy, Department of Medicine, Turku PET Centre, Department of Radiology, Medical Imaging Centre of Southwest Finland, Department of Endocrinology, Abdominal Center: Endocrinology, Minerva Foundation Institute for Medical Research, Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland
Department of Cell Biology and Anatomy, Department of Medicine, Turku PET Centre, Department of Radiology, Medical Imaging Centre of Southwest Finland, Department of Endocrinology, Abdominal Center: Endocrinology, Minerva Foundation Institute for Medical Research, Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland

Search for other papers by Ville Huovinen in
Google Scholar
PubMed
Close
,
H Kalervo Väänänen
Search for other papers by H Kalervo Väänänen in
Google Scholar
PubMed
Close
,
Pirjo Nuutila Department of Cell Biology and Anatomy, Department of Medicine, Turku PET Centre, Department of Radiology, Medical Imaging Centre of Southwest Finland, Department of Endocrinology, Abdominal Center: Endocrinology, Minerva Foundation Institute for Medical Research, Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland
Department of Cell Biology and Anatomy, Department of Medicine, Turku PET Centre, Department of Radiology, Medical Imaging Centre of Southwest Finland, Department of Endocrinology, Abdominal Center: Endocrinology, Minerva Foundation Institute for Medical Research, Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland

Search for other papers by Pirjo Nuutila in
Google Scholar
PubMed
Close
, and
Heikki A Koistinen Department of Cell Biology and Anatomy, Department of Medicine, Turku PET Centre, Department of Radiology, Medical Imaging Centre of Southwest Finland, Department of Endocrinology, Abdominal Center: Endocrinology, Minerva Foundation Institute for Medical Research, Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland
Department of Cell Biology and Anatomy, Department of Medicine, Turku PET Centre, Department of Radiology, Medical Imaging Centre of Southwest Finland, Department of Endocrinology, Abdominal Center: Endocrinology, Minerva Foundation Institute for Medical Research, Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland

Search for other papers by Heikki A Koistinen in
Google Scholar
PubMed
Close

Insulin signaling in bone-forming osteoblasts stimulates bone formation and promotes the release of osteocalcin (OC) in mice. Only a few studies have assessed the direct effect of insulin on bone metabolism in humans. Here, we studied markers of bone metabolism in response to acute hyperinsulinemia in men and women. Thirty-three subjects from three separate cohorts (n=8, n=12 and n=13) participated in a euglycaemic hyperinsulinemic clamp study. Blood samples were collected before and at the end of infusions to determine the markers of bone formation (PINP, total OC, uncarboxylated form of OC (ucOC)) and resorption (CTX, TRAcP5b). During 4 h insulin infusion (40 mU/m2 per min, low insulin), CTX level decreased by 11% (P<0.05). High insulin infusion rate (72 mU/m2 per min) for 4 h resulted in more pronounced decrease (−32%, P<0.01) whereas shorter insulin exposure (40 mU/m2 per min for 2 h) had no effect (P=0.61). Markers of osteoblast activity remained unchanged during 4 h insulin, but the ratio of uncarboxylated-to-total OC decreased in response to insulin (P<0.05 and P<0.01 for low and high insulin for 4 h respectively). During 2 h low insulin infusion, both total OC and ucOC decreased significantly (P<0.01 for both). In conclusion, insulin decreases bone resorption and circulating levels of total OC and ucOC. Insulin has direct effects on bone metabolism in humans and changes in the circulating levels of bone markers can be seen within a few hours after administration of insulin.

Open access