Search Results
Search for other papers by Caishun Zhang in
Google Scholar
PubMed
Search for other papers by Junhua Yuan in
Google Scholar
PubMed
Search for other papers by Qian Lin in
Google Scholar
PubMed
Search for other papers by Manwen Li in
Google Scholar
PubMed
Search for other papers by Liuxin Wang in
Google Scholar
PubMed
Search for other papers by Rui Wang in
Google Scholar
PubMed
Search for other papers by Xi Chen in
Google Scholar
PubMed
Search for other papers by Zhengyao Jiang in
Google Scholar
PubMed
Search for other papers by Kun Zhu in
Google Scholar
PubMed
Search for other papers by Xiaoli Chang in
Google Scholar
PubMed
Medical Microbiology Department, College of Basic Medicine, Qingdao University, Qingdao, China
Search for other papers by Bin Wang in
Google Scholar
PubMed
Physiology Department, College of Basic Medicine, Qingdao University, Qingdao, China
Search for other papers by Jing Dong in
Google Scholar
PubMed
Ghrelin plays a pivotal role in the regulation of food intake, body weight and energy metabolism. However, these effects of ghrelin in the lateral parabrachial nucleus (LPBN) are unexplored. C57BL/6J mice and GHSR−/− mice were implanted with cannula above the right LPBN and ghrelin was microinjected via the cannula to investigate effect of ghrelin in the LPBN. In vivo electrophysiological technique was used to record LPBN glucose-sensitive neurons to explore potential udnderlying mechanisms. Microinjection of ghrelin in LPBN significantly increased food intake in the first 3 h, while such effect was blocked by [D-Lys3]-GHRP-6 and abolished in GHSR−/− mice. LPBN ghrelin microinjection also significantly increased the firing rate of glucose-excited (GE) neurons and decreased the firing rate of glucose-inhibited (GI) neurons. Additionally, LPBN ghrelin microinjection also significantly increased c-fos expression. Chronic ghrelin administration in the LPBN resulted in significantly increased body weight gain. Meanwhile, no significant changes were observed in both mRNA and protein expression levels of UCP-1 in BAT. These results demonstrated that microinjection of ghrelin in LPBN could increase food intake through the interaction with growth hormone secretagogue receptor (GHSR) in C57BL/6J mice, and its chronic administration could also increase body weight gain. These effects might be associated with altered firing rate in the GE and GI neurons.
Search for other papers by Jiaxi Li in
Google Scholar
PubMed
Search for other papers by Pu Huang in
Google Scholar
PubMed
Search for other papers by Jing Xiong in
Google Scholar
PubMed
Search for other papers by Xinyue Liang in
Google Scholar
PubMed
Search for other papers by Mei Li in
Google Scholar
PubMed
Search for other papers by Hao Ke in
Google Scholar
PubMed
Search for other papers by Chunli Chen in
Google Scholar
PubMed
Search for other papers by Yang Han in
Google Scholar
PubMed
Search for other papers by Yanhong Huang in
Google Scholar
PubMed
Search for other papers by Yan Zhou in
Google Scholar
PubMed
Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, Hunan, China
Search for other papers by Ziqiang Luo in
Google Scholar
PubMed
Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, Hunan, China
Search for other papers by Dandan Feng in
Google Scholar
PubMed
Search for other papers by Chen Chen in
Google Scholar
PubMed
Objective
Ghrelin regulates body weight, food intake, and blood glucose. It also regulates insulin secretion from pancreatic islet cells. LEAP2 is a newly discovered endogenous ligand of the growth hormone secretagogue’s receptor (GHSR). It not only antagonizes the stimulation of GHSR by ghrelin but also inhibits the constitutive activation of GHSR as an inverse agonist. Type 2 diabetes (T2D) patients have endocrine disorders with metabolic imbalance. Plasma levels of ghrelin and LEAP2 may be changed in obese and T2D patients. However, there is no report yet on circulating LEAP2 levels or ghrelin/LEAP2 ratio in T2D patients. In this study, fasting serum ghrelin and LEAP2 levels in healthy adults and T2D patients were assessed to clarify the association of two hormones with different clinical anthropometric and metabolic parameters.
Design
A total of 16 females and 40 males, ages 23–68 years old normal (n = 27), and T2D patients (n = 29) were enrolled as a cross-sectional cohort.
Results
Serum levels of ghrelin were lower but serum levels of LEAP2 were higher in T2D patients. Ghrelin levels were positively correlated with fasting serum insulin levels and HOMA-IR in healthy adults. LEAP2 levels were positively correlated with age and hemoglobin A1c (HbA1c) in all tested samples. Ghrelin/LEAP2 ratio was negatively correlated with age, fasting blood glucose, and HbA1c.
Conclusions
This study demonstrated a decrease in serum ghrelin levels and an increase in serum LEAP2 levels in T2D patients. LEAP2 levels were positively correlated with HbA1c, suggesting that LEAP2 was associated with T2D development. The ghrelin/LEAP2 ratio was closely associated with glycemic control in T2D patients showing a negative correlation with glucose and HbA1c.
Search for other papers by Peiwen Zheng in
Google Scholar
PubMed
Search for other papers by Fan Wang in
Google Scholar
PubMed
Search for other papers by Hui Li in
Google Scholar
PubMed
Search for other papers by Hanlu Chen in
Google Scholar
PubMed
Search for other papers by Mengtong Li in
Google Scholar
PubMed
Search for other papers by Haozheng Ma in
Google Scholar
PubMed
Search for other papers by Jue He in
Google Scholar
PubMed
Search for other papers by Li Chen in
Google Scholar
PubMed
Search for other papers by Yanlong Liu in
Google Scholar
PubMed
Search for other papers by Haiyun Xu in
Google Scholar
PubMed
Objective
This study aimed to reveal associations between metabolic hormones in cerebral spinal fluid (CSF) and cigarette smoking-induced weight gain and to explore the underlying mechanism.
Methods
A total of 156 adult men were included, comprising active smokers and nonsmokers. In addition to demographic information and body mass index (BMI), plasma levels of ApoA1 and ApoB, high-density lipoprotein, low-density lipoprotein, cholesterol, triglyceride, alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transferase in the participants were measured. Moreover, the metabolic hormones adiponectin, fibroblast growth factor 21 (FGF21), ghrelin, leptin, and orexin A, as well as the trace elements iron and zinc in CSF, were assessed.
Results
Compared to nonsmokers, active smokers showed higher BMI, and elevated CSF levels of FGF21, Zn, and Fe, but decreased levels of metabolic hormones adiponectin, ghrelin, leptin, and orexin A. Negative correlations existed between CSF FGF21 and ghrelin, between CSF Zn and ghrelin, as well as between CSF Fe and orexin A in active smokers. Furthermore, elevated CSF FGF21 and Zn predicted ghrelin level decrease in the smokers.
Conclusion
These data relate smoking-induced weight gain to its neurotoxic effect on the neurons that synthesize metabolic hormones such as adiponectin, ghrelin, leptin, or orexin A in the brain, by disrupting mitochondrial function and causing oxidative stress in the neurons.
Medical Research Laboratories, Department of Endocrinology and Diabetes, Department of Pediatrics, Department of Endocrinology and Diabetes, Institute of Clinical Medicine, Aarhus University, Norrebrogade 44, DK-8000 Aarhus C, Denmark
Medical Research Laboratories, Department of Endocrinology and Diabetes, Department of Pediatrics, Department of Endocrinology and Diabetes, Institute of Clinical Medicine, Aarhus University, Norrebrogade 44, DK-8000 Aarhus C, Denmark
Search for other papers by Esben Thyssen Vestergaard in
Google Scholar
PubMed
Search for other papers by Morten B Krag in
Google Scholar
PubMed
Search for other papers by Morten M Poulsen in
Google Scholar
PubMed
Search for other papers by Steen B Pedersen in
Google Scholar
PubMed
Medical Research Laboratories, Department of Endocrinology and Diabetes, Department of Pediatrics, Department of Endocrinology and Diabetes, Institute of Clinical Medicine, Aarhus University, Norrebrogade 44, DK-8000 Aarhus C, Denmark
Search for other papers by Niels Moller in
Google Scholar
PubMed
Medical Research Laboratories, Department of Endocrinology and Diabetes, Department of Pediatrics, Department of Endocrinology and Diabetes, Institute of Clinical Medicine, Aarhus University, Norrebrogade 44, DK-8000 Aarhus C, Denmark
Search for other papers by Jens Otto Lunde Jorgensen in
Google Scholar
PubMed
Medical Research Laboratories, Department of Endocrinology and Diabetes, Department of Pediatrics, Department of Endocrinology and Diabetes, Institute of Clinical Medicine, Aarhus University, Norrebrogade 44, DK-8000 Aarhus C, Denmark
Search for other papers by Niels Jessen in
Google Scholar
PubMed
Objective
Supraphysiological levels of ghrelin and GH induce insulin resistance. Serum levels of retinol-binding protein-4 (RBP4) correlate inversely with insulin sensitivity in patients with type 2 diabetes. We aimed to determine whether ghrelin and GH affect RBP4 levels in human subjects.
Materials and methods
To study GH-independent effects of ghrelin, seven hypopituitary men undergoing replacement therapy with GH and hydrocortisone were given ghrelin (5 pmol/kg per min) and saline infusions for 300 min in a randomized, double-blind, placebo-controlled, crossover design. Circulating RBP4 levels were measured at baseline and during a hyperinsulinemic–euglycemic clamp on both study days. To study the direct effects of GH, nine healthy men were treated with GH (2 mg at 2200 h) and placebo for 8 days in a randomized, double-blind, placebo-controlled, crossover study. Serum RBP4 levels were measured before and after treatment, and insulin sensitivity was measured by the hyperinsulinemic–euglycemic clamp technique.
Results
Ghrelin acutely decreased peripheral insulin sensitivity. Serum RBP4 concentrations decreased in response to insulin infusion during the saline experiment (mg/l): 43.2±4.3 (baseline) vs 40.4±4.2 (clamp), P<0.001, but this effect was abrogated during ghrelin infusion (mg/l): 42.4±4.5 (baseline) vs 42.9±4.7 (clamp), P=0.73. In healthy subjects, serum RBP4 levels were not affected by GH administration (mg/l): 41.7±4.1 (GH) vs 43.8±4.6 (saline), P=0.09, although GH induced insulin resistance.
Conclusions
i) Serum RBP4 concentrations decrease in response to hyperinsulinemia, ii) ghrelin abrogates the inhibitory effect of insulin on circulating RBP4 concentrations, and iii) ghrelin as well as GH acutely induces insulin resistance in skeletal muscle without significant changes in circulating RBP4 levels.
Search for other papers by I Azzam in
Google Scholar
PubMed
Search for other papers by S Gilad in
Google Scholar
PubMed
Search for other papers by R Limor in
Google Scholar
PubMed
Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
Search for other papers by N Stern in
Google Scholar
PubMed
Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
Search for other papers by Y Greenman in
Google Scholar
PubMed
Ghrelin plasma concentration increases in parallel to cortisol after a standardized psychological stress in humans, but the physiological basis of this interaction is unknown. We aimed to elucidate this question by studying the ghrelin response to pharmacological manipulation of the hypothalamic–pituitary–adrenal (HPA) axis. Six lean, healthy male volunteers were examined under four experimental conditions. Blood samples were collected every 30 min for two sequential periods of two hours. Initially, a baseline period was followed by intravenous injection of a synthetic analog of ACTH (250 μg). Subsequently, a single dose of metyrapone was administered at midnight and in the following morning, blood samples were collected for 2 h, followed by an intravenous injection of hydrocortisone (100 mg) with continued sampling. We show that increased cortisol serum levels secondary to ACTH stimulation or hydrocortisone administration are positively associated with plasma ghrelin levels, whereas central stimulation of the HPA axis by blocking cortisol synthesis with metyrapone is associated with decreased plasma ghrelin levels. Collectively, this suggests that HPA-axis-mediated elevations in ghrelin plasma concentration require increased peripheral cortisol levels, independent of central elevation of ACTH and possibly CRH levels.
Search for other papers by Sahar Hossam El Hini in
Google Scholar
PubMed
Search for other papers by Yehia Zakaria Mahmoud in
Google Scholar
PubMed
Search for other papers by Ahmed Abdelfadel Saedii in
Google Scholar
PubMed
Search for other papers by Sayed Shehata Mahmoud in
Google Scholar
PubMed
Search for other papers by Mohamed Ahmed Amin in
Google Scholar
PubMed
Search for other papers by Shereen Riad Mahmoud in
Google Scholar
PubMed
Search for other papers by Ragaa Abdelshaheed Matta in
Google Scholar
PubMed
Objective
Angiopoietin-like proteins (ANGPTL) 3, 4 and 8 are upcoming cardiovascular biomarkers. Experimental studies showed that thyroid hormones altered their levels. We assessed ANGPTL3, 4 and 8 as predictors of cardiovascular functions among naïve subclinical and naïve overt hypothyroidism (SCH and OH) and altered ANGPTL levels with levothyroxine replacement (LT4) and their association with improved cardiovascular risk factors and cardiovascular function.
Design and methods
The study was a prospective follow-up study that assessed ANGPTL3, 4 and 8 levels, vascular status (flow-mediated dilation% of brachial artery (FMD%), carotid intima-media thickness (CIMT), aortic stiffness index (ASI)), left ventricle (LV) parameters (ejection fraction (EF), myocardial performance index (MPI), and LV mass), well-known cardiovascular risk factors and homeostatic model for the assessment of insulin resistance, at two time points, that is, among naïve SCH, naïve OH, and healthy subjects groups; and at 6 months after achieving the euthyroid state with LT4 by calculating their increased or decreased delta changes (∆↑ or ∆↓) in longitudinal arm among LT4-hypothyroid groups.
Results
Significantly elevated levels of ANGPTL3, 4 and 8 among hypothyroid groups than the healthy subjects were reduced with LT4. Multivariate analysis revealed ANGPTLs as independent predictors of cardiovascular functions and the contributors for ANGPTL level included ANGPTL3 and 4 for impaired FMD%, and ANGPTL8 for LV mass among naïve SCH; ANGPTL3 for EF% and ANGPTL8 for CIMT in naïve OH; ∆↓ANGPTL3 for ∆↓ASI meanwhile ∆↑freeT4 for ∆↓ANGPTL3, ∆↓fasting glucose, ∆↓triglyceride, and ∆↓thyroid peroxidase antibody for ∆↓ANGPTL4 among LT4-SCH. ∆↓ANGPTL4 for ∆↓MPI and ∆↓LV mass, meanwhile ∆↓TSH and ∆↓triglyceride for ∆↓ANGPTL3, ∆↑free T3 and ∆↓HOMA-IR for ∆↓ANGPTL4, and systolic blood pressure and waist circumference for ∆↓ANGPTL8 among LT4-OH.
Conclusion
Elevated ANGPTL3, 4 and 8 levels are differentially independent predictors of endothelial and cardiac function and are reduced with LT4 in SCH and OH.
Search for other papers by Roxanne C S van Adrichem in
Google Scholar
PubMed
Search for other papers by Aart Jan van der Lely in
Google Scholar
PubMed
Search for other papers by Martin Huisman in
Google Scholar
PubMed
Search for other papers by Piet Kramer in
Google Scholar
PubMed
Search for other papers by Richard A Feelders in
Google Scholar
PubMed
Search for other papers by Patric J D Delhanty in
Google Scholar
PubMed
Search for other papers by Wouter W de Herder in
Google Scholar
PubMed
To date, the value of fasting plasma acylated ghrelin (AG) and unacylated ghrelin (UAG) as potential novel biomarkers in patients with neuroendocrine tumors (NETs) is unknown. The aims of this study are to (i) compare fasting AG and UAG levels between nonobese, nondiabetic NET patients (N=28) and age- (±3 years) and sex-matched nonobese, nondiabetic controls (N=28); and (ii) study the relationship between AG, UAG, and AG/UAG ratios and biochemical (chromogranin-A (CgA) and neuron-specific enolase (NSE) levels) and clinical parameters (age at diagnosis, sex, primary tumor location, carcinoid syndrome, ENETS TNM classification, Ki-67 proliferation index, grading, prior incomplete surgery) in NET patients. Fasting venous blood samples (N=56) were collected and directly stabilized with 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride after withdrawal. Plasma AG and UAG levels were determined by ELISA. Expression of ghrelin was examined in tumor tissue by immunohistochemistry. There were no significant differences between NET patients and controls in AG (median: 62.5 pg/mL, IQR: 33.1–112.8 vs median: 57.2pg/mL, IQR: 26.7–128.3, P=0.66) and UAG in levels (median: 76.6pg/mL, IQR: 35.23–121.7 vs median: 64.9, IQR: 27.5–93.1, P=0.44). No significant correlations were found between AG, UAG, and AG/UAG ratios versus biochemical and clinical parameters in NET patients with the exception of age at diagnosis (AG: ρ= −0.47, P=0.012; AG/UAG ratio: ρ= −0.50, P=0.007) and baseline chromogranin-A levels (AG/UAG ratio: ρ= −0.44, P=0.019). In our view, fasting plasma acylated and unacylated ghrelin appear to have no value as diagnostic biomarkers in the clinical follow-up of patients with NETs.
Search for other papers by Metin Guclu in
Google Scholar
PubMed
Search for other papers by Sinem Kiyici in
Google Scholar
PubMed
Search for other papers by Zulfiye Gul in
Google Scholar
PubMed
Search for other papers by Sinan Cavun in
Google Scholar
PubMed
Aim
In the present study, we investigated the long-term effects of exenatide treatment on serum fasting ghrelin levels in patients with type 2 diabetes mellitus.
Methods
Type 2 diabetic patients, who were using metformin with and without the other antihyperglycemic drugs on a stable dose for at least 3 months, were enrolled in the study. BMI>35 kg/m2 and HbA1c>7.0% were the additional inclusion criteria. Oral antihyperglycemic drugs, other than metformin, were stopped, and metformin treatment was continued at 2000 mg per day. Exenatide treatment was initiated at 5 µg per dose subcutaneously (sc) twice daily, and after one month, the dose of exenatide was increased to 10 µg twice daily. Changes in anthropometric variables, glycemic control, lipid parameters and total ghrelin levels were evaluated at baseline and following 12 weeks of treatment.
Results
Thirty-eight patients (male/female = 7/31) entered the study. The mean age of patients was 50.5 ± 8.8 years with a mean diabetes duration of 8.5 ± 4.9 years. The mean BMI was 41.6 ± 6.3 kg/m2 and the mean HbA1c of patients was 8.9 ± 1.4%. The mean change in the weight of patients was −5.6 kg and the percentage change in weight was −5.2 ± 3.7% following 12 weeks of treatment. BMI, fasting plasma glucose and HbA1c levels of patients were decreased significantly (P < 0.001 and P < 0.001; respectively), while there was no change in lipid parameters. Serum fasting ghrelin levels were significantly suppressed following 12 weeks of exenatide treatment compared with baseline values (328.4 ± 166.8 vs 245.3 ± 164.8 pg/mL) (P = 0.024).
Conclusion
These results suggest that the effects of exenatide on weight loss may be related with the suppression of serum fasting ghrelin levels, which is an orexigenic peptide.
Departament de Cirurgia, Universitat Autònoma de Barcelona, Barcelona, Spain
Search for other papers by Leyre Lorente-Poch in
Google Scholar
PubMed
Search for other papers by Sílvia Rifà-Terricabras in
Google Scholar
PubMed
Departament de Cirurgia, Universitat Autònoma de Barcelona, Barcelona, Spain
Search for other papers by Juan José Sancho in
Google Scholar
PubMed
Search for other papers by Danilo Torselli-Valladares in
Google Scholar
PubMed
Search for other papers by Sofia González-Ortiz in
Google Scholar
PubMed
Departament de Cirurgia, Universitat Autònoma de Barcelona, Barcelona, Spain
Search for other papers by Antonio Sitges-Serra in
Google Scholar
PubMed
Objective:
Permanent hypoparathyroidism is an uncommon disease resulting most frequently from neck surgery. It has been associated with visceral calcifications but few studies have specifically this in patients with post-surgical hypoparathyroidism. The aim of the present study was to assess the prevalence of basal ganglia and carotid artery calcifications in patients with long-term post-thyroidectomy hypoparathyroidism compared with a control population.
Design:
Case–control study.
Methods:
A cross-sectional review comparing 29 consecutive patients with permanent postoperative hypoparathyroidism followed-up in a tertiary reference unit for Endocrine Surgery with a contemporary control group of 501 patients who had an emergency brain CT scan. Clinical variables and prevalence of basal ganglia and carotid artery calcifications were recorded.
Results:
From a cohort of 46 patients diagnosed with permanent hypoparathyroidism, 29 were included in the study. The mean duration of disease was 9.2 ± 7 years. Age, diabetes, hypertension, smoking and dyslipidemia were similarly distributed in case and control groups. The prevalence of carotid artery and basal ganglia calcifications was 4 and 20 times more frequent in patients with permanent hypoparathyroidism, respectively. After propensity score matching of the 28 the female patients, 68 controls were matched for age and presence of cardiovascular factors. Cases showed a four-fold prevalence of basal ganglia calcifications, whereas that of carotid calcifications was similar between cases and controls.
Conclusion:
A high prevalence of basal ganglia calcifications was observed in patients with post-surgical permanent hypoparathyroidism. It remains unclear whether carotid artery calcification may also be increased.
Search for other papers by Mardia López-Alarcón in
Google Scholar
PubMed
Search for other papers by Jessie N Zurita-Cruz in
Google Scholar
PubMed
Search for other papers by Alonso Torres-Rodríguez in
Google Scholar
PubMed
Search for other papers by Karla Bedia-Mejía in
Google Scholar
PubMed
Search for other papers by Manuel Pérez-Güemez in
Google Scholar
PubMed
Search for other papers by Leonel Jaramillo-Villanueva in
Google Scholar
PubMed
Search for other papers by Mario E Rendón-Macías in
Google Scholar
PubMed
Search for other papers by Jose R Fernández in
Google Scholar
PubMed
Search for other papers by Patricia Martínez-Maroñas in
Google Scholar
PubMed
Childhood obesity is associated with stress. However, most treatment strategies include only dietary and physical activity approaches. Mindfulness may assist in weight reduction, but its effectiveness is unclear. We assessed the effect of mindfulness on stress, appetite regulators, and weight of children with obesity and anxiety. A clinical study was conducted in a pediatric hospital. Eligible children were 10–14 years old, BMI ≥95th percentile, Spence anxiety score ≥55, and who were not taking any medication or supplementation. Participants were assigned to receive an 8-week conventional nutritional intervention (CNI) or an 8-week mindfulness-based intervention plus CNI (MND-CNI). Anthropometry, body composition, leptin, insulin, ghrelin, cortisol, and Spence scores were measured at baseline and at the end of the intervention. Anthropometry was analyzed again 8 weeks after concluding interventions. Log-transformed and delta values were calculated for analysis. Thirty-three MND-CNI and 12 CNI children finished interventions; 17 MND-CNI children accomplished 16 weeks. At the end of the intervention, significant reductions in anxiety score (−6.21 ± 1.10), BMI (−0.45 ± 1.2 kg/m2), body fat (−1.28 ± 0.25%), ghrelin (−0.71 ± 0.37 pg/mL), and serum cortisol (−1.42 ± 0.94 µg/dL) were observed in MND-CNI children. Changes in anxiety score, ghrelin, and cortisol were different between groups (P < 0.05). Children who completed 16 weeks decreased BMI after intervention (−0.944 ± 0.20 kg/m2, P < 0.001) and remained lower 8 weeks later (−0.706 ± 0.19 kg/m2, P = 0.001). We concluded that mindfulness is a promising tool as an adjunctive therapy for childhood obesity. However, our findings need confirmation in a larger sample population.