Search Results

You are looking at 11 - 20 of 81 items for

  • Abstract: Arteries x
  • Abstract: Atherosclerosis x
  • Abstract: Carotid x
  • Abstract: Circulation x
  • Abstract: Ghrelin x
  • Abstract: Veins x
  • Abstract: cardiac* x
Clear All Modify Search
Metin Guclu Health Sciences University, Bursa Yuksek Ihtisas Education and Training Hospital, Department of Endocrinology and Metabolism, Bursa, Turkey

Search for other papers by Metin Guclu in
Google Scholar
PubMed
Close
,
Sinem Kiyici Health Sciences University, Bursa Yuksek Ihtisas Education and Training Hospital, Department of Endocrinology and Metabolism, Bursa, Turkey

Search for other papers by Sinem Kiyici in
Google Scholar
PubMed
Close
,
Zulfiye Gul Department of Pharmacology, Uludag University Medical Faculty, Bursa, Turkey

Search for other papers by Zulfiye Gul in
Google Scholar
PubMed
Close
, and
Sinan Cavun Department of Pharmacology, Uludag University Medical Faculty, Bursa, Turkey

Search for other papers by Sinan Cavun in
Google Scholar
PubMed
Close

Aim

In the present study, we investigated the long-term effects of exenatide treatment on serum fasting ghrelin levels in patients with type 2 diabetes mellitus.

Methods

Type 2 diabetic patients, who were using metformin with and without the other antihyperglycemic drugs on a stable dose for at least 3 months, were enrolled in the study. BMI>35 kg/m2 and HbA1c>7.0% were the additional inclusion criteria. Oral antihyperglycemic drugs, other than metformin, were stopped, and metformin treatment was continued at 2000 mg per day. Exenatide treatment was initiated at 5 µg per dose subcutaneously (sc) twice daily, and after one month, the dose of exenatide was increased to 10 µg twice daily. Changes in anthropometric variables, glycemic control, lipid parameters and total ghrelin levels were evaluated at baseline and following 12 weeks of treatment.

Results

Thirty-eight patients (male/female = 7/31) entered the study. The mean age of patients was 50.5 ± 8.8 years with a mean diabetes duration of 8.5 ± 4.9 years. The mean BMI was 41.6 ± 6.3 kg/m2 and the mean HbA1c of patients was 8.9 ± 1.4%. The mean change in the weight of patients was −5.6 kg and the percentage change in weight was −5.2 ± 3.7% following 12 weeks of treatment. BMI, fasting plasma glucose and HbA1c levels of patients were decreased significantly (P < 0.001 and P < 0.001; respectively), while there was no change in lipid parameters. Serum fasting ghrelin levels were significantly suppressed following 12 weeks of exenatide treatment compared with baseline values (328.4 ± 166.8 vs 245.3 ± 164.8 pg/mL) (P = 0.024).

Conclusion

These results suggest that the effects of exenatide on weight loss may be related with the suppression of serum fasting ghrelin levels, which is an orexigenic peptide.

Open access
Leyre Lorente-Poch Endocrine Surgery Unit, Hospital del Mar, Barcelona, Spain
Departament de Cirurgia, Universitat Autònoma de Barcelona, Barcelona, Spain

Search for other papers by Leyre Lorente-Poch in
Google Scholar
PubMed
Close
,
Sílvia Rifà-Terricabras Departament de Cirurgia, Universitat Autònoma de Barcelona, Barcelona, Spain

Search for other papers by Sílvia Rifà-Terricabras in
Google Scholar
PubMed
Close
,
Juan José Sancho Endocrine Surgery Unit, Hospital del Mar, Barcelona, Spain
Departament de Cirurgia, Universitat Autònoma de Barcelona, Barcelona, Spain

Search for other papers by Juan José Sancho in
Google Scholar
PubMed
Close
,
Danilo Torselli-Valladares Endocrine Surgery Unit, Hospital del Mar, Barcelona, Spain

Search for other papers by Danilo Torselli-Valladares in
Google Scholar
PubMed
Close
,
Sofia González-Ortiz Department of Radiology, Hospital del Mar, Barcelona, Spain

Search for other papers by Sofia González-Ortiz in
Google Scholar
PubMed
Close
, and
Antonio Sitges-Serra Endocrine Surgery Unit, Hospital del Mar, Barcelona, Spain
Departament de Cirurgia, Universitat Autònoma de Barcelona, Barcelona, Spain

Search for other papers by Antonio Sitges-Serra in
Google Scholar
PubMed
Close

Objective:

Permanent hypoparathyroidism is an uncommon disease resulting most frequently from neck surgery. It has been associated with visceral calcifications but few studies have specifically this in patients with post-surgical hypoparathyroidism. The aim of the present study was to assess the prevalence of basal ganglia and carotid artery calcifications in patients with long-term post-thyroidectomy hypoparathyroidism compared with a control population.

Design:

Case–control study.

Methods:

A cross-sectional review comparing 29 consecutive patients with permanent postoperative hypoparathyroidism followed-up in a tertiary reference unit for Endocrine Surgery with a contemporary control group of 501 patients who had an emergency brain CT scan. Clinical variables and prevalence of basal ganglia and carotid artery calcifications were recorded.

Results:

From a cohort of 46 patients diagnosed with permanent hypoparathyroidism, 29 were included in the study. The mean duration of disease was 9.2 ± 7 years. Age, diabetes, hypertension, smoking and dyslipidemia were similarly distributed in case and control groups. The prevalence of carotid artery and basal ganglia calcifications was 4 and 20 times more frequent in patients with permanent hypoparathyroidism, respectively. After propensity score matching of the 28 the female patients, 68 controls were matched for age and presence of cardiovascular factors. Cases showed a four-fold prevalence of basal ganglia calcifications, whereas that of carotid calcifications was similar between cases and controls.

Conclusion:

A high prevalence of basal ganglia calcifications was observed in patients with post-surgical permanent hypoparathyroidism. It remains unclear whether carotid artery calcification may also be increased.

Open access
Mardia López-Alarcón Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México, Mexico

Search for other papers by Mardia López-Alarcón in
Google Scholar
PubMed
Close
,
Jessie N Zurita-Cruz Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México, Mexico

Search for other papers by Jessie N Zurita-Cruz in
Google Scholar
PubMed
Close
,
Alonso Torres-Rodríguez Escuela Española de Desarrollo Transpersonal, Madrid, España

Search for other papers by Alonso Torres-Rodríguez in
Google Scholar
PubMed
Close
,
Karla Bedia-Mejía Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México, Mexico

Search for other papers by Karla Bedia-Mejía in
Google Scholar
PubMed
Close
,
Manuel Pérez-Güemez Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México, Mexico

Search for other papers by Manuel Pérez-Güemez in
Google Scholar
PubMed
Close
,
Leonel Jaramillo-Villanueva Departamento de Psiquiatría, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México, Mexico

Search for other papers by Leonel Jaramillo-Villanueva in
Google Scholar
PubMed
Close
,
Mario E Rendón-Macías Universidad Panamericana, Facultad de Ciencias de la Salud, Escuela de Medicina, México, Mexico

Search for other papers by Mario E Rendón-Macías in
Google Scholar
PubMed
Close
,
Jose R Fernández Departments of Nutrition Sciences and Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA

Search for other papers by Jose R Fernández in
Google Scholar
PubMed
Close
, and
Patricia Martínez-Maroñas Escuela Española de Desarrollo Transpersonal, Madrid, España

Search for other papers by Patricia Martínez-Maroñas in
Google Scholar
PubMed
Close

Childhood obesity is associated with stress. However, most treatment strategies include only dietary and physical activity approaches. Mindfulness may assist in weight reduction, but its effectiveness is unclear. We assessed the effect of mindfulness on stress, appetite regulators, and weight of children with obesity and anxiety. A clinical study was conducted in a pediatric hospital. Eligible children were 10–14 years old, BMI ≥95th percentile, Spence anxiety score ≥55, and who were not taking any medication or supplementation. Participants were assigned to receive an 8-week conventional nutritional intervention (CNI) or an 8-week mindfulness-based intervention plus CNI (MND-CNI). Anthropometry, body composition, leptin, insulin, ghrelin, cortisol, and Spence scores were measured at baseline and at the end of the intervention. Anthropometry was analyzed again 8 weeks after concluding interventions. Log-transformed and delta values were calculated for analysis. Thirty-three MND-CNI and 12 CNI children finished interventions; 17 MND-CNI children accomplished 16 weeks. At the end of the intervention, significant reductions in anxiety score (−6.21 ± 1.10), BMI (−0.45 ± 1.2 kg/m2), body fat (−1.28 ± 0.25%), ghrelin (−0.71 ± 0.37 pg/mL), and serum cortisol (−1.42 ± 0.94 µg/dL) were observed in MND-CNI children. Changes in anxiety score, ghrelin, and cortisol were different between groups (P < 0.05). Children who completed 16 weeks decreased BMI after intervention (−0.944 ± 0.20 kg/m2, P < 0.001) and remained lower 8 weeks later (−0.706 ± 0.19 kg/m2, P = 0.001). We concluded that mindfulness is a promising tool as an adjunctive therapy for childhood obesity. However, our findings need confirmation in a larger sample population.

Open access
Robert A Hart Centre for Bioactive Discovery in Health and Ageing, University of New England, Armidale, New South Wales, Australia

Search for other papers by Robert A Hart in
Google Scholar
PubMed
Close
,
Robin C Dobos NSW Department of Primary Industries, Armidale, New South Wales, Australia

Search for other papers by Robin C Dobos in
Google Scholar
PubMed
Close
,
Linda L Agnew Centre for Bioactive Discovery in Health and Ageing, University of New England, Armidale, New South Wales, Australia

Search for other papers by Linda L Agnew in
Google Scholar
PubMed
Close
,
Neil A Smart Centre for Bioactive Discovery in Health and Ageing, University of New England, Armidale, New South Wales, Australia

Search for other papers by Neil A Smart in
Google Scholar
PubMed
Close
, and
James R McFarlane Centre for Bioactive Discovery in Health and Ageing, University of New England, Armidale, New South Wales, Australia

Search for other papers by James R McFarlane in
Google Scholar
PubMed
Close

Pharmacokinetics of leptin in mammals has not been studied in detail and only one study has examined more than one time point in non-mutant mice and this was in a female mice. This is the first study to describe leptin distribution over a detailed time course in normal male mice. A physiologic dose (12 ng) of radiolabelled leptin was injected into adult male mice via the lateral tail vein and tissues were dissected out and measured for radioactivity over a time course of up to two hours. Major targets were the digestive tract, kidneys, skin and lungs. The brain was not a major target, and 0.15% of the total dose was recovered from the brain 5 min after administration. Major differences appear to exist in the distribution of leptin between the male and female mice, indicating a high degree of sexual dimorphism. Although the half-lives were similar between male and female mice, almost twice the proportion of leptin was recovered from the digestive tract of male mice in comparison to that reported previously for females. This would seem to indicate a major difference in leptin distribution and possibly function between males and females.

Open access
Kristin Viste Hormone Laboratory, Department of Medicine, Department of Clinical Science, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway

Search for other papers by Kristin Viste in
Google Scholar
PubMed
Close
,
Marianne A Grytaas Hormone Laboratory, Department of Medicine, Department of Clinical Science, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway
Hormone Laboratory, Department of Medicine, Department of Clinical Science, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway

Search for other papers by Marianne A Grytaas in
Google Scholar
PubMed
Close
,
Melissa D Jørstad Hormone Laboratory, Department of Medicine, Department of Clinical Science, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway

Search for other papers by Melissa D Jørstad in
Google Scholar
PubMed
Close
,
Dag E Jøssang Hormone Laboratory, Department of Medicine, Department of Clinical Science, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway

Search for other papers by Dag E Jøssang in
Google Scholar
PubMed
Close
,
Eivind N Høyden Hormone Laboratory, Department of Medicine, Department of Clinical Science, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway

Search for other papers by Eivind N Høyden in
Google Scholar
PubMed
Close
,
Solveig S Fotland Hormone Laboratory, Department of Medicine, Department of Clinical Science, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway

Search for other papers by Solveig S Fotland in
Google Scholar
PubMed
Close
,
Dag K Jensen Hormone Laboratory, Department of Medicine, Department of Clinical Science, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway

Search for other papers by Dag K Jensen in
Google Scholar
PubMed
Close
,
Kristian Løvås Hormone Laboratory, Department of Medicine, Department of Clinical Science, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway
Hormone Laboratory, Department of Medicine, Department of Clinical Science, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway

Search for other papers by Kristian Løvås in
Google Scholar
PubMed
Close
,
Hrafnkell Thordarson Hormone Laboratory, Department of Medicine, Department of Clinical Science, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway

Search for other papers by Hrafnkell Thordarson in
Google Scholar
PubMed
Close
,
Bjørg Almås Hormone Laboratory, Department of Medicine, Department of Clinical Science, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway

Search for other papers by Bjørg Almås in
Google Scholar
PubMed
Close
, and
Gunnar Mellgren Hormone Laboratory, Department of Medicine, Department of Clinical Science, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway
Hormone Laboratory, Department of Medicine, Department of Clinical Science, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway

Search for other papers by Gunnar Mellgren in
Google Scholar
PubMed
Close

Primary aldosteronism (PA) is a common cause of secondary hypertension and is caused by unilateral or bilateral adrenal disease. Treatment options depend on whether the disease is lateralized or not, which is preferably evaluated with selective adrenal venous sampling (AVS). This procedure is technically challenging, and obtaining representative samples from the adrenal veins can prove difficult. Unsuccessful AVS procedures often require reexamination. Analysis of cortisol during the procedure may enhance the success rate. We invited 21 consecutive patients to participate in a study with intra-procedural point of care cortisol analysis. When this assay showed nonrepresentative sampling, new samples were drawn after redirection of the catheter. The study patients were compared using the 21 previous procedures. The intra-procedural cortisol assay increased the success rate from 10/21 patients in the historical cohort to 17/21 patients in the study group. In four of the 17 successful procedures, repeated samples needed to be drawn. Successful sampling at first attempt improved from the first seven to the last seven study patients. Point of care cortisol analysis during AVS improves success rate and reduces the need for reexaminations, in accordance with previous studies. Successful AVS is crucial when deciding which patients with PA will benefit from surgical treatment.

Open access
Henri Honka Turku PET Centre, University of Turku, Turku, Finland

Search for other papers by Henri Honka in
Google Scholar
PubMed
Close
,
Jukka Koffert Turku PET Centre, University of Turku, Turku, Finland
Department of Gastroenterology, Turku University Hospital, Turku, Finland

Search for other papers by Jukka Koffert in
Google Scholar
PubMed
Close
,
Saila Kauhanen Division of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland

Search for other papers by Saila Kauhanen in
Google Scholar
PubMed
Close
,
Nobuyuki Kudomi Faculty of Medicine, Kagawa University, Kagawa, Japan

Search for other papers by Nobuyuki Kudomi in
Google Scholar
PubMed
Close
,
Saija Hurme Department of Biostatistics, University of Turku, Turku, Finland

Search for other papers by Saija Hurme in
Google Scholar
PubMed
Close
,
Andrea Mari Institute of Neuroscience, National Research Council, Padua, Italy

Search for other papers by Andrea Mari in
Google Scholar
PubMed
Close
,
Andreas Lindqvist Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden

Search for other papers by Andreas Lindqvist in
Google Scholar
PubMed
Close
,
Nils Wierup Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden

Search for other papers by Nils Wierup in
Google Scholar
PubMed
Close
,
Riitta Parkkola Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland

Search for other papers by Riitta Parkkola in
Google Scholar
PubMed
Close
,
Leif Groop Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden

Search for other papers by Leif Groop in
Google Scholar
PubMed
Close
, and
Pirjo Nuutila Turku PET Centre, University of Turku, Turku, Finland
Department of Endocrinology, Turku University Hospital, Turku, Finland

Search for other papers by Pirjo Nuutila in
Google Scholar
PubMed
Close

Aims/hypothesis

The mechanisms for improved glycemic control after bariatric surgery in subjects with type 2 diabetes (T2D) are not fully known. We hypothesized that dynamic hepatic blood responses to a mixed-meal are changed after bariatric surgery in parallel with an improvement in glucose tolerance.

Methods

A total of ten morbidly obese subjects with T2D were recruited to receive a mixed-meal and a glucose-dependent insulinotropic polypeptide (GIP) infusion before and early after (within a median of less than three months) bariatric surgery, and hepatic blood flow and volume (HBV) were measured repeatedly with combined positron emission tomography/MRI. Ten lean non-diabetic individuals served as controls.

Results

Bariatric surgery leads to a significant decrease in weight, accompanied with an improved β-cell function and glucagon-like peptide 1 (GLP-1) secretion, and a reduction in liver volume. Blood flow in portal vein (PV) was increased by 1.65-fold (P = 0.026) in response to a mixed-meal in subjects after surgery, while HBV decreased in all groups (P < 0.001). When the effect of GIP infusion was tested separately, no change in hepatic arterial and PV flow was observed, but HBV decreased as seen during the mixed-meal test.

Conclusions/interpretation

Early after bariatric surgery, PV flow response to a mixed-meal is augmented, improving digestion and nutrient absorption. GIP influences the post-prandial reduction in HBV thereby diverting blood to the extrahepatic sites.

Open access
Milène Tetsi Nomigni INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France
INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France

Search for other papers by Milène Tetsi Nomigni in
Google Scholar
PubMed
Close
,
Sophie Ouzounian INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France

Search for other papers by Sophie Ouzounian in
Google Scholar
PubMed
Close
,
Alice Benoit INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France

Search for other papers by Alice Benoit in
Google Scholar
PubMed
Close
,
Jacqueline Vadrot INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France

Search for other papers by Jacqueline Vadrot in
Google Scholar
PubMed
Close
,
Frédérique Tissier INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France

Search for other papers by Frédérique Tissier in
Google Scholar
PubMed
Close
,
Sylvie Renouf INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France
INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France

Search for other papers by Sylvie Renouf in
Google Scholar
PubMed
Close
,
Hervé Lefebvre INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France
INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France
INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France

Search for other papers by Hervé Lefebvre in
Google Scholar
PubMed
Close
,
Sophie Christin-Maitre INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France
INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France

Search for other papers by Sophie Christin-Maitre in
Google Scholar
PubMed
Close
, and
Estelle Louiset INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France
INSERM, University of Rouen, Department of Endocrinology, Departments of Endocrinology, Pathology, Department of Pathology, Department of Endocrinology, INSERM, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Mont‐Saint‐Aignan, France

Search for other papers by Estelle Louiset in
Google Scholar
PubMed
Close

Hirsutism induced by hyperandrogenism can be associated with polycystic ovary syndrome, 21-hydroxylase (OH) deficiency or androgen-secreting tumors, including ovarian and adrenal tumors. Adrenal androgen-secreting tumors are frequently malignant. Adrenal oncocytomas represent rare causes of hyperandrogenism. The aim of the study was to investigate steroidogenic enzyme expression and steroid secretion in an androgen-secreting adrenal oncocytoma in a young woman presenting with hirsutism. Hyperandrogenism was diagnosed on the basis of elevated plasma Δ4-androstenedione and testosterone levels. Pelvic ultrasound was normal, CT scanning revealed a right adrenal mass. Androgens were assessed in adrenal and ovarian vein samples and proved a right adrenal origin. Adrenalectomy normalized androgen levels and the adrenal tumor was diagnosed as an oncocytoma. Real time-PCR, immunohistochemistry and cell culture studies were performed on tumor explants to investigate the steroid secretion profile. Among enzymes required for cortisol synthesis, 17α-OH and 3β-hydroxysteroid dehydrogenase 2 (3β-HSD2) were highly expressed whereas 21-OH and 11β-OH were weakly produced at the mRNA and/or protein levels. Enzymes involved in testosterone production, 17β-HSD5 and 17β-HSD3, were also detected. ACTH receptor was present in the tissue. Cortisol, Δ4-androstenedione and testosterone secretions by cultured cells were increased by ACTH. These results provide the first demonstration, to our knowledge, of abnormal expression profile of steroidogenic enzymes in an adrenocortical oncocytoma. Our results also indicate that Δ4-androstenedione hypersecretion resulted from high 17α-OH and 3β-HSD2 expression in combination with low expression of 21-OH and 11β-OH. Testosterone production was ascribed to occurrence of 17β-HSD5 and 17β-HSD3. Finally, our results indicate that androgen secretion was stimulated by ACTH.

Open access
P R van Dijk Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands

Search for other papers by P R van Dijk in
Google Scholar
PubMed
Close
,
S J J Logtenberg Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands

Search for other papers by S J J Logtenberg in
Google Scholar
PubMed
Close
,
K H Groenier Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands

Search for other papers by K H Groenier in
Google Scholar
PubMed
Close
,
N Kleefstra Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands

Search for other papers by N Kleefstra in
Google Scholar
PubMed
Close
,
H J G Bilo Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands

Search for other papers by H J G Bilo in
Google Scholar
PubMed
Close
, and
H J Arnqvist Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands

Search for other papers by H J Arnqvist in
Google Scholar
PubMed
Close

In type 1 diabetes mellitus (T1DM), low concentrations of IGF1 and high concentrations of IGF-binding protein 1 (IGFBP1) have been reported. It has been suggested that these abnormalities in the GH–IGF1 axis are due to low insulin concentrations in the portal vein. We hypothesized that the i.p. route of insulin administration increases IGF1 concentrations when compared with the s.c. route of insulin administration. IGF1 and IGFBP1 concentrations in samples derived from an open-label, randomized cross-over trial comparing the effects of s.c. and i.p. insulin delivery on glycaemia were determined. T1DM patients were randomized to receive either 6 months of continuous i.p. insulin infusion (CIPII) through an implantable pump (MIP 2007C, Medtronic) followed by 6 months of s.c. insulin infusion or vice versa with a washout phase in between. Data from 16 patients who had complete measurements during both treatment phases were analysed. The change in IGF1 concentrations during CIPII treatment was 10.4 μg/l (95% CI −0.94, 21.7 μg/l; P=0.06) and during s.c. insulin treatment was −2.2 μg/l (95% CI −13.5, 9.2 μg/l; P=0.69). When taking the effect of treatment order into account, the estimated change in IGF1 concentrations was found to be 12.6 μg/l (95% CI −3.1, 28.5 μg/l; P=0.11) with CIPII treatment compared with that with s.c. insulin treatment. IGFBP1 concentrations decreased to −100.7 μg/l (95% CI −143.0, −58.3 μg/l; P<0.01) with CIPII treatment. During CIPII treatment, parts of the GH–IGF1 axis changed compared with that observed during s.c. insulin treatment. This supports the hypothesis that the i.p. route of insulin administration is of importance in the IGF1 system.

Open access
Jung Soo Lim Department of Internal Medicine, Institute of Evidence-Based Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, South Korea

Search for other papers by Jung Soo Lim in
Google Scholar
PubMed
Close
,
Seung-Eun Lee Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, South Korea

Search for other papers by Seung-Eun Lee in
Google Scholar
PubMed
Close
,
Jung Hee Kim Department of Internal Medicine, Seoul National University College of Medicine, Jongno-gu, Seoul, South Korea

Search for other papers by Jung Hee Kim in
Google Scholar
PubMed
Close
,
Jae Hyeon Kim Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, South Korea

Search for other papers by Jae Hyeon Kim in
Google Scholar
PubMed
Close
, and
The Korean Adrenal Gland and Endocrine Hypertension Study Group, Korean Endocrine Society
Search for other papers by The Korean Adrenal Gland and Endocrine Hypertension Study Group, Korean Endocrine Society in
Google Scholar
PubMed
Close

Purpose

To evaluate the clinical characteristics and prognostic factors in patients with adrenocortical carcinoma (ACC) in South Korea.

Methods

A nationwide, registry-based survey was conducted to identify pathologically proven ACC at 25 tertiary care centers in South Korea between 2000 and 2014. Cox proportional hazard model and log-rank test were adopted for survival analysis.

Results

Two hundred four patients with ACC were identified, with a median follow-up duration of 20 months (IQR 5–52 months). The median age at diagnosis was 51.5 years (IQR 40–65.8 years), and ACC was prevalent in women (n = 110, 53.9%). Abdominal pain was the most common clinical symptom (n = 70, 40.2%), and ENSAT stage 2 was most common (n = 62, 30.4%) at the time of diagnosis. One hundred sixty-nine patients underwent operation, while 17 were treated with other modalities. The remission rate was 48%, and median recurrence-free survival time was 46 months. Estimated 5-year recurrence-free rate was 44.7%. There were more women, large tumor, atypical mitosis, venous invasion, and higher mitotic count in cancer recurrence group. Estimated 5-year overall survival and disease-specific survival rates were 64.5 and 70.6%, respectively. Higher ENSAT stage and advanced pathologic characteristics were risk factors for all-cause mortality of ACC. Large tumor size and cortisol-secreting tumor were additional risk factors for ACC-specific death.

Conclusions

We report the first epidemiologic study regarding ACC in an Asian population. ENSAT stage 4; lymph node involvement; non-operative group; and invasion of vein, sinusoid, or capsule were associated with an increased risk for all-cause mortality.

Open access
Yang Lv Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China

Search for other papers by Yang Lv in
Google Scholar
PubMed
Close
,
Xu Han Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China

Search for other papers by Xu Han in
Google Scholar
PubMed
Close
,
Chunyan Zhang Department of Clinical Laboratory, Zhongshan Hospital, Fudan University, Shanghai, China

Search for other papers by Chunyan Zhang in
Google Scholar
PubMed
Close
,
Yuan Fang Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China

Search for other papers by Yuan Fang in
Google Scholar
PubMed
Close
,
Ning Pu Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China

Search for other papers by Ning Pu in
Google Scholar
PubMed
Close
,
Yuan Ji Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China

Search for other papers by Yuan Ji in
Google Scholar
PubMed
Close
,
Dansong Wang Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China

Search for other papers by Dansong Wang in
Google Scholar
PubMed
Close
,
Xu Xuefeng Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China

Search for other papers by Xu Xuefeng in
Google Scholar
PubMed
Close
, and
Wenhui Lou Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China

Search for other papers by Wenhui Lou in
Google Scholar
PubMed
Close

Purpose

Chromogranin A (CgA) and neuron-specific enolase (NSE) are important markers for neuroendocrine tumors; however, the clinical value of combining these markers has not been well studied. In this study, we investigated the utility of each marker individually and in combination for patients with nonfunctional pancreatic neuroendocrine tumors (NF-pNETs).

Patients and Methods

In this study, NF-pNET patients and controls were recruited from December 2011 to March 2016; 784 serum samples from peripheral vein were collected. The clinical characteristics and biomarker values of all the individuals were recorded and analyzed. Tumor burdens were calculated by CT/MRI scan. Receiver-operating characteristic curves were constructed to assess the diagnostic predictive values; sensitivity and specificity were calculated to determine the cut-off value. Therapeutic responses reflected on the changes of the biomarkers’ concentration were assessed by the RECIST criterion. Clinical relations between the prognosis and the biomarker values were also analyzed. Statistical significance was defined as P value less than 0.05.

Results

Among the 167 NF-pNETs patients, 82 were males (49.1%) and the mean age was 50.0 (17.4). The mean CgA values of G1, G2 and G3 NF-pNENs were 75, 121 and 134 μg/L (P < 0.05), respectively. In NF-pNETs, CgA correlated with the WHO tumor grade (WHO G1 vs G2, P < 0.05); the linear regression relationships were found between the tumor burdens (both in pancreas and liver) and CgA concentration (P < 0.001); changes in CgA and NSE concentrations also reflect treatment response (P < 0.001).

Conclusion

CgA and NSE are important diagnostic and follow-up markers in patients with NF-pNETs. The combined monitoring of CgA and NSE possesses more accuracy than individual values of CgA and NSE at predicting prognosis and disease progression.

Open access