Search Results

You are looking at 1 - 10 of 266 items for

  • Abstract: ANS x
  • Abstract: Cushings x
  • Abstract: FSH x
  • Abstract: Growthhormone x
  • Abstract: HPA x
  • Abstract: Hyperpituitary x
  • Abstract: Hypopituitary x
  • Abstract: Hypothalamus x
  • Abstract: LH x
  • Abstract: Neuro* x
  • Abstract: Oxytocin x
  • Abstract: Prolactin x
  • Abstract: TSH x
  • Abstract: Vasopressin x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Open access

Kush Dev Singh Jarial, Anil Bhansali, Vivek Gupta, Paramjeet Singh, Kanchan K Mukherjee, Akhilesh Sharma, Rakesh K Vashishtha, Suja P Sukumar, Naresh Sachdeva, and Rama Walia

Context

Bilateral inferior petrosal sinus sampling (BIPSS) using hCRH is currently considered the ‘gold standard’ test for the differential diagnosis of ACTH-dependent Cushing’s syndrome (CS). Vasopressin is more potent than CRH to stimulate ACTH secretion as shown in animal studies; however, no comparative data of its use are available during BIPSS.

Objective

To study the diagnostic accuracy and comparison of hCRH and lysine vasopressin (LVP) stimulation during BIPSS.

Patients and methods

29 patients (27-Cushing’s disease, 2-ectopic CS; confirmed on histopathology) underwent BIPSS and were included for the study. Patients were randomized to receive hCRH, 5 U LVP or 10 U LVP during BIPSS for ACTH stimulation. BIPSS and contrast-enhanced magnetic resonance imaging (CEMRI) were compared with intra-operative findings of trans-sphenoidal surgery (TSS) for localization and lateralization of the ACTH source.

Results

BIPSS correctly localized the source of ACTH excess in 29/29 of the patients with accuracy of 26/26 patients, using any of the agent, whereas sensitivity and PPV for lateralization with hCRH, 5 U LVP and 10 U LVP was seen in 10/10, 6/10; 10/10,8/10 and 7/7,6/7 patients respectively. Concordance of BIPSS with TSS was seen in 20/27, CEMRI with BIPSS in 16/24 and CEMRI with TSS in 18/24 of patients for lateralizing the adenoma. Most of the side effects were transient and were comparable in all the three groups.

Conclusion

BIPSS using either hCRH or LVP (5 U or 10 U) confirmed the source of ACTH excess in all the patients, while 10 U LVP correctly lateralized the pituitary adenoma in three fourth of the patients.

Open access

M von Wolff, C T Nakas, M Tobler, T M Merz, M P Hilty, J D Veldhuis, A R Huber, and J Pichler Hefti

Humans cannot live at very high altitude for reasons, which are not completely understood. Since these reasons are not restricted to cardiorespiratory changes alone, changes in the endocrine system might also be involved. Therefore, hormonal changes during prolonged hypobaric hypoxia were comprehensively assessed to determine effects of altitude and hypoxia on stress, thyroid and gonadal hypothalamus–pituitary hormone axes. Twenty-one male and 19 female participants were examined repetitively during a high-altitude expedition. Cortisol, prolactin, thyroid-stimulating hormone (TSH), fT4 and fT3 and in males follicle-stimulating hormone (FSH), luteinizing hormone (LH) and total testosterone were analysed as well as parameters of hypoxemia, such as SaO2 and paO2 at 550 m (baseline) (n = 40), during ascent at 4844 m (n = 38), 6022 m (n = 31) and 7050 m (n = 13), at 4844 m (n = 29) after acclimatization and after the expedition (n = 38). Correlation analysis of hormone concentrations with oxygen parameters and with altitude revealed statistical association in most cases only with altitude. Adrenal, thyroid and gonadal axes were affected by increasing altitude. Adrenal axis and prolactin were first supressed at 4844 m and then activated with increasing altitude; thyroid and gonadal axes were directly activated or suppressed respectively with increasing altitude. Acclimatisation at 4844 m led to normalization of adrenal and gonadal but not of thyroid axes. In conclusion, acclimatization partly leads to a normalization of the adrenal, thyroid and gonadal axes at around 5000 m. However, at higher altitude, endocrine dysregulation is pronounced and might contribute to the physical degradation found at high altitude.

Open access

Boni Xiang, Ran Tao, Xinhua Liu, Xiaoming Zhu, Min He, Zengyi Ma, Yehong Yang, Zhaoyun Zhang, Yiming Li, Zhenwei Yao, Yongfei Wang, and Hongying Ye

Objective

The aim of this study was to evaluate thyroid functions in Cushing’s syndrome (CS), the dynamic changes of thyroid hormones and antithyroid antibodies in Cushing’s disease (CD) pre- and postoperatively.

Design and methods

This is a retrospective study enrolling 118 patients with CS (102 CD, 10 adrenal CS and 6 ectopic adrenocorticotropic syndrome (EAS)). Thyroid functions (thyroid-stimulation hormone (TSH), T3, free T3 (FT3), T4 and free T4 (FT4)) were measured in all CS at the time of diagnosis and in all CD 3 months after transsphenoidal pituitary tumor resection. Postoperative hormone monitoring within 3 months was conducted in 9 CD patients completing remission. Twenty-eight remitted CD patients experienced hormone and antithyroid antibody evaluation preoperatively and on the 3rd, 6th and 12th month after surgery.

Results

TSH, T3 and FT3 were below the reference range in 31%, 69% and 44% of the 118 CS patients. Remitted CD patients (81/102) had significantly higher TSH (P = 0.000), T3 (P = 0.000) and FT3 (P = 0.000) than those in the non-remission group (21/102). After remission of CD, TSH, T3 and FT3 showed a significant increase, with a few cases above the reference range. By 12 months, most CD patients’ thyroid functions returned to normal. Thyroid hormones (including TSH, T3 and FT3) were negatively associated with serum cortisol levels both before and after surgery. No significant changes of antithyroid autoantibodies were observed.

Conclusions

TSH, T3 and FT3 are suppressed in endogenous hypercortisolemia. After remission of CD, TSH, T3 and FT3 increased significantly, even above the reference range, but returned to normal 1 year after surgery in most cases. Antithyroid antibodies did not change significantly after remission of CD.

Open access

Luca Persani, Biagio Cangiano, and Marco Bonomi

Central hypothyrodism (CeH) is a hypothyroid state caused by an insufficient stimulation by thyrotropin (TSH) of an otherwise normal thyroid gland. Several advancements, including the recent publication of expert guidelines for CeH diagnosis and management, have been made in recent years thus increasing the clinical awareness on this condition. Here, we reviewed the recent advancements and give expert opinions on critical issues. Indeed, CeH can be the consequence of various disorders affecting either the pituitary gland or the hypothalamus. Recent data enlarged the list of candidate genes for heritable CeH and a genetic origin may be the underlying cause for CeH discovered in pediatric or even adult patients without apparent pituitary lesions. This raises the doubt that the frequency of CeH may be underestimated. CeH is most frequently diagnosed as a consequence of the biochemical assessments in patients with hypothalamic/pituitary lesions. In contrast with primary hypothyroidism, low FT4 with low/normal TSH levels are the biochemical hallmark of CeH, and adequate thyroid hormone replacement leads to the suppression of residual TSH secretion. Thus, CeH often represents a clinical challenge because physicians cannot rely on the use of the ‘reflex TSH strategy’ for screening or therapy monitoring. Nevertheless, in contrast with general assumption, the finding of normal TSH levels may indicate thyroxine under-replacement in CeH patients. The clinical management of CeH is further complicated by the combination with multiple pituitary deficiencies, as the introduction of sex steroids or GH replacements may uncover latent forms of CeH or increase the thyroxine requirements.

Open access

Janko Sattler, Jinwen Tu, Shihani Stoner, Jingbao Li, Frank Buttgereit, Markus J Seibel, Hong Zhou, and Mark S Cooper

Patients with chronic immune-mediated arthritis exhibit abnormal hypothalamo-pituitary-adrenal (HPA) axis activity. The basis for this abnormality is not known. Immune-mediated arthritis is associated with increased extra-adrenal synthesis of active glucocorticoids by the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme. 11β-HSD1 is expressed in the central nervous system, including regions involved in HPA axis regulation. We examined whether altered 11β-HSD1 expression within these regions contributes to HPA axis dysregulation during arthritis. The expression of 11β-HSD1, and other components of glucocorticoid signaling, were examined in various brain regions and the pituitary gland of mice with experimentally induced arthritis. Two arthritis protocols were employed: The K/BxN spontaneous arthritis model for chronic arthritis and the K/BxN serum transfer arthritis model for acute arthritis. 11β-HSD1 mRNA (Hsd11b1) was expressed in the hippocampus, hypothalamus, cortex, cerebellum and pituitary gland. Hypothalamic Hsd11b1 expression did not change in response to arthritis in either model. Pituitary Hsd11b1 expression was however significantly increased in both chronic and acute arthritis models. Hippocampal Hsd11b1 was decreased in acute but not chronic arthritis. Chronic, but not acute, arthritis was associated with a reduction in hypothalamic corticotropin-releasing hormone and arginine vasopressin expression. In both models, serum adrenocorticotropic hormone and corticosterone levels were no different from non-inflammatory controls. These findings demonstrate inflammation-dependent regulation of Hsd11b1 expression in the pituitary gland and hippocampus. The upregulation of 11β-HSD1 expression in the pituitary during both chronic and acute arthritis, and thus, an increase in glucocorticoid negative feedback, could contribute to the abnormalities in HPA axis activity seen in immune-mediated arthritis.

Open access

, Hiroshi Arima, Timothy Cheetham, Mirjam Christ-Crain, Deborah Cooper, Mark Gurnell, Juliana B Drummond, Miles Levy, Ann I McCormack, Joseph Verbalis, John Newell-Price, and John A H Wass

What’s in a name? That which we call a rose/By any other name would smell as sweet’ (Juliet, from Romeo and Juliet by William Shakespeare). Shakespeare’s implication is that a name is nothing but a word, and it therefore represents a convention with no intrinsic meaning. While this may be relevant to romantic literature, disease names do have real meanings, and consequences, in medicine. Hence, there must be a very good rationale for changing the name of a disease that has a centuries-old historical context. A working group of representatives from national and international endocrinology, and pediatric endocrine societies now proposes changing the name of ‘diabetes insipidus’ to ‘arginine vasopressin deficiency (AVP-D)’ for central etiologies, and ‘arginine vasopressin resistance (AVP-R)’ for nephrogenic etiologies. This article provides both the historical context and the rationale for this proposed name change.

Open access

Caroline Serrano-Nascimento, Rafael Barrera Salgueiro, Kaio Fernando Vitzel, Thiago Pantaleão, Vânia Maria Corrêa da Costa, and Maria Tereza Nunes

Adequate maternal iodine consumption during pregnancy and lactation guarantees normal thyroid hormones (TH) production, which is crucial to the development of the fetus. Indeed, iodine deficiency is clearly related to maternal hypothyroidism and deleterious effects in the fetal development. Conversely, the effects of iodine excess (IE) consumption on maternal thyroid function are still controversial. Therefore, this study aimed to investigate the impact of IE exposure during pregnancy and lactation periods on maternal hypothalamus–pituitary–thyroid axis. IE-exposed dams presented reduced serum TH concentration and increased serum thyrotropin (TSH) levels. Moreover, maternal IE exposure increased the hypothalamic expression of Trh and the pituitary expression of Trhr, Dio2, Tsha and Tshb mRNA, while reduced the Gh mRNA content. Additionally, IE-exposed dams presented thyroid morphological alterations, increased thyroid oxidative stress and decreased expression of thyroid genes/proteins involved in TH synthesis, secretion and metabolism. Furthermore, Dio1 mRNA expression and D1 activity were reduced in the liver and the kidney of IE-treated animals. Finally, the mRNA expression of Slc5a5 and Slc26a4 were reduced in the mammary gland of IE-exposed rats. The latter results are in accordance with the reduction of prolactin expression and serum levels in IE-treated dams. In summary, our study indicates that the exposure to IE during pregnancy and lactation induces primary hypothyroidism in rat dams and impairs iodide transfer to the milk.

Open access

Milena Kloter, Claudia Gregoriano, Ellen Haag, Alexander Kutz, Beat Mueller, and Philipp Schuetz

Objective

Systemic infections and sepsis lead to strong activation of the vasopressin system, which is pivotal for stimulation of the endocrine stress response and, in addition, has vasoconstrictive and immunomodulatory effects. Our aim was to assess the significance of the vasopressor system through measurement of C-terminal proAVP (copeptin) regarding mortality prediction in a large prospective cohort of patients with systemic infection.

Design and methods

This secondary analysis of the observational cohort TRIAGE study included consecutive, adult, medical patients with an initial diagnosis of infection seeking emergency department care. We used multivariable regression analysis to assess associations of copeptin levels in addition to the Sequential Organ Failure Assessment (SOFA) score with 30-day mortality. Discrimination was assessed by calculation of the area under the curve (AUC).

Results

Overall, 45 of 609 (7.4%) patients with infection died within 30 days. Non-survivors had a marked upregulation of the vasopressin system with a more than four-fold increase in admission copeptin levels compared to non-survivors (199.9 ± 204.7 vs 46.6 ± 77.2 pmol/L). In a statistical model, copeptin was significantly associated with mortality (adjusted odds ratio of 1.04, 95% CI 1.01 to 1.07, P = 0.002). Regarding discrimination, copeptin alone showed an AUC of 0.82, while adding copeptin to the SOFA score significantly improved its prognostic ability (AUC 0.83 vs 0.86, P = 0.027).

Conclusion

Activation of the vasopressin system mirrored by an increase in copeptin levels provided significant information regarding mortality risk and improved the SOFA score for prediction of sepsis mortality.

Open access

Amir Bashkin, Eliran Yaakobi, Marina Nodelman, and Ohad Ronen

TSH routine testing in hospitalized patients has low efficacy, but may be beneficial in a selected subgroup of patients. Our aim was to evaluate the efficacy of routine thyroid function tests among patients admitted to internal medicine departments. It is a retrospective study. A randomly selected cohort of hospitalized patients with abnormal thyroid-stimulating hormone (TSH) blood tests drawn as part of admission protocol. Patient data were collected from the electronic medical files and analyzed for its efficacy. TSH as a screening test was proven unnecessary in 75% (174) of the study population. Leading causes were non-thyroidal illness syndrome, drugs affecting the test results and subclinical disorders. TSH testing was found to be clinically helpful in only 9 patients; however, all of them had other clinical need for TSH testing. We found a clinically abnormal TSH in 20 patients, hypothyroidism in 11 patients and thyrotoxicosis in 9 patients. Low efficacy ascribed to TSH screening test by this study correlates with recent recommendations that indicate TSH screening in admitted patients only with accompanying clinical suspicion. Most probably, the majority of patients found by screening to have thyrotoxicosis have non-thyroidal illness or drug effects so the threshold for FT4 to diagnose overt thyrotoxicosis should be higher than that in ambulatory patients. In elderly patients, clinically relevant TSH disturbances are more frequent and are harder to diagnose, therefore, TSH screening in this group of patients might be beneficial.

Open access

Clara Odilia Sailer, Sophia Julia Wiedemann, Konrad Strauss, Ingeborg Schnyder, Wiebke Kristin Fenske, and Mirjam Christ-Crain

Osmotic stimulus or stress results in vasopressin release. Animal and human in vitro studies have shown that inflammatory parameters, such as interleukin-8 (IL-8) and tumor necrosis factor-α (TNF-α), increase in parallel in the central nervous system and bronchial, corneal or intestinal epithelial cell lines in response to osmotic stimulus. Whether osmotic stimulus directly causes a systemic inflammatory response in humans is unknown. We therefore investigated the influence of osmotic stimulus on circulatory markers of systemic inflammation in healthy volunteers. In this prospective cohort study, 44 healthy volunteers underwent a standardized test protocol with an osmotic stimulus leading into the hyperosmotic/hypernatremic range (serum sodium ≥150 mmol/L) by hypertonic saline infusion. Copeptin – a marker indicating vasopressin activity – serum sodium and osmolality, plasma IL-8 and TNF-α were measured at baseline and directly after osmotic stimulus. Median (range) serum sodium increased from 141 mmol/L (136, 147) to 151 mmol/L (145, 154) (P < 0.01), serum osmolality increased from 295 mmol/L (281, 306) to 315 mmol/L (304, 325) (P < 0.01). Median (range) copeptin increased from 4.3 pg/L (1.1, 21.4) to 28.8 pg/L (19.9, 43.4) (P < 0.01). Median (range) IL-8 levels showed a trend to decrease from 0.79 pg/mL (0.37, 1.6) to 0.7 pg/mL (0.4, 1.9) (P < 0.09) and TNF-α levels decreased from 0.53 pg/mL (0.11, 1.1) to 0.45 pg/mL (0.12, 0.97) (P < 0.036). Contrary to data obtained in vitro, circulating proinflammatory cytokines tend to or decrease in human plasma after osmotic stimulus. In this study, osmotic stimulus does not increase circulating markers of systemic inflammation.