Search for other papers by Ditte Sofie Dahl Sørensen in
Google Scholar
PubMed
Search for other papers by Jesper Krogh in
Google Scholar
PubMed
Search for other papers by Åse Krogh Rasmussen in
Google Scholar
PubMed
Search for other papers by Mikkel Andreassen in
Google Scholar
PubMed
prevalence of 1:200 to 1:1000 ( 4 ), and is typically diagnosed during workup of early puberty or due to symptoms of mild hyperandrogenism including hirsutism and acne in females ( 5 ). The goal of treatment is first, to replace deficient hormones, and
Search for other papers by Hanna F Nowotny in
Google Scholar
PubMed
Search for other papers by Jillian Bryce in
Google Scholar
PubMed
Search for other papers by Salma R Ali in
Google Scholar
PubMed
Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
Search for other papers by Roberta Giordano in
Google Scholar
PubMed
Search for other papers by Federico Baronio in
Google Scholar
PubMed
Search for other papers by Irina Chifu in
Google Scholar
PubMed
Search for other papers by Lea Tschaidse in
Google Scholar
PubMed
Search for other papers by Martine Cools in
Google Scholar
PubMed
Search for other papers by Erica LT van den Akker in
Google Scholar
PubMed
Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
Search for other papers by Henrik Falhammar in
Google Scholar
PubMed
Search for other papers by Natasha M Appelman-Dijkstra in
Google Scholar
PubMed
Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan Italy
Search for other papers by Luca Persani in
Google Scholar
PubMed
Search for other papers by Guglielmo Beccuti in
Google Scholar
PubMed
Search for other papers by Ian L Ross in
Google Scholar
PubMed
Search for other papers by Simona Grozinsky-Glasberg in
Google Scholar
PubMed
Search for other papers by Alberto M Pereira in
Google Scholar
PubMed
Department of Medicine, Haukeland University Hospital, Bergen, Norway
Department of Medicine, Karolinska Institutet, Stockholm, Sweden
Search for other papers by Eystein S Husebye in
Google Scholar
PubMed
Search for other papers by Stefanie Hahner in
Google Scholar
PubMed
Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
Developmental Endocrinology Research Group, University of Glasgow, Glasgow, United Kingdom
Search for other papers by S Faisal Ahmed in
Google Scholar
PubMed
Search for other papers by Nicole Reisch in
Google Scholar
PubMed
infection reported, 41 were female (median age 51.0 years (IQR 28.5)) and 23 were male (median age 37.0 years (IQR 41.0)). Adrenal gland disorders included in the questionnaire were AI (34 female, 23 male) and CS (7 female). Of AI patients, 25 female
Search for other papers by Natacha Driessens in
Google Scholar
PubMed
Search for other papers by Madhu Prasai in
Google Scholar
PubMed
Search for other papers by Orsalia Alexopoulou in
Google Scholar
PubMed
Search for other papers by Christophe De Block in
Google Scholar
PubMed
Search for other papers by Eva Van Caenegem in
Google Scholar
PubMed
Search for other papers by Guy T’Sjoen in
Google Scholar
PubMed
Search for other papers by Frank Nobels in
Google Scholar
PubMed
Search for other papers by Christophe Ghys in
Google Scholar
PubMed
Search for other papers by Laurent Vroonen in
Google Scholar
PubMed
Search for other papers by Corinne Jonas in
Google Scholar
PubMed
Search for other papers by Bernard Corvilain in
Google Scholar
PubMed
Search for other papers by Dominique Maiter in
Google Scholar
PubMed
was 38 years (IQR 25–48; min–max 0–82). Twenty-eight patients (14%) were below the age of 18 at the time of diagnosis. There was a higher prevalence in females (F 121, M 79; sex ratio F/M = 1.53). The median duration of disease at the time of data
IRCCS, Istituto Auxologico Italiano, Milan, Italy
Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
Search for other papers by Elena Valassi in
Google Scholar
PubMed
Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
Search for other papers by Iacopo Chiodini in
Google Scholar
PubMed
Search for other papers by Richard A Feelders in
Google Scholar
PubMed
Search for other papers by Cornelie D Andela in
Google Scholar
PubMed
Search for other papers by Margueritta Abou-Hanna in
Google Scholar
PubMed
Search for other papers by Sarah Idres in
Google Scholar
PubMed
Search for other papers by Antoine Tabarin in
Google Scholar
PubMed
from the United Kingdom and 14% ( n = 44) from the United States of America. More than half (53.7%, n = 172) of the patients were aged between 35 and 54 years, and 88.4% ( n = 283) were female. The majority of patients (53.1%, n = 170) had
Search for other papers by M Cherenko in
Google Scholar
PubMed
Search for other papers by N M Appelman-Dijkstra in
Google Scholar
PubMed
Search for other papers by A L Priego Zurita in
Google Scholar
PubMed
Search for other papers by N R Biermasz in
Google Scholar
PubMed
Search for other papers by O M Dekkers in
Google Scholar
PubMed
Search for other papers by F A Klok in
Google Scholar
PubMed
Search for other papers by N Reisch in
Google Scholar
PubMed
Search for other papers by A Aulinas in
Google Scholar
PubMed
Search for other papers by B Biagetti in
Google Scholar
PubMed
Search for other papers by S Cannavo in
Google Scholar
PubMed
Search for other papers by L Canu in
Google Scholar
PubMed
Search for other papers by M Detomas in
Google Scholar
PubMed
Search for other papers by F Devuyst in
Google Scholar
PubMed
Search for other papers by H Falhammar in
Google Scholar
PubMed
Search for other papers by R A Feelders in
Google Scholar
PubMed
Search for other papers by F Ferrau in
Google Scholar
PubMed
Search for other papers by F Gatto in
Google Scholar
PubMed
Search for other papers by C Grasselli in
Google Scholar
PubMed
Search for other papers by P van Houten in
Google Scholar
PubMed
Search for other papers by C Hoybye in
Google Scholar
PubMed
Search for other papers by A M Isidori in
Google Scholar
PubMed
Search for other papers by A Kyrilli in
Google Scholar
PubMed
Search for other papers by P Loli in
Google Scholar
PubMed
Search for other papers by D Maiter in
Google Scholar
PubMed
Search for other papers by E Nowak in
Google Scholar
PubMed
Search for other papers by R Pivonello in
Google Scholar
PubMed
Search for other papers by O Ragnarsson in
Google Scholar
PubMed
Search for other papers by R V Steenaard in
Google Scholar
PubMed
Search for other papers by N Unger in
Google Scholar
PubMed
Search for other papers by A van de Ven in
Google Scholar
PubMed
Search for other papers by S M Webb in
Google Scholar
PubMed
Search for other papers by D Yeste in
Google Scholar
PubMed
University of Glasgow, Office for Rare Conditions, Glasgow, UK
University of Glasgow, Developmental Endocrinology Research Group, Royal Hospital for Children, Glasgow, UK
Search for other papers by S F Ahmed in
Google Scholar
PubMed
Search for other papers by A M Pereira in
Google Scholar
PubMed
) (3–80) Female: n (%) 105 (74.4%) 54 (78.2%) 6 (50%) 165 (74.3%) СSI: mean ± s.d . 5.77 ± 2.88 4.81 ± 2.72 8.5 ± 2.87 5.6 ± 2.9 Number of comorbidities: mean ± s.d . 1.9 ± 1.58 1.97 ± 1.39 2.17 ± 1.7 1
Search for other papers by Marta Fichna in
Google Scholar
PubMed
Search for other papers by Piotr P Małecki in
Google Scholar
PubMed
Search for other papers by Magdalena Żurawek in
Google Scholar
PubMed
Search for other papers by Katarzyna Furman in
Google Scholar
PubMed
Search for other papers by Bolesław Gębarski in
Google Scholar
PubMed
Search for other papers by Piotr Fichna in
Google Scholar
PubMed
Search for other papers by Marek Ruchała in
Google Scholar
PubMed
-specific antigens in first-degree relatives of patients suffering from autoimmune AD. Patients and methods In this study, relatives of 78 individuals with autoimmune AD were evaluated. The original patients’ cohort comprised 56 affected females and 22 males
Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
Search for other papers by Tomaž Kocjan in
Google Scholar
PubMed
University Rehabilitation Institute, Ljubljana, Slovenia
FAMNIT, University of Primorska, Koper, Slovenia
Search for other papers by Gaj Vidmar in
Google Scholar
PubMed
Clinical Institute of Radiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
Search for other papers by Peter Popović in
Google Scholar
PubMed
Clinical Institute of Radiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
Search for other papers by Milenko Stanković in
Google Scholar
PubMed
. Finally, the inclusion criteria were met in 144 patients, 40 females and 104 males, aged 54 years on average (range 32–72 years); 59 with LPA (41%; 29 right; 30 left) and 85 with BPA (59%). More than half of them had a unilateral abnormality (76 patients
Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
Search for other papers by Margret J Einarsdottir in
Google Scholar
PubMed
Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
Search for other papers by Penelope Trimpou in
Google Scholar
PubMed
Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
Search for other papers by Gudmundur Johannsson in
Google Scholar
PubMed
Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
Search for other papers by Oskar Ragnarsson in
Google Scholar
PubMed
Objective
It is unknown whether glucocorticoid (GC)-induced adrenal insufficiency may cause premature mortality in GC users. We conducted a retrospective cohort study to investigate if undiagnosed and undertreated GC-induced adrenal insufficiency is a contributor to premature death in GC users.
Methods
Information on dispensed prescriptions in West Sweden from 2007 to 2014 was obtained from the Swedish Prescribed Drug Register. Cause of death was collected from the Swedish Cause of Death Register. Of 223,211 patients who received oral GC prescriptions, 665 died from sepsis within 6 months of their last prescription. Three hundred of these patients who had died in hospital were randomly selected for further investigation. Medical records were initially reviewed by one investigator. Furthermore, two additional investigators reviewed the medical records of patients whose deaths were suspected to be caused by GC-induced adrenal insufficiency.
Results
Of 300 patients (121 females, 40%), 212 (75%) were prescribed GC treatment at admission. The mean age was 76 ± 11 years (range 30–99). Undiagnosed or undertreated GC-induced adrenal insufficiency was considered a probable contributor to death by at least two investigators in 11 (3.7%) patients. In five of these 11 cases, long-term GC therapy was abruptly discontinued during hospitalization. Undiagnosed or undertreated GC-induced adrenal insufficiency was considered a possible contributing factor to death in a further 36 (12%) patients.
Conclusion
GC-induced adrenal insufficiency is an important contributor to premature death in GC users. Awareness of the disorder during intercurrent illness and following cessation of GC treatment is essential.
National Institute of Endocrinology CI Parhon, Bucharest, Romania
Search for other papers by Sofia Maria Lider Burciulescu in
Google Scholar
PubMed
National Institute of Endocrinology CI Parhon, Bucharest, Romania
Search for other papers by Monica Livia Gheorghiu in
Google Scholar
PubMed
Search for other papers by Andrei Muresan in
Google Scholar
PubMed
National Institute of Endocrinology CI Parhon, Bucharest, Romania
Search for other papers by Iuliana Gherlan in
Google Scholar
PubMed
Search for other papers by Attila Patocs in
Google Scholar
PubMed
National Institute of Endocrinology CI Parhon, Bucharest, Romania
Search for other papers by Corin Badiu in
Google Scholar
PubMed
time/metachronous Disease (yrs) Outcomes 1 14, female VHL c.245G>T, p.Arg82Leu S. Hemangioblastomas Bg NA 30/1524 O+L (CSS, then unilateral T for recurrence) No 38 R 7 (post CSS) R 24 (post T) Exitus 2 14
Search for other papers by Magdalena Lech in
Google Scholar
PubMed
Search for other papers by Ruvini Ranasinghe in
Google Scholar
PubMed
Faculty of Life Sciences and Medicine, School of Life Course Sciences, King’s College London, London, UK
Search for other papers by Royce P Vincent in
Google Scholar
PubMed
Search for other papers by David R Taylor in
Google Scholar
PubMed
Search for other papers by Lea Ghataore in
Google Scholar
PubMed
Search for other papers by James Luxton in
Google Scholar
PubMed
Quebec Heart and Lung Institute, Laval University, Quebec, Canada
Search for other papers by Fannie Lajeunesse-Trempe in
Google Scholar
PubMed
Search for other papers by Pia Roser in
Google Scholar
PubMed
Search for other papers by Eftychia E Drakou in
Google Scholar
PubMed
Search for other papers by Ling Ling Chuah in
Google Scholar
PubMed
Barts and the London School of Medicine, Centre for Endocrinology, William Harvey Institute, London, UK
Neuroendocrine Tumour Unit, Royal Free Hospital, London, UK
Search for other papers by Ashley B Grossman in
Google Scholar
PubMed
Search for other papers by Simon J B Aylwin in
Google Scholar
PubMed
Obesity, Type 2 Diabetes and Immunometabolism Research Group, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Course Sciences, King’s College London, London, UK
Division of Reproductive Health, Warwick Medical School, University of Warwick, Coventry, UK
Search for other papers by Georgios K Dimitriadis in
Google Scholar
PubMed
decades of life and occurring more commonly in females, there are some genetic predispositions to ACC, including Li–Fraumeni, Beckwith–Wiedemann, and Lynch syndromes ( 2 ). Around 50–60% of patients with ACC present with clinical features of steroid