Search Results

You are looking at 21 - 30 of 99 items for

  • Abstract: Autoimmune x
  • Abstract: Inflammation x
  • Abstract: Late effects of cancer treatment x
  • Abstract: Cognition x
Clear All Modify Search
Ghazala Zaidi Departments of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Ghazala Zaidi in
Google Scholar
PubMed
Close
,
Vijayalakshmi Bhatia Departments of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Vijayalakshmi Bhatia in
Google Scholar
PubMed
Close
,
Saroj K Sahoo Departments of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Saroj K Sahoo in
Google Scholar
PubMed
Close
,
Aditya Narayan Sarangi Departments of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Aditya Narayan Sarangi in
Google Scholar
PubMed
Close
,
Niharika Bharti Departments of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Niharika Bharti in
Google Scholar
PubMed
Close
,
Li Zhang Department of Immunology, Barbara Davis Centre for Childhood Diabetes, Denver, USA

Search for other papers by Li Zhang in
Google Scholar
PubMed
Close
,
Liping Yu Department of Immunology, Barbara Davis Centre for Childhood Diabetes, Denver, USA

Search for other papers by Liping Yu in
Google Scholar
PubMed
Close
,
Daniel Eriksson Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden

Search for other papers by Daniel Eriksson in
Google Scholar
PubMed
Close
,
Sophie Bensing Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Sophie Bensing in
Google Scholar
PubMed
Close
,
Olle Kämpe Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Sweden

Search for other papers by Olle Kämpe in
Google Scholar
PubMed
Close
,
Nisha Bharani Department of Endocrinology, Amrita Institute of Medical Sciences, Kochi, India

Search for other papers by Nisha Bharani in
Google Scholar
PubMed
Close
,
Surendra Kumar Yachha Departments of Paediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Surendra Kumar Yachha in
Google Scholar
PubMed
Close
,
Anil Bhansali Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India

Search for other papers by Anil Bhansali in
Google Scholar
PubMed
Close
,
Alok Sachan Department of Endocrinology, Sri Venkateshwara Institute of Medical Sciences, Tirupathi, India

Search for other papers by Alok Sachan in
Google Scholar
PubMed
Close
,
Vandana Jain Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India

Search for other papers by Vandana Jain in
Google Scholar
PubMed
Close
,
Nalini Shah Department of Endocrinology, King Edward Memorial Hospital, Seth GS Medical College, Mumbai, India

Search for other papers by Nalini Shah in
Google Scholar
PubMed
Close
,
Rakesh Aggarwal Departments of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Rakesh Aggarwal in
Google Scholar
PubMed
Close
,
Amita Aggarwal Departments of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Amita Aggarwal in
Google Scholar
PubMed
Close
,
Muthuswamy Srinivasan Departments of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Muthuswamy Srinivasan in
Google Scholar
PubMed
Close
,
Sarita Agarwal Departments of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Sarita Agarwal in
Google Scholar
PubMed
Close
, and
Eesh Bhatia Departments of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Eesh Bhatia in
Google Scholar
PubMed
Close

Objective

Autoimmune polyendocrine syndrome type 1 (APS1) is a rare autosomal recessive disorder characterized by progressive organ-specific autoimmunity. There is scant information on APS1 in ethnic groups other than European Caucasians. We studied clinical aspects and autoimmune regulator (AIRE) gene mutations in a cohort of Indian APS1 patients.

Design

Twenty-three patients (19 families) from six referral centres in India, diagnosed between 1996 and 2016, were followed for [median (range)] 4 (0.2–19) years.

Methods

Clinical features, mortality, organ-specific autoantibodies and AIRE gene mutations were studied.

Results

Patients varied widely in their age of presentation [3.5 (0.1–17) years] and number of clinical manifestations [5 (2–11)]. Despite genetic heterogeneity, the frequencies of the major APS1 components (mucocutaneous candidiasis: 96%; hypoparathyroidism: 91%; primary adrenal insufficiency: 55%) were similar to reports in European series. In contrast, primary hypothyroidism (23%) occurred more frequently and at an early age, while kerato-conjunctivitis, urticarial rash and autoimmune hepatitis were uncommon (9% each). Six (26%) patients died at a young age [5.8 (3–23) years] due to septicaemia, hepatic failure and adrenal/hypocalcaemic crisis from non-compliance/unexplained cause. Interferon-α and/or interleukin-22 antibodies were elevated in all 19 patients tested, including an asymptomatic infant. Eleven AIRE mutations were detected, the most common being p.C322fsX372 (haplotype frequency 37%). Four mutations were novel, while six others were previously described in European Caucasians.

Conclusions

Indian APS1 patients exhibited considerable genetic heterogeneity and had highly variable clinical features. While the frequency of major manifestations was similar to that of European Caucasians, other features showed significant differences. A high mortality at a young age was observed.

Open access
Elinor Chelsom Vogt Department of Clinical Science, University of Bergen, Bergen, Norway
K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway

Search for other papers by Elinor Chelsom Vogt in
Google Scholar
PubMed
Close
,
Francisco Gómez Real Department of Clinical Science, University of Bergen, Bergen, Norway
Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway

Search for other papers by Francisco Gómez Real in
Google Scholar
PubMed
Close
,
Eystein Sverre Husebye Department of Clinical Science, University of Bergen, Bergen, Norway
K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway

Search for other papers by Eystein Sverre Husebye in
Google Scholar
PubMed
Close
,
Sigridur Björnsdottir Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Sigridur Björnsdottir in
Google Scholar
PubMed
Close
,
Bryndis Benediktsdottir Medical Faculty, University of Iceland, Reykjavik, Iceland
Department of Sleep, Landspitali University Hospital Reykjavík, Reykjavik, Iceland

Search for other papers by Bryndis Benediktsdottir in
Google Scholar
PubMed
Close
,
Randi Jacobsen Bertelsen Department of Clinical Science, University of Bergen, Bergen, Norway

Search for other papers by Randi Jacobsen Bertelsen in
Google Scholar
PubMed
Close
,
Pascal Demoly University Hospital of Montpellier, IDESP, Univ Montpellier-Inserm, Montpellier, France

Search for other papers by Pascal Demoly in
Google Scholar
PubMed
Close
,
Karl Anders Franklin Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden

Search for other papers by Karl Anders Franklin in
Google Scholar
PubMed
Close
,
Leire Sainz de Aja Gallastegui Unit of Epidemiology and Public Health, Department of Health, Basque Government, Vitoria-Gasteiz, Spain

Search for other papers by Leire Sainz de Aja Gallastegui in
Google Scholar
PubMed
Close
,
Francisco Javier Callejas González Department of Respiratory Medicine, Albacete University Hospital, Albacete, Spain

Search for other papers by Francisco Javier Callejas González in
Google Scholar
PubMed
Close
,
Joachim Heinrich Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Joachim Heinrich in
Google Scholar
PubMed
Close
,
Mathias Holm Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Mathias Holm in
Google Scholar
PubMed
Close
,
Nils Oscar Jogi Department of Clinical Science, University of Bergen, Bergen, Norway

Search for other papers by Nils Oscar Jogi in
Google Scholar
PubMed
Close
,
Benedicte Leynaert Université Paris-Saclay, Inserm U1018, Center for Epidemiology and Population Health, Integrative Respiratory Epidemiology Team, Villejuif, France

Search for other papers by Benedicte Leynaert in
Google Scholar
PubMed
Close
,
Eva Lindberg Department of Medical Sciences, Respiratory, Allergy and Sleep Medicine, Uppsala University, Uppsala, Sweden

Search for other papers by Eva Lindberg in
Google Scholar
PubMed
Close
,
Andrei Malinovschi Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden

Search for other papers by Andrei Malinovschi in
Google Scholar
PubMed
Close
,
Jesús Martínez-Moratalla Pneumology Service of the General University Hospital of Albacete, Albacete, Spain
Albacete Faculty of Medicine, Castilla-La Mancha University, Albacete, Spain

Search for other papers by Jesús Martínez-Moratalla in
Google Scholar
PubMed
Close
,
Raúl Godoy Mayoral Department of Respiratory Medicine, Albacete University Hospital, Albacete, Spain

Search for other papers by Raúl Godoy Mayoral in
Google Scholar
PubMed
Close
,
Anna Oudin Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden

Search for other papers by Anna Oudin in
Google Scholar
PubMed
Close
,
Antonio Pereira-Vega Juan Ramón Jiménez University Hospital in Huelva, Huelva, Spain

Search for other papers by Antonio Pereira-Vega in
Google Scholar
PubMed
Close
,
Chantal Raherison Semjen INSERM, EpiCene Team U1219, University of Bordeaux, Talence, France

Search for other papers by Chantal Raherison Semjen in
Google Scholar
PubMed
Close
,
Vivi Schlünssen Department of Public Health, Environment, Work and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
The National Research Center for the Working Environment, Copenhagen, Denmark

Search for other papers by Vivi Schlünssen in
Google Scholar
PubMed
Close
,
Kai Triebner Department of Clinical Science, University of Bergen, Bergen, Norway

Search for other papers by Kai Triebner in
Google Scholar
PubMed
Close
, and
Marianne Øksnes Department of Clinical Science, University of Bergen, Bergen, Norway
K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway

Search for other papers by Marianne Øksnes in
Google Scholar
PubMed
Close

Objective

To investigate markers of premature menopause (<40 years) and specifically the prevalence of autoimmune primary ovarian insufficiency (POI) in European women.

Design

Postmenopausal women were categorized according to age at menopause and self-reported reason for menopause in a cross-sectional analysis of 6870 women.

Methods

Variables associated with the timing of menopause and hormone measurements of 17β-estradiol and follicle-stimulating hormone were explored using multivariable logistic regression analysis. Specific immunoprecipitating assays of steroidogenic autoantibodies against 21-hydroxylase (21-OH), side-chain cleavage enzyme (anti-SCC) and 17alpha-hydroxylase (17 OH), as well as NACHT leucine-rich-repeat protein 5 were used to identify women with likely autoimmune POI.

Results

Premature menopause was identified in 2.8% of women, and these women had higher frequencies of nulliparity (37.4% vs 19.7%), obesity (28.7% vs 21.4%), osteoporosis (17.1% vs 11.6%), hormone replacement therapy (59.1% vs 36.9%) and never smokers (60.1% vs 50.9%) (P < 0.05), compared to women with menopause ≥40 years. Iatrogenic causes were found in 91 (47%) and non-ovarian causes in 27 (14%) women, while 77 (39%) women were classified as POI of unknown cause, resulting in a 1.1% prevalence of idiopathic POI. After adjustments nulliparity was the only variable significantly associated with POI (odds ratio 2.46; 95% CI 1.63–3.42). Based on the presence of autoantibodies against 21 OH and SCC, 4.5% of POI cases were of likely autoimmune origin.

Conclusion

Idiopathic POI affects 1.1% of all women and almost half of the women with premature menopause. Autoimmunity explains 4.5% of these cases judged by positive steroidogenic autoantibodies.

Open access
Sriharsha Gunna Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Sriharsha Gunna in
Google Scholar
PubMed
Close
,
Mahaveer Singh Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Mahaveer Singh in
Google Scholar
PubMed
Close
,
Rakesh Pandey Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Rakesh Pandey in
Google Scholar
PubMed
Close
,
Rungmei S K Marak Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Rungmei S K Marak in
Google Scholar
PubMed
Close
,
Amita Aggarwal Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Amita Aggarwal in
Google Scholar
PubMed
Close
,
Bibhuti Mohanta Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Bibhuti Mohanta in
Google Scholar
PubMed
Close
,
Liping Yu Barbara Davis Centre for Diabetes, School of Medicine University of Colorado, Aurora, Colorado, USA

Search for other papers by Liping Yu in
Google Scholar
PubMed
Close
, and
Eesh Bhatia Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Search for other papers by Eesh Bhatia in
Google Scholar
PubMed
Close

The etiology, presentation and mortality of patients with primary adrenal insufficiency (PAI) in developing countries may differ from economically developed nations. However, information in this regard is scanty. The aim of this study was to determine the etiology and compare the clinical characteristics and mortality in infectious and autoimmune causes of PAI in Indian patients. All eligible (n = 89) patients (ages 15–83 years) diagnosed with PAI between 2006 and 2019 were studied. Patients were followed for a median duration of 5.9 (range 0.1–15.7) years. Eighty-six subjects underwent an abdominal computerized tomography scan or ultrasonography, and adrenal biopsy was performed in 60 patients. The most frequent etiologies of PAI were adrenal histoplasmosis (AH, 45%), adrenal tuberculosis (AT, 15%), autoimmunity (AI, 25%) and primary lymphoma (6%). Forty-two percent of patients presented with an acute adrenal crisis. AH and AT could not be differentiated on the basis of clinical features, except for a greater frequency of hepatomegaly–splenomegaly and type 2 diabetes mellitus (63% vs 15%, P < 0.01) in the former. Patients with an autoimmune etiology had a higher frequency of 21-hydroxylase antibodies (41% vs 3%) and autoimmune thyroid disease (46% vs 5%) vs those with infectious etiologies. Mortality was significantly higher in AH (45%) compared with AT (8%) or AI (5%) (P = 0.001). Causes of death included adrenal crises, progressive AH and unexplained acute events occurring at home. In conclusion, infections, especially AH, were the most frequent cause of PAI in north India. Despite appropriate therapy, AH had very high mortality as compared with AT and AI.

Open access
Milica Popovic Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
Department of Clinical Research, University of Basel and University Hospital Basel, Basel, Switzerland

Search for other papers by Milica Popovic in
Google Scholar
PubMed
Close
,
Fahim Ebrahimi Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
Department of Clinical Research, University of Basel and University Hospital Basel, Basel, Switzerland

Search for other papers by Fahim Ebrahimi in
Google Scholar
PubMed
Close
,
Sandrine Andrea Urwyler Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
Department of Clinical Research, University of Basel and University Hospital Basel, Basel, Switzerland

Search for other papers by Sandrine Andrea Urwyler in
Google Scholar
PubMed
Close
,
Marc Yves Donath Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
Department of Biomedicine, University of Basel, Basel, Switzerland

Search for other papers by Marc Yves Donath in
Google Scholar
PubMed
Close
, and
Mirjam Christ-Crain Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
Department of Clinical Research, University of Basel and University Hospital Basel, Basel, Switzerland

Search for other papers by Mirjam Christ-Crain in
Google Scholar
PubMed
Close

Arginine vasopressin (AVP) was suggested to contribute to cardiovascular risk and type 2 diabetes in patients with metabolic syndrome. The proinflammatory cytokine interleukin (IL)-1 is able to induce AVP secretion and plays a causal role in cardiovascular mortality and type 2 diabetes. We investigated in two studies whether copeptin levels – the surrogate marker for AVP – are regulated by IL-1-mediated chronic inflammation in patients with metabolic syndrome. Study A was a prospective, interventional, single-arm study (2014–2016). Study B was a randomized, placebo-controlled, double-blind study (2016–2017). n = 73 (Study A) and n = 66 (Study B) adult patients with metabolic syndrome were treated with 100 mg anakinra or placebo (only in study B) twice daily for 1 day (study A) and 28 days (study B). Fasting blood samples were drawn at day 1, 7, and 28 of treatment for measurement of serum copeptin. Patients with chronic low-grade inflammation (C-reactive protein levels ≥2 mg/L) and BMI >35 kg/m2 had higher baseline copeptin levels (7.7 (IQR 4.9–11.9) vs 5.8 (IQR 3.9–9.3) pmol/L, P inflamm = 0.009; 7.8 (IQR 5.4–11.7) vs 4.9 (IQR 3.7–9.8) pmol/L, P BMI = 0.008). Copeptin levels did not change either in the anakinra or in the placebo group and remained stable throughout the treatment (P = 0.44). Subgroup analyses did not reveal effect modifications. Therefore, we conclude that, although IL-1-mediated inflammation is associated with increased circulating copeptin levels, antagonizing IL-1 does not significantly alter copeptin levels in patients with metabolic syndrome.

Open access
M A Webb NIHR Leicester-Loughborough Diet, Lifestyle and Physical Activity Biomedical Research Unit, University Hospitals of Leicester, Leicester General Hospital, Leicester, UK
The Leicester Diabetes Centre, University Hospitals of Leicester NHS Trust, Leicester General Hospital, Leicester, UK

Search for other papers by M A Webb in
Google Scholar
PubMed
Close
,
H Mani Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK
Department of Diabetes and Endocrinology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK
Diabetes and Endocrinology Department, Kettering General Hospital NHS Foundation Trust, Kettering, UK

Search for other papers by H Mani in
Google Scholar
PubMed
Close
,
S J Robertson The Leicester Diabetes Centre, University Hospitals of Leicester NHS Trust, Leicester General Hospital, Leicester, UK

Search for other papers by S J Robertson in
Google Scholar
PubMed
Close
,
H L Waller Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK

Search for other papers by H L Waller in
Google Scholar
PubMed
Close
,
D R Webb NIHR Leicester-Loughborough Diet, Lifestyle and Physical Activity Biomedical Research Unit, University Hospitals of Leicester, Leicester General Hospital, Leicester, UK
Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK

Search for other papers by D R Webb in
Google Scholar
PubMed
Close
,
C L Edwardson NIHR Leicester-Loughborough Diet, Lifestyle and Physical Activity Biomedical Research Unit, University Hospitals of Leicester, Leicester General Hospital, Leicester, UK
Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK

Search for other papers by C L Edwardson in
Google Scholar
PubMed
Close
,
D H Bodicoat NIHR Leicester-Loughborough Diet, Lifestyle and Physical Activity Biomedical Research Unit, University Hospitals of Leicester, Leicester General Hospital, Leicester, UK
Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK

Search for other papers by D H Bodicoat in
Google Scholar
PubMed
Close
,
T Yates NIHR Leicester-Loughborough Diet, Lifestyle and Physical Activity Biomedical Research Unit, University Hospitals of Leicester, Leicester General Hospital, Leicester, UK
Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK

Search for other papers by T Yates in
Google Scholar
PubMed
Close
,
K Khunti NIHR Leicester-Loughborough Diet, Lifestyle and Physical Activity Biomedical Research Unit, University Hospitals of Leicester, Leicester General Hospital, Leicester, UK
The Leicester Diabetes Centre, University Hospitals of Leicester NHS Trust, Leicester General Hospital, Leicester, UK
Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK

Search for other papers by K Khunti in
Google Scholar
PubMed
Close
, and
M J Davies NIHR Leicester-Loughborough Diet, Lifestyle and Physical Activity Biomedical Research Unit, University Hospitals of Leicester, Leicester General Hospital, Leicester, UK
The Leicester Diabetes Centre, University Hospitals of Leicester NHS Trust, Leicester General Hospital, Leicester, UK
Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK

Search for other papers by M J Davies in
Google Scholar
PubMed
Close

Aims

Physical activity has been proposed to be an effective non-pharmacological method of reducing systemic inflammation and therefore may prove particularly efficacious for women with polycystic ovary syndrome (PCOS) who have been shown to have high levels of inflammation and an increased risk of type 2 diabetes (T2DM) and cardiovascular disease (CVD). Therefore, the aim of the present study was to assess whether modest changes in daily step count could significantly reduce levels of inflammatory markers in women with PCOS.

Subjects and Methods

Sixty-five women with PCOS were assessed at baseline and again at 6 months. All had been provided with an accelerometer and encouraged to increase activity levels. Multivariate linear regression analyses (adjusted for age, ethnicity, baseline step count, change in BMI and change in accelerometer wear-time) were used to assess changes in daily step count against clinical and research biomarkers of inflammation, CVD and T2DM.

Results

Mean step count/day at baseline was 6337 (±270). An increase in step count (by 1000 steps) was associated with a 13% reduction in IL6 (β: −0.81 ng/L; 95% CI, −1.37, −0.25, P = 0.005) and a 13% reduction in CRP (β: −0.68 mg/L; 95% CI, −1.30, −0.06, P = 0.033). Additionally, there was a modest decrease in BMI (β: 0.20 kg/m2; 95% CI, −0.38, −0.01, P = 0.038). Clinical markers of T2DM and CVD were not affected by increased step count.

Conclusions

Modest increases in step count/day can reduce levels of inflammatory markers in women with PCOS, which may reduce the future risk of T2DM and CVD.

Open access
Borros Arneth Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, University Hospital of the Universities of Giessen and Marburg, UKGM, Justus Liebig University, Giessen, Giessen, Germany

Search for other papers by Borros Arneth in
Google Scholar
PubMed
Close

Background

The origin of autoimmune disease type 1 diabetes is still unknown.

Aim

This study assessed the activation of CD4+ and CD8+ T-lymphocytes by human insulin and human glutamate decarboxylase (GAD) in patients with type 1 or type 2 diabetes mellitus (DM) and healthy volunteers.

Materials and methods

The expression of CD69, a marker of T-lymphocyte activity, was determined in whole blood samples by flow cytometry after 12 h of incubation with or without insulin or GAD. The analysis included samples from 12 type 1 DM patients, 14 type 2 DM patients and 12 healthy volunteers.

Results

Significant increases in the number of activated CD4+ and CD8+ T-lymphocytes following pre-incubation of whole blood samples with human insulin or GAD were observed in samples from patients with type 1 DM, whereas no activation of these cells was detected in samples from either type 2 DM patients or healthy subjects.

Discussion

These results indicated that latent pre-activation of CD4+ and CD8+ T-lymphocytes in response to insulin or GAD epitopes occurred in type 1 DM patients.

Conclusion

These findings suggest that pre-immunization against insulin and/or GAD might be associated with the development of type 1 DM. Alternatively, these results might reflect a non-specific, bystander autoimmune response.

Open access
Stefano Mangiola Bioinformatics Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
Department of Urology, Royal Melbourne Hospital, Parkville, Victoria, Australia

Search for other papers by Stefano Mangiola in
Google Scholar
PubMed
Close
,
Ryan Stuchbery Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia

Search for other papers by Ryan Stuchbery in
Google Scholar
PubMed
Close
,
Patrick McCoy Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
Department of Urology, Royal Melbourne Hospital, Parkville, Victoria, Australia

Search for other papers by Patrick McCoy in
Google Scholar
PubMed
Close
,
Ken Chow Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
Department of Urology, Royal Melbourne Hospital, Parkville, Victoria, Australia

Search for other papers by Ken Chow in
Google Scholar
PubMed
Close
,
Natalie Kurganovs Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
Australian Prostate Cancer Research Centre Epworth, Richmond, Victoria, Australia
Ontario Institute for Cancer Research, Toronto, Canada
Princess Margaret Cancer Centre, University Health Network, Toronto, Canada

Search for other papers by Natalie Kurganovs in
Google Scholar
PubMed
Close
,
Michael Kerger Australian Prostate Cancer Research Centre Epworth, Richmond, Victoria, Australia

Search for other papers by Michael Kerger in
Google Scholar
PubMed
Close
,
Anthony Papenfuss Bioinformatics Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
Department of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Anthony Papenfuss in
Google Scholar
PubMed
Close
,
Christopher M Hovens Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
Department of Urology, Royal Melbourne Hospital, Parkville, Victoria, Australia

Search for other papers by Christopher M Hovens in
Google Scholar
PubMed
Close
, and
Niall M Corcoran Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
Department of Urology, Royal Melbourne Hospital, Parkville, Victoria, Australia
Department of Urology, Frankston Hospital, Frankston, Victoria, Australia

Search for other papers by Niall M Corcoran in
Google Scholar
PubMed
Close

Prostate cancer is a leading cause of morbidity and cancer-related death worldwide. Androgen deprivation therapy (ADT) is the cornerstone of management for advanced disease. The use of these therapies is associated with multiple side effects, including metabolic syndrome and truncal obesity. At the same time, obesity has been associated with both prostate cancer development and disease progression, linked to its effects on chronic inflammation at a tissue level. The connection between ADT, obesity, inflammation and prostate cancer progression is well established in clinical settings; however, an understanding of the changes in adipose tissue at the molecular level induced by castration therapies is missing. Here, we investigated the transcriptional changes in periprostatic fat tissue induced by profound ADT in a group of patients with high-risk tumours compared to a matching untreated cohort. We find that the deprivation of androgen is associated with a pro-inflammatory and obesity-like adipose tissue microenvironment. This study suggests that the beneficial effect of therapies based on androgen deprivation may be partially counteracted by metabolic and inflammatory side effects in the adipose tissue surrounding the prostate.

Open access
T L C Wolters Division of Endocrinology, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands

Search for other papers by T L C Wolters in
Google Scholar
PubMed
Close
,
C D C C van der Heijden Division of Experimental Internal Medicine, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
Division of Vascular Medicine, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands

Search for other papers by C D C C van der Heijden in
Google Scholar
PubMed
Close
,
N van Leeuwen Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands

Search for other papers by N van Leeuwen in
Google Scholar
PubMed
Close
,
B T P Hijmans-Kersten Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands

Search for other papers by B T P Hijmans-Kersten in
Google Scholar
PubMed
Close
,
M G Netea Division of Experimental Internal Medicine, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands

Search for other papers by M G Netea in
Google Scholar
PubMed
Close
,
J W A Smit Division of Endocrinology, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands

Search for other papers by J W A Smit in
Google Scholar
PubMed
Close
,
D H J Thijssen Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK

Search for other papers by D H J Thijssen in
Google Scholar
PubMed
Close
,
A R M M Hermus Division of Endocrinology, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands

Search for other papers by A R M M Hermus in
Google Scholar
PubMed
Close
,
N P Riksen Division of Vascular Medicine, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands

Search for other papers by N P Riksen in
Google Scholar
PubMed
Close
, and
R T Netea-Maier Division of Endocrinology, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands

Search for other papers by R T Netea-Maier in
Google Scholar
PubMed
Close

Objective

Acromegaly is characterized by an excess of growth hormone (GH) and insulin-like growth factor 1 (IGF1). Cardiovascular disease (CVD) risk factors are common in acromegaly and often persist after treatment. Both acute and long-lasting pro-inflammatory effects have been attributed to IGF1. Therefore, we hypothesized that inflammation persists in treated acromegaly and may contribute to CVD risk.

Methods

In this cross-sectional study, we assessed cardiovascular structure and function, and inflammatory parameters in treated acromegaly patients. Immune cell populations and inflammatory markers were assessed in peripheral blood from 71 treated acromegaly patients (with controlled or uncontrolled disease) and 41 matched controls. Whole blood (WB) was stimulated with Toll-like receptor ligands. In a subgroup of 21 controls and 33 patients with controlled disease, vascular ultrasound measurements were performed.

Results

Leukocyte counts were lower in patients with controlled acromegaly compared to patients with uncontrolled acromegaly and controls. Circulating IL18 concentrations were lower in patients; concentrations of other inflammatory mediators were comparable with controls. In stimulated WB, cytokine production was skewed toward inflammation in patients, most pronounced in those with uncontrolled disease. Vascular measurements in controlled patients showed endothelial dysfunction as indicated by a lower flow-mediated dilatation/nitroglycerine-mediated dilatation ratio. Surprisingly, pulse wave analysis and pulse wave velocity, both markers of endothelial dysfunction, were lower in patients, whereas intima-media thickness did not differ.

Conclusions

Despite treatment, acromegaly patients display persistent inflammatory changes and endothelial dysfunction, which may contribute to CVD risk and development of CVD.

Open access
Liangming Li Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sport University, Guangzhou, China
Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China

Search for other papers by Liangming Li in
Google Scholar
PubMed
Close
,
Yuan Wei Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sport University, Guangzhou, China
Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China

Search for other papers by Yuan Wei in
Google Scholar
PubMed
Close
,
Chunlu Fang Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sport University, Guangzhou, China
Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China

Search for other papers by Chunlu Fang in
Google Scholar
PubMed
Close
,
Shujing Liu Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sport University, Guangzhou, China
Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China

Search for other papers by Shujing Liu in
Google Scholar
PubMed
Close
,
Fu Zhou Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China

Search for other papers by Fu Zhou in
Google Scholar
PubMed
Close
,
Ge Zhao Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China

Search for other papers by Ge Zhao in
Google Scholar
PubMed
Close
,
Yaping Li Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China

Search for other papers by Yaping Li in
Google Scholar
PubMed
Close
,
Yuan Luo Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China

Search for other papers by Yuan Luo in
Google Scholar
PubMed
Close
,
Ziyi Guo Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China

Search for other papers by Ziyi Guo in
Google Scholar
PubMed
Close
,
Weiqun Lin Department of Clinical Nutrition, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China

Search for other papers by Weiqun Lin in
Google Scholar
PubMed
Close
, and
Wenqi Yang Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sport University, Guangzhou, China
Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China

Search for other papers by Wenqi Yang in
Google Scholar
PubMed
Close

Exercise has been recommended as an important strategy to improve glucose metabolism in obesity. Adipose tissue fibrosis is associated with inflammation and is implicated in glucose metabolism disturbance and insulin resistance in obesity. However, the effect of exercise on the progression of adipose tissue fibrosis is still unknown. The aim of the present study was to investigate whether exercise retarded the progression of adipose tissue fibrosis and ameliorated glucose homeostasis in diet-induced obese mice. To do so, obesity and adipose tissue fibrosis in mice were induced by high-fat diet feeding for 12 weeks and the mice subsequently received high-fat diet and exercise intervention for another 12 weeks. Exercise alleviated high-fat diet-induced glucose intolerance and insulin resistance. Continued high-fat diet feeding exacerbated collagen deposition and further increased fibrosis-related gene expression in adipose tissue. Exercise attenuated or reversed these changes. Additionally, PPARγ, which has been shown to inhibit adipose tissue fibrosis, was observed to be increased following exercise. Moreover, exercise decreased the expression of HIF-1α in adipose fibrosis, and adipose tissue inflammation was inhibited. In conclusion, our data indicate that exercise attenuates and even reverses the progression of adipose tissue fibrosis, providing a plausible mechanism for its beneficial effects on glucose metabolism in obesity.

Open access
Fernando Aprile-Garcia Instituto de Investigación en Biomedicina de Buenos Aires – CONICET, Departamento de Fisiología, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
Instituto de Investigación en Biomedicina de Buenos Aires – CONICET, Departamento de Fisiología, Partner Institute of the Max Planck Society, Buenos Aires, Argentina

Search for other papers by Fernando Aprile-Garcia in
Google Scholar
PubMed
Close
,
María Antunica-Noguerol Instituto de Investigación en Biomedicina de Buenos Aires – CONICET, Departamento de Fisiología, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
Instituto de Investigación en Biomedicina de Buenos Aires – CONICET, Departamento de Fisiología, Partner Institute of the Max Planck Society, Buenos Aires, Argentina

Search for other papers by María Antunica-Noguerol in
Google Scholar
PubMed
Close
,
Maia Ludmila Budziñski Instituto de Investigación en Biomedicina de Buenos Aires – CONICET, Departamento de Fisiología, Partner Institute of the Max Planck Society, Buenos Aires, Argentina

Search for other papers by Maia Ludmila Budziñski in
Google Scholar
PubMed
Close
,
Ana C Liberman Instituto de Investigación en Biomedicina de Buenos Aires – CONICET, Departamento de Fisiología, Partner Institute of the Max Planck Society, Buenos Aires, Argentina

Search for other papers by Ana C Liberman in
Google Scholar
PubMed
Close
, and
Eduardo Arzt Instituto de Investigación en Biomedicina de Buenos Aires – CONICET, Departamento de Fisiología, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
Instituto de Investigación en Biomedicina de Buenos Aires – CONICET, Departamento de Fisiología, Partner Institute of the Max Planck Society, Buenos Aires, Argentina

Search for other papers by Eduardo Arzt in
Google Scholar
PubMed
Close

Inflammatory responses are elicited after injury, involving release of inflammatory mediators that ultimately lead, at the molecular level, to the activation of specific transcription factors (TFs; mainly activator protein 1 and nuclear factor-κB). These TFs propagate inflammation by inducing the expression of cytokines and chemokines. The neuroendocrine system has a determinant role in the maintenance of homeostasis, to avoid exacerbated inflammatory responses. Glucocorticoids (GCs) are the key neuroendocrine regulators of the inflammatory response. In this study, we describe the molecular mechanisms involved in the interplay between inflammatory cytokines, the neuroendocrine axis and GCs necessary for the control of inflammation. Targeting and modulation of the glucocorticoid receptor (GR) and its activity is a common therapeutic strategy to reduce pathological signaling. Poly (ADP-ribose) polymerase 1 (PARP1) is an enzyme that catalyzes the addition of PAR on target proteins, a post-translational modification termed PARylation. PARP1 has a central role in transcriptional regulation of inflammatory mediators, both in neuroendocrine tumors and in CNS cells. It is also involved in modulation of several nuclear receptors. Therefore, PARP1 and GR share common inflammatory pathways with antagonic roles in the control of inflammatory processes, which are crucial for the effective maintenance of homeostasis.

Open access