Search Results

You are looking at 1 - 10 of 464 items for

  • Abstract: adrenarche x
  • Abstract: amenorrhoea x
  • Abstract: fertility x
  • Abstract: Gender x
  • Abstract: Hypogonadism x
  • Abstract: infertility x
  • Abstract: Kallmann x
  • Abstract: Klinefelter x
  • Abstract: menarche x
  • Abstract: menopause x
  • Abstract: puberty x
  • Abstract: testes x
  • Abstract: transsexual x
  • Abstract: Turner x
  • Abstract: ovary x
Clear All Modify Search
Alan D Rogol Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA

Search for other papers by Alan D Rogol in
Google Scholar
PubMed
Close

The overall incidence of sex chromosome aneuploidies is approximately 1 per 500 live-born infants, but far more common at conception. I shall review the fertility aspects of the sex chromosome trisomies, XXY, XYY, and XXX, with special reference to the karyotype 45,X/47,XXX. Each has a ‘specific’ (but variable) phenotype but may be modified by mosaicism. Although the alterations in the hypothalamic–pituitary–gonadal axis are important (and discussed), the emphasis here is on potential fertility and if one might predict that at various epochs within an individual’s life span: fetal, ‘mini’-puberty, childhood, puberty, and adulthood. The reproductive axis is often affected in females with the 47,XXX karyotype with diminished ovarian reserve and accelerated loss of ovarian function. Fewer than 5% of females with Turner syndrome have the 45,X/47,XXX karyotype. They have taller stature and less severe fertility issues compared to females with the 45,X or other forms of Turner syndrome mosaicism. For the 47,XXY karyotype, non-obstructive azoospermia is almost universal with sperm retrieval by micro-testicular sperm extraction possible in slightly fewer than half of the men. Men with the 47,XYY karyotype have normal to large testes and much less testicular dysfunction than those with the 47,XXY karyotype. They do have a slight increase in infertility compared to the reference population but not nearly as severe as those with the 47,XXY karyotype. Assisted reproductive technology, especially micro-testicular sperm extraction, has an important role, especially for those with 47,XXY; however, more recent data show promising techniques for the in vitro maturation of spermatogonial stem cells and 3D organoids in culture. Assisted reproductive technology is more complex for the female, but vitrification of oocytes has shown promising advances.

Open access
Henrik Falhammar Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

Search for other papers by Henrik Falhammar in
Google Scholar
PubMed
Close
,
Hedi Claahsen-van der Grinten Department of Pediatric Endocrine Disease, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

Search for other papers by Hedi Claahsen-van der Grinten in
Google Scholar
PubMed
Close
,
Nicole Reisch Medizinische Klinik and Poliklinik IV, Department of Endocrinology, University Hospital Munich, Munich, Germany

Search for other papers by Nicole Reisch in
Google Scholar
PubMed
Close
,
Jolanta Slowikowska-Hilczer Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland

Search for other papers by Jolanta Slowikowska-Hilczer in
Google Scholar
PubMed
Close
,
Anna Nordenström Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
Department of Paediatric Endocrinology, Astrid Lindgren Children Hospital, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Anna Nordenström in
Google Scholar
PubMed
Close
,
Robert Roehle Coordinating Center for Clinical Studies, Charité Universitätsmedizin, Berlin, Germany

Search for other papers by Robert Roehle in
Google Scholar
PubMed
Close
,
Claire Bouvattier Paris-Sud University, Orsay, France
Department of Pediatric Endocrinology, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France

Search for other papers by Claire Bouvattier in
Google Scholar
PubMed
Close
,
Baudewijntje P C Kreukels Department of Medical Psychology, VU University Medical Center, Amsterdam, The Netherlands

Search for other papers by Baudewijntje P C Kreukels in
Google Scholar
PubMed
Close
,
Birgit Köhler Department of Paediatric Endocrinology and Diabetology, Charité Universitätsmedizin, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany

Search for other papers by Birgit Köhler in
Google Scholar
PubMed
Close
, and
on behalf of the dsd-LIFE group
Search for other papers by on behalf of the dsd-LIFE group in
Google Scholar
PubMed
Close

Objective

The knowledge about health status in adults with disorder of sex development (DSD) is scarce.

Design and methods

A cross-sectional observational study in 14 European tertiary centers recruited 1040 participants (717 females, 311 males, 12 others) with DSD. Mean age was 32.4 ± 13.6 year (range 16–75). The cohort was divided into: Turner (n = 301), Klinefelter (n = 224), XY-DSD (n = 222), XX-DSD (excluding congenital adrenal hyperplasia (CAH) and 46,XX males) (n = 21), 46,XX-CAH (n = 226) and 45,X/46,XY (n = 45). Perceived and objective health statuses were measured and compared to European control data.

Results

In DSD, fair to very good general health was reported by 91.4% and only 8.6% reported (very) bad general health (controls 94.0% and 6.0%, P < 0.0001). Longstanding health issues other than DSD and feeling limited in daily life were reported in 51.0% and 38.6%, respectively (controls 24.5% and 13.8%, P < 0.0001 both). Any disorder except DSD was present in 84.3% (controls 24.6%, P < 0.0001). Males reported worse health than females. In the subgroup analysis, Klinefelter and 46,XX-DSD patients reported bad general health in 15.7% and 16.7%, respectively (Turner 3.2% and CAH 7.4%). Comorbidities were prevalent in all DSD subgroups but Klinefelter and Turner were most affected. Early diagnosis of DSD and a healthy lifestyle were associated with less comorbidities.

Conclusions

Overall, general health appeared to be good but a number of medical problems were reported, especially in Klinefelter and Turner. Early diagnosis of DSD and a healthy lifestyle seemed to be important. Lifelong follow-up at specialized centers is necessary.

Open access
Ladan Younesi Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran

Search for other papers by Ladan Younesi in
Google Scholar
PubMed
Close
,
Zeinab Safarpour Lima Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran

Search for other papers by Zeinab Safarpour Lima in
Google Scholar
PubMed
Close
,
Azadeh Akbari Sene Department of Obstetrics and Gynecology, IVF Fellowship, Shahid Akbar-Abadi Hospital IVF Center, Iran University of Medical Sciences, Tehran, Iran

Search for other papers by Azadeh Akbari Sene in
Google Scholar
PubMed
Close
,
Zahra Hosseini Jebelli Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran

Search for other papers by Zahra Hosseini Jebelli in
Google Scholar
PubMed
Close
, and
Ghazaleh Amjad Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran

Search for other papers by Ghazaleh Amjad in
Google Scholar
PubMed
Close

Polycystic ovarian syndrome (PCOS) is one of the most common endocrine disorders. The aim of this study was to find the correlation between color Doppler ultrasound and serum tests as auxiliary diagnostic criteria in areas where there is no possibility of some tests. A total of 108 patients were enrolled. They were divided into three groups including patients with PCOS, patients with PCOA ultrasound, patients with ovaries and normal hormone tests. Transvaginal sonography was performed from three groups and the results were evaluated in gray scale. The volume of the ovary, the number of follicles and the placement of follicles were recorded using using Doppler spectrum of uterine artery and ovarian stroma. Their arterial resistance index was also calculated. In the next step, serum samples were evaluated to determine the level of LH, FSH, free testosterone, DHEAS and 17-OHP hormones in the early follicular phase. Gray scale ultrasonographic findings (volume and number of ovarian follicles) as well as LH values were higher in patients with PCOS than those in the other two groups. These results proved the reliability of using these factors in the prediction of PCOS. In this study, Doppler indexes did not correlate with the size of the ovaries, the number of ovarian follicles and the measured hormone levels. The findings of transvaginal ultrasound and investigating the relationship with clinical and laboratory outcomes, a more suitable pattern could be chosen for more accurate patient selection and, leading to timely treatment and reducing the complications of the disease.

Open access
E Kohva Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
Faculty of Medicine, Department of Physiology, University of Helsinki, Helsinki, Finland

Search for other papers by E Kohva in
Google Scholar
PubMed
Close
,
P J Miettinen Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland

Search for other papers by P J Miettinen in
Google Scholar
PubMed
Close
,
S Taskinen Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
Department of Pediatric Surgery, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland

Search for other papers by S Taskinen in
Google Scholar
PubMed
Close
,
M Hero Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland

Search for other papers by M Hero in
Google Scholar
PubMed
Close
,
A Tarkkanen Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
Faculty of Medicine, Department of Physiology, University of Helsinki, Helsinki, Finland

Search for other papers by A Tarkkanen in
Google Scholar
PubMed
Close
, and
T Raivio Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
Faculty of Medicine, Department of Physiology, University of Helsinki, Helsinki, Finland

Search for other papers by T Raivio in
Google Scholar
PubMed
Close

Background

We describe the phenotypic spectrum and timing of diagnosis and management in a large series of patients with disorders of sexual development (DSD) treated in a single pediatric tertiary center.

Methods

DSD patients who had visited our tertiary center during the survey period (between 2004 and 2014) were identified based on an ICD-10 inquiry, and their phenotypic and molecular genetic findings were recorded from patient charts.

Results

Among the 550 DSD patients, 53.3% had 46,XY DSD; 37.1% had sex chromosome DSD and 9.6% had 46,XX DSD. The most common diagnoses were Turner syndrome (19.8%, diagnosed at the mean age of 4.7 ± 5.5 years), Klinefelter syndrome (14.5%, 6.8 ± 6.2 years) and bilateral cryptorchidism (23.1%). Very few patients with 46,XY DSD (7%) or 46,XX DSD (21%) had molecular genetic diagnosis. The yearly rate of DSD diagnoses remained stable over the survey period. After the release of the Nordic consensus on the management of undescended testes, the age at surgery for bilateral cryptorchidism declined significantly (P < 0.001).

Conclusions

Our results show that (i) Turner syndrome and Klinefelter syndrome, the most frequent single DSD diagnoses, are still diagnosed relatively late; (ii) a temporal shift was observed in the management of bilateral cryptorchidism, which may favorably influence patients’ adulthood semen quality and (iii) next-generation sequencing methods are not fully employed in the diagnostics of DSD patients.

Open access
Nicolás Crisosto Endocrinology and Metabolism Laboratory, West Division, School of Medicine, University of Chile, Santiago, Chile

Search for other papers by Nicolás Crisosto in
Google Scholar
PubMed
Close
,
Bárbara Echiburú Endocrinology and Metabolism Laboratory, West Division, School of Medicine, University of Chile, Santiago, Chile

Search for other papers by Bárbara Echiburú in
Google Scholar
PubMed
Close
,
Manuel Maliqueo Endocrinology and Metabolism Laboratory, West Division, School of Medicine, University of Chile, Santiago, Chile

Search for other papers by Manuel Maliqueo in
Google Scholar
PubMed
Close
,
Marta Luchsinger Endocrinology and Metabolism Laboratory, West Division, School of Medicine, University of Chile, Santiago, Chile

Search for other papers by Marta Luchsinger in
Google Scholar
PubMed
Close
,
Pedro Rojas Laboratory of Animal Physiology and Endocrinology, Faculty of Veterinary Sciences, University of Concepción, Chillán, Chile

Search for other papers by Pedro Rojas in
Google Scholar
PubMed
Close
,
Sergio Recabarren Laboratory of Animal Physiology and Endocrinology, Faculty of Veterinary Sciences, University of Concepción, Chillán, Chile

Search for other papers by Sergio Recabarren in
Google Scholar
PubMed
Close
, and
Teresa Sir-Petermann Endocrinology and Metabolism Laboratory, West Division, School of Medicine, University of Chile, Santiago, Chile

Search for other papers by Teresa Sir-Petermann in
Google Scholar
PubMed
Close

Context

Intrauterine life may be implicated in the origin of polycystic ovary syndrome (PCOS) modifying the endocrine and metabolic functions of children born to PCOS mothers independently of the genetic inheritance and gender. The aim of the present study was to evaluate the reproductive and metabolic functions in sons of women with PCOS during puberty.

Methods

Sixty-nine PCOS sons (PCOSs) and 84 control sons of 7–18 years old matched by the Tanner stage score were studied. A complete physical examination was conducted including anthropometric measurements (weight, height, waist, hip and body mass index). An oral glucose tolerance test was performed and circulating concentrations of luteinizing hormone, follicle-stimulating hormone (FSH), sex hormone-binding globulin, testosterone, androstenedione (A4), 17α-hydroxyprogesterone (17-OHP) and AMH were determined in the fasting sample.

Results

Waist-to-hip ratio, FSH and androstenedione levels were significantly higher in the PCOSs group compared to control boys during the Tanner stage II–III. In Tanner stages II–III and IV–V, PCOSs showed significantly higher total cholesterol and LDL levels. Propensity score analysis showed that higher LDL levels were attributable to the PCOSs condition and not to other metabolic factors. AMH levels were comparable during all stages. The rest of the parameters were comparable between both groups.

Conclusions

Sons of women with PCOS show increased total cholesterol and LDL levels during puberty, which may represent latent insulin resistance. Thus, this is a group that should be followed and studied looking for further features of insulin resistance and cardiovascular risk markers. Reproductive markers, on the other hand, are very similar to controls.

Open access
Katica Bajuk Studen Nuclear Medicine Department, University Medical Centre Ljubljana, Ljubljana, Slovenia

Search for other papers by Katica Bajuk Studen in
Google Scholar
PubMed
Close
and
Marija Pfeifer Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia

Search for other papers by Marija Pfeifer in
Google Scholar
PubMed
Close

Polycystic ovary syndrome (PCOS) is a common disorder in women of reproductive age. Besides hyperandrogenism, oligomenorrhea and fertility issues, it is associated with a high prevalence of metabolic disorders and cardiovascular risk factors. Several genetic polymorphisms have been identified for possible associations with cardiometabolic derangements in PCOS. Different PCOS phenotypes differ significantly in their cardiometabolic risk, which worsens with severity of androgen excess. Due to methodological difficulties, longer time-scale data about cardiovascular morbidity and mortality in PCOS and about possible beneficial effects of different treatment interventions is missing leaving many issues regarding cardiovascular risk unresolved.

Open access
Helene Bandsholm Leere Tallaksen Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Helene Bandsholm Leere Tallaksen in
Google Scholar
PubMed
Close
,
Emma B Johannsen Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Emma B Johannsen in
Google Scholar
PubMed
Close
,
Jesper Just Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Jesper Just in
Google Scholar
PubMed
Close
,
Mette Hansen Viuff Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Gynaecology and Obstetrics, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Mette Hansen Viuff in
Google Scholar
PubMed
Close
,
Claus H Gravholt Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Claus H Gravholt in
Google Scholar
PubMed
Close
, and
Anne Skakkebæk Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Anne Skakkebæk in
Google Scholar
PubMed
Close

Sex chromosome abnormalities (SCAs) are chromosomal disorders with either a complete or partial loss or gain of sex chromosomes. The most frequent SCAs include Turner syndrome (45,X), Klinefelter syndrome (47,XXY), Trisomy X syndrome (47,XXX), and Double Y syndrome (47,XYY). The phenotype seen in SCAs is highly variable and may not merely be due to the direct genomic imbalance from altered sex chromosome gene dosage but also due to additive alterations in gene networks and regulatory pathways across the genome as well as individual genetic modifiers. This review summarizes the current insight into the genomics of SCAs. In addition, future directions of research that can contribute to decipher the genomics of SCA are discussed such as single-cell omics, spatial transcriptomics, system biology thinking, human-induced pluripotent stem cells, and animal models, and how these data may be combined to bridge the gap between genomics and the clinical phenotype.

Open access
Elin Kahlert Clinic of Gastroenterology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany

Search for other papers by Elin Kahlert in
Google Scholar
PubMed
Close
,
Martina Blaschke Clinic of Gastroenterology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
Endokrinologikum Goettingen, Goettingen, Germany

Search for other papers by Martina Blaschke in
Google Scholar
PubMed
Close
,
Knut Brockmann Interdisciplinary Pediatric Center for Children with Developmental Disabilities and Severe Chronic Disorders, University Medical Center Goettingen, Goettingen, Germany

Search for other papers by Knut Brockmann in
Google Scholar
PubMed
Close
,
Clemens Freiberg Interdisciplinary Pediatric Center for Children with Developmental Disabilities and Severe Chronic Disorders, University Medical Center Goettingen, Goettingen, Germany

Search for other papers by Clemens Freiberg in
Google Scholar
PubMed
Close
,
Onno E Janssen Endokrinologikum Hamburg, Hamburg, Germany

Search for other papers by Onno E Janssen in
Google Scholar
PubMed
Close
,
Nikolaus Stahnke Endokrinologikum Hamburg, Hamburg, Germany

Search for other papers by Nikolaus Stahnke in
Google Scholar
PubMed
Close
,
Domenika Strik Endokrinologikum Berlin, Berlin, Germany

Search for other papers by Domenika Strik in
Google Scholar
PubMed
Close
,
Martin Merkel Endokrinologikum Hannover, Hannover, Germany

Search for other papers by Martin Merkel in
Google Scholar
PubMed
Close
,
Alexander Mann Endokrinologikum Frankfurt, Frankfurt/Main, Germany

Search for other papers by Alexander Mann in
Google Scholar
PubMed
Close
,
Klaus-Peter Liesenkötter Endokrinologikum Berlin, Berlin, Germany

Search for other papers by Klaus-Peter Liesenkötter in
Google Scholar
PubMed
Close
, and
Heide Siggelkow Clinic of Gastroenterology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
Endokrinologikum Goettingen, Goettingen, Germany

Search for other papers by Heide Siggelkow in
Google Scholar
PubMed
Close

Objective

Turner syndrome (TS) is characterized by the complete or partial loss of the second sex chromosome and associated with a wide range of clinical manifestations. We aimed to assess the medical care of adult patients with TS in Germany.

Design

Retrospective multicenter observational study.

Methods

Data were collected from medical records of 258 women with TS treated between 2001 and 2017 in five non-university endocrinologic centers in Germany.

Results

Mean age was 29.8 ± 11.6 years, mean height 152 ± 7.7 cm, and mean BMI 26.6 ± 6.3 kg/m2. The karyotype was known in 50% of patients. Information on cholesterol state, liver enzymes, and thyroid status was available in 81–98% of women with TS; autoimmune thyroiditis was diagnosed in 37%. Echocardiography was performed in 42% and cardiac MRI in 8.5%, resulting in a diagnosis of cardiovascular disorder in 28%. Data on growth hormone therapy were available for 40 patients (15%) and data concerning menarche in 157 patients (61%).

Conclusion

In 258 women with TS, retrospective analysis of healthcare data indicated that medical management was focused on endocrine manifestations. Further significant clinical features including cardiovascular disease, renal malformation, liver involvement, autoimmune diseases, hearing loss, and osteoporosis were only marginally if at all considered. Based on this evaluation and in accordance with recent guidelines, we compiled a documentation form facilitating the transition from pediatric to adult care and further medical management of TS patients. The foundation of Turner Centers in March 2019 will improve the treatment of TS women in Germany.

Open access
Isabelle Flechtner Center for Rare Gynecological Disorders, Centre des Pathologies Gynécologiques Rares, Paris, France
Department of Paediatric Endocrinology, Gynaecology, and Diabetology, AP-HP, Necker-Enfants Malades University Hospital, IMAGINE Institute affiliate, Paris, France

Search for other papers by Isabelle Flechtner in
Google Scholar
PubMed
Close
,
Magali Viaud Center for Rare Gynecological Disorders, Centre des Pathologies Gynécologiques Rares, Paris, France
Department of Paediatric Endocrinology, Gynaecology, and Diabetology, AP-HP, Necker-Enfants Malades University Hospital, IMAGINE Institute affiliate, Paris, France

Search for other papers by Magali Viaud in
Google Scholar
PubMed
Close
,
Dulanjalee Kariyawasam Department of Paediatric Endocrinology, Gynaecology, and Diabetology, AP-HP, Necker-Enfants Malades University Hospital, IMAGINE Institute affiliate, Paris, France

Search for other papers by Dulanjalee Kariyawasam in
Google Scholar
PubMed
Close
,
Marie Perrissin-Fabert Center for Rare Gynecological Disorders, Centre des Pathologies Gynécologiques Rares, Paris, France
Department of Paediatric Endocrinology, Gynaecology, and Diabetology, AP-HP, Necker-Enfants Malades University Hospital, IMAGINE Institute affiliate, Paris, France

Search for other papers by Marie Perrissin-Fabert in
Google Scholar
PubMed
Close
,
Maud Bidet Center for Rare Gynecological Disorders, Centre des Pathologies Gynécologiques Rares, Paris, France
Department of Paediatric Endocrinology, Gynaecology, and Diabetology, AP-HP, Necker-Enfants Malades University Hospital, IMAGINE Institute affiliate, Paris, France

Search for other papers by Maud Bidet in
Google Scholar
PubMed
Close
,
Anne Bachelot Center for Rare Gynecological Disorders, Centre des Pathologies Gynécologiques Rares, Paris, France
Department of Endocrinology and Reproductive Medicine, AP-HPIE3M, Hôpital Pitié-Salpêtrière, ICAN, Paris, France

Search for other papers by Anne Bachelot in
Google Scholar
PubMed
Close
,
Philippe Touraine Center for Rare Gynecological Disorders, Centre des Pathologies Gynécologiques Rares, Paris, France
Department of Endocrinology and Reproductive Medicine, AP-HPIE3M, Hôpital Pitié-Salpêtrière, ICAN, Paris, France

Search for other papers by Philippe Touraine in
Google Scholar
PubMed
Close
,
Philippe Labrune Department of Pediatrics, APHP, Centre de Référence des Maladies héréditaires du Métabolisme Hépatique, Hopital Antoine Béclère and Paris Sud University, Clamart, France

Search for other papers by Philippe Labrune in
Google Scholar
PubMed
Close
,
Pascale de Lonlay Reference Center of Inherited Metabolic Diseases, Université de Paris, Necker Enfants Malades, University Hospital, Paris, France
Centre for Rare Gynecological Disorders, Hospital Universitaire Necker-Enfants Malades, Paediatric Endocrinology, Gynaecology and Diabetology, AP-HP, Université de Paris, Paris, France

Search for other papers by Pascale de Lonlay in
Google Scholar
PubMed
Close
, and
Michel Polak Center for Rare Gynecological Disorders, Centre des Pathologies Gynécologiques Rares, Paris, France
Department of Paediatric Endocrinology, Gynaecology, and Diabetology, AP-HP, Necker-Enfants Malades University Hospital, IMAGINE Institute affiliate, Paris, France
Centre for Rare Gynecological Disorders, Hospital Universitaire Necker-Enfants Malades, Paediatric Endocrinology, Gynaecology and Diabetology, AP-HP, Université de Paris, Paris, France

Search for other papers by Michel Polak in
Google Scholar
PubMed
Close

Classic galactosemia is a rare inborn error of galactose metabolism with a birth prevalence of about 1/30,000–60,000. Long-term complications occurring despite dietary treatment consist of premature ovarian insufficiency (POI) and neurodevelopmental impairments. We performed with the French Reference Centers for Rare Diseases a multisite collaborative questionnaire survey for classic galactosemic patients. Its primary objective was to assess their puberty, pregnancy, gonadotropic axis, and pelvic morphology by ultrasound. The secondary objective was to determine predictive factors for pregnancy without oocyte donation. Completed questionnaires from 103 patients, 56 females (median age, 19 years (3–52 years)) and 47 males (median age, 19 years (3–45 years)), were analyzed. Among the 43 females older than 13 years old, mean age for breast development first stage was 13.8 years; spontaneous menarche occurred in 21/31 females at a mean age of 14.6 years. In these 21 women, 62% had spaniomenorrhea and 7/17 older than 30 years had amenorrhea. All age-groups confounded, FSH was above reference range for 65.7% of the patients, anti-Müllerian hormone and inhibin B were undetectable, and the ovaries were small with few or no follicles detected. Among the 5 females who sought to conceive, 4 had pregnancies. Among the 47 males, 1 had cryptorchidism, all have normal testicular function and none had a desire to conceive children. Thus, spontaneous puberty and POI are both common in this population. Spontaneous menarche seems to be the best predictive factor for successful spontaneous pregnancy.

Open access
Anita Hokken-Koelega Erasmus University Medical Centre, Rotterdam, The Netherlands

Search for other papers by Anita Hokken-Koelega in
Google Scholar
PubMed
Close
,
Aart-Jan van der Lely Erasmus University Medical Centre, Rotterdam, The Netherlands

Search for other papers by Aart-Jan van der Lely in
Google Scholar
PubMed
Close
,
Berthold Hauffa University Children’s Hospital, Essen, Germany

Search for other papers by Berthold Hauffa in
Google Scholar
PubMed
Close
,
Gabriele Häusler Medical University and General Hospital of Vienna, Vienna, Austria

Search for other papers by Gabriele Häusler in
Google Scholar
PubMed
Close
,
Gudmundur Johannsson Sahlgrenska University Hospital, Göteborg, Sweden

Search for other papers by Gudmundur Johannsson in
Google Scholar
PubMed
Close
,
Mohamad Maghnie Istituto Giannina Gaslini, University of Genova, Genova, Italy

Search for other papers by Mohamad Maghnie in
Google Scholar
PubMed
Close
,
Jesús Argente Hospital Infantil Universitario Niño Jesús, Madrid, Spain

Search for other papers by Jesús Argente in
Google Scholar
PubMed
Close
,
Jean DeSchepper University Hospital Brussels, Brussels, Belgium

Search for other papers by Jean DeSchepper in
Google Scholar
PubMed
Close
,
Helena Gleeson Queen Elizabeth Hospital, Birmingham, UK

Search for other papers by Helena Gleeson in
Google Scholar
PubMed
Close
,
John W Gregory Cardiff University School of Medicine, Cardiff, UK

Search for other papers by John W Gregory in
Google Scholar
PubMed
Close
,
Charlotte Höybye Department of Molecular Medicine and Surgery, Karolinska Institute and Department of Endocrinology, Metabolism and Diabetology, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Charlotte Höybye in
Google Scholar
PubMed
Close
,
Fahrettin Keleştimur Department of Endocrinology, School of Medicine, Erciyes University, Kayseri, Turkey

Search for other papers by Fahrettin Keleştimur in
Google Scholar
PubMed
Close
,
Anton Luger Sahlgrenska University Hospital, Göteborg, Sweden

Search for other papers by Anton Luger in
Google Scholar
PubMed
Close
,
Hermann L Müller Department of Pediatrics, Klinikum Oldenburg, Medical Campus University Oldenburg, Oldenburg, Germany

Search for other papers by Hermann L Müller in
Google Scholar
PubMed
Close
,
Sebastian Neggers University Children’s Hospital, Essen, Germany

Search for other papers by Sebastian Neggers in
Google Scholar
PubMed
Close
,
Vera Popovic-Brkic Belgrade University School of Medicine, Belgrade, Serbia

Search for other papers by Vera Popovic-Brkic in
Google Scholar
PubMed
Close
,
Eleonora Porcu University of Bologna, Bologna, Italy

Search for other papers by Eleonora Porcu in
Google Scholar
PubMed
Close
,
Lars Sävendahl Department of Women’s and Children’s Health, Karolinska Institutet, and Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Lars Sävendahl in
Google Scholar
PubMed
Close
,
Stephen Shalet The Christie Hospital, Manchester, UK

Search for other papers by Stephen Shalet in
Google Scholar
PubMed
Close
,
Bessie Spiliotis University of Patras School of Medicine, Patras, Greece

Search for other papers by Bessie Spiliotis in
Google Scholar
PubMed
Close
, and
Maithé Tauber Hôpital des Enfants, Toulouse, France

Search for other papers by Maithé Tauber in
Google Scholar
PubMed
Close

Objective

Seamless transition of endocrine patients from the paediatric to adult setting is still suboptimal, especially in patients with complex disorders, i.e., small for gestational age, Turner or Prader–Willi syndromes; Childhood Cancer Survivors, and those with childhood-onset growth hormone deficiency.

Methods

An expert panel meeting comprised of European paediatric and adult endocrinologists was convened to explore the current gaps in managing the healthcare of patients with endocrine diseases during transition from paediatric to adult care settings.

Results

While a consensus was reached that a team approach is best, discussions revealed that a ‘one size fits all’ model for transition is largely unsuccessful in these patients. They need more tailored care during adolescence to prevent complications like failure to achieve target adult height, reduced bone mineral density, morbid obesity, metabolic perturbations (obesity and body composition), inappropriate/inadequate puberty, compromised fertility, diminished quality of life and failure to adapt to the demands of adult life. Sometimes it is difficult for young people to detach emotionally from their paediatric endocrinologist and/or the abrupt change from an environment of parental responsibility to one of autonomy. Discussions about impending transition and healthcare autonomy should begin in early adolescence and continue throughout young adulthood to ensure seamless continuum of care and optimal treatment outcomes.

Conclusions

Even amongst a group of healthcare professionals with a great interest in improving transition services for patients with endocrine diseases, there is still much work to be done to improve the quality of healthcare for transition patients.

Open access