Search Results
You are looking at 31 - 40 of 478 items for
- Abstract: adrenarche x
- Abstract: amenorrhoea x
- Abstract: fertility x
- Abstract: Gender x
- Abstract: Hypogonadism x
- Abstract: Kallmann x
- Abstract: Klinefelter x
- Abstract: menarche x
- Abstract: menopause x
- Abstract: puberty x
- Abstract: testes x
- Abstract: transsexual x
- Abstract: Turner x
- Abstract: ovary x
- Abstract: follicles x
Search for other papers by Anita Hokken-Koelega in
Google Scholar
PubMed
Search for other papers by Aart-Jan van der Lely in
Google Scholar
PubMed
Search for other papers by Berthold Hauffa in
Google Scholar
PubMed
Search for other papers by Gabriele Häusler in
Google Scholar
PubMed
Search for other papers by Gudmundur Johannsson in
Google Scholar
PubMed
Search for other papers by Mohamad Maghnie in
Google Scholar
PubMed
Search for other papers by Jesús Argente in
Google Scholar
PubMed
Search for other papers by Jean DeSchepper in
Google Scholar
PubMed
Search for other papers by Helena Gleeson in
Google Scholar
PubMed
Search for other papers by John W Gregory in
Google Scholar
PubMed
Search for other papers by Charlotte Höybye in
Google Scholar
PubMed
Search for other papers by Fahrettin Keleştimur in
Google Scholar
PubMed
Search for other papers by Anton Luger in
Google Scholar
PubMed
Search for other papers by Hermann L Müller in
Google Scholar
PubMed
Search for other papers by Sebastian Neggers in
Google Scholar
PubMed
Search for other papers by Vera Popovic-Brkic in
Google Scholar
PubMed
Search for other papers by Eleonora Porcu in
Google Scholar
PubMed
Search for other papers by Lars Sävendahl in
Google Scholar
PubMed
Search for other papers by Stephen Shalet in
Google Scholar
PubMed
Search for other papers by Bessie Spiliotis in
Google Scholar
PubMed
Search for other papers by Maithé Tauber in
Google Scholar
PubMed
Objective
Seamless transition of endocrine patients from the paediatric to adult setting is still suboptimal, especially in patients with complex disorders, i.e., small for gestational age, Turner or Prader–Willi syndromes; Childhood Cancer Survivors, and those with childhood-onset growth hormone deficiency.
Methods
An expert panel meeting comprised of European paediatric and adult endocrinologists was convened to explore the current gaps in managing the healthcare of patients with endocrine diseases during transition from paediatric to adult care settings.
Results
While a consensus was reached that a team approach is best, discussions revealed that a ‘one size fits all’ model for transition is largely unsuccessful in these patients. They need more tailored care during adolescence to prevent complications like failure to achieve target adult height, reduced bone mineral density, morbid obesity, metabolic perturbations (obesity and body composition), inappropriate/inadequate puberty, compromised fertility, diminished quality of life and failure to adapt to the demands of adult life. Sometimes it is difficult for young people to detach emotionally from their paediatric endocrinologist and/or the abrupt change from an environment of parental responsibility to one of autonomy. Discussions about impending transition and healthcare autonomy should begin in early adolescence and continue throughout young adulthood to ensure seamless continuum of care and optimal treatment outcomes.
Conclusions
Even amongst a group of healthcare professionals with a great interest in improving transition services for patients with endocrine diseases, there is still much work to be done to improve the quality of healthcare for transition patients.
Search for other papers by Karim Gariani in
Google Scholar
PubMed
Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by François R Jornayvaz in
Google Scholar
PubMed
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the industrialized world. NAFLD encompasses a whole spectrum ranging from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. The latter can lead to hepatocellular carcinoma. Furthermore, NASH is the most rapidly increasing indication for liver transplantation in western countries and therefore represents a global health issue. The pathophysiology of NASH is complex and includes multiple parallel hits. NASH is notably characterized by steatosis as well as evidence of hepatocyte injury and inflammation, with or without fibrosis. NASH is frequently associated with type 2 diabetes and conditions associated with insulin resistance. Moreover, NASH may also be found in many other endocrine diseases such as polycystic ovary syndrome, hypothyroidism, male hypogonadism, growth hormone deficiency or glucocorticoid excess, for example. In this review, we will discuss the pathophysiology of NASH associated with different endocrinopathies.
Search for other papers by Neil R Chappell in
Google Scholar
PubMed
Search for other papers by Beth Zhou in
Google Scholar
PubMed
Search for other papers by Amy K Schutt in
Google Scholar
PubMed
Search for other papers by William E Gibbons in
Google Scholar
PubMed
Search for other papers by Chellakkan S Blesson in
Google Scholar
PubMed
Polycystic ovary syndrome (PCOS) is the most common ovulatory defect in women. Although most PCOS patients are obese, a subset of PCOS women are lean but show similar risks for adverse fertility outcomes. A lean PCOS mouse model was created using prenatal androgen administration. This developmentally programmed mouse model was used for this study. Our objective was to investigate if mitochondrial structure and functions were compromised in oocytes obtained from lean PCOS mouse. The lean PCOS mouse model was validated by performing glucose tolerance test, HbA1c levels, body weight and estrous cycle analyses. Oocytes were isolated and were used to investigate inner mitochondrial membrane potential, oxidative stress, lipid peroxidation, ATP production, mtDNA copy number, transcript abundance and electron microscopy. Our results demonstrate that lean PCOS mice have similar weight to that of the controls but exhibit glucose intolerance and hyperinsulinemia along with dysregulated estrus cycle. Analysis of their oocytes show impaired inner mitochondrial membrane function, elevated reactive oxygen species (ROS) and increased RNA transcript abundance. Electron microscopy of the oocytes showed impaired mitochondrial ultrastructure. In conclusion, the lean PCOS mouse model shows a decreased oocyte quality related to impaired mitochondrial ultrastructure and function.
Search for other papers by Dorte Glintborg in
Google Scholar
PubMed
Search for other papers by Magda Lambaa Altinok in
Google Scholar
PubMed
Search for other papers by Pernille Ravn in
Google Scholar
PubMed
Search for other papers by Kurt Bjerregaard Stage in
Google Scholar
PubMed
Search for other papers by Kurt Højlund in
Google Scholar
PubMed
Search for other papers by Marianne Andersen in
Google Scholar
PubMed
Background/aims
Polycystic ovary syndrome (PCOS) is associated with insulin resistance, adrenal hyperactivity and decreased mental health. We aimed to investigate the changes in adrenal activity, metabolic status and mental health in PCOS during treatment with escitalopram or placebo.
Methods
Forty-two overweight premenopausal women with PCOS and no clinical depression were randomized to 12-week SSRI (20 mg escitalopram/day, n = 21) or placebo (n = 21). Patients underwent clinical examination, fasting blood samples, adrenocorticotroph hormone (ACTH) test, 3-h oral glucose tolerance test (OGTT) and filled in questionnaires regarding mental health and health-related quality of life (HRQoL): WHO Well-Being Index (WHO-5), Major Depression Inventory (MDI), Short Form 36 (SF-36) and PCOS questionnaire.
Results
Included women were aged 31 (6) years (mean (s.d.)) and had body mass index (BMI) 35.8 (6.5) kg/m2 and waist 102 (12) cm. Escitalopram was associated with increased waist (median (quartiles) change 1 (0; 3) cm), P = 0.005 vs change during placebo and increased cortisol levels (cortisol 0, cortisol 60, peak cortisol and area under the curve for cortisol during ACTH test), all P < 0.05 vs changes during placebo. Escitalopram had no significant effect on measures of insulin sensitivity, insulin secretion, fasting lipids, mental health or HRQoL.
Conclusion
Waist circumference and cortisol levels increased during treatment with escitalopram in women with PCOS and no clinical depression, whereas metabolic risk markers, mental health and HRQol were unchanged.
Search for other papers by Masatada Watanabe in
Google Scholar
PubMed
Search for other papers by Shuji Ohno in
Google Scholar
PubMed
Search for other papers by Hiroshi Wachi in
Google Scholar
PubMed
Emerging evidence suggests that sex steroids are important for human skin health. In particular, estrogen improves skin thickness, elasticity and moisture of older women. The major source of circulating estrogen is the ovary; however, local estrogen synthesis and secretion have important roles in, for example, bone metabolism and breast cancer development. We hypothesized that infiltrated peripheral monocytes are one of the sources of estrogen in skin tissues. We also hypothesized that, during atopic dermatitis under stress, a decline in the hypothalamus–pituitary–adrenal axis (HPA) and facilitation of the (hypothalamus)–sympathetic–adrenomedullary system (SAM) attenuates estrogen secretion from monocytes. Based on this hypothesis, we tested aromatase expression in the human peripheral monocyte-derived cell line THP-1 in response to the synthetic glucocorticoid dexamethasone (Dex), the synthetic β-agonist isoproterenol (Iso) and the β-antagonist propranolol (Pro). Dex mimics glucocorticoid secreted during excitation of the HPA, and Iso mimics catecholamine secreted during excitation of the SAM. We found that aromatase activity and the CYP19A1 gene transcript were both upregulated in THP-1 cells in the presence of Dex. Addition of Iso induced their downregulation and further addition of Pro rescued aromatase expression. These results may suggest that attenuation of estrogen secretion from peripheral monocytes could be a part of the pathology of stress-caused deterioration of atopic dermatitis. Further examination using an in vitro human skin model including THP-1 cells might be a valuable tool for investigating the therapeutic efficacy and mechanism of estrogen treatment for skin health.
Search for other papers by Luigi Laino in
Google Scholar
PubMed
Search for other papers by Silvia Majore in
Google Scholar
PubMed
Search for other papers by Nicoletta Preziosi in
Google Scholar
PubMed
Search for other papers by Barbara Grammatico in
Google Scholar
PubMed
Search for other papers by Carmelilia De Bernardo in
Google Scholar
PubMed
Search for other papers by Salvatore Scommegna in
Google Scholar
PubMed
Search for other papers by Anna Maria Rapone in
Google Scholar
PubMed
Search for other papers by Giacinto Marrocco in
Google Scholar
PubMed
Search for other papers by Irene Bottillo in
Google Scholar
PubMed
Search for other papers by Paola Grammatico in
Google Scholar
PubMed
Sex development is a process under genetic control directing both the bi-potential gonads to become either a testis or an ovary, and the consequent differentiation of internal ducts and external genitalia. This complex series of events can be altered by a large number of genetic and non-genetic factors. Disorders of sex development (DSD) are all the medical conditions characterized by an atypical chromosomal, gonadal, or phenotypical sex. Incomplete knowledge of the genetic mechanisms involved in sex development results in a low probability of determining the molecular definition of the genetic defect in many of the patients. In this study, we describe the clinical, cytogenetic, and molecular study of 88 cases with DSD, including 29 patients with 46,XY and disorders in androgen synthesis or action, 18 with 46,XX and disorders in androgen excess, 17 with 46,XY and disorders of gonadal (testicular) development, 11 classified as 46,XX other, eight with 46,XX and disorders of gonadal (ovarian) development, and five with sex chromosome anomalies. In total, we found a genetic variant in 56 out of 88 of them, leading to the clinical classification of every patient, and we outline the different steps required for a coherent genetic testing approach. In conclusion, our results highlight the fact that each category of DSD is related to a large number of different DNA alterations, thus requiring multiple genetic studies to achieve a precise etiological diagnosis for each patient.
Search for other papers by Paraskevi Kazakou in
Google Scholar
PubMed
Search for other papers by Stavroula A Paschou in
Google Scholar
PubMed
Search for other papers by Theodora Psaltopoulou in
Google Scholar
PubMed
Search for other papers by Maria Gavriatopoulou in
Google Scholar
PubMed
Search for other papers by Eleni Korompoki in
Google Scholar
PubMed
Search for other papers by Katerina Stefanaki in
Google Scholar
PubMed
Search for other papers by Fotini Kanouta in
Google Scholar
PubMed
Search for other papers by Georgia N Kassi in
Google Scholar
PubMed
Search for other papers by Meletios-Athanasios Dimopoulos in
Google Scholar
PubMed
Search for other papers by Asimina Mitrakou in
Google Scholar
PubMed
Endocrine system plays a vital role in controlling human homeostasis. Understanding the possible effects of COVID-19 on endocrine glands is crucial to prevent and manage endocrine disorders before and during hospitalization in COVID-19-infected patients as well as to follow them up properly upon recovery. Many endocrine glands such as pancreas, hypothalamus and pituitary, thyroid, adrenal glands, testes, and ovaries have been found to express angiotensin-converting enzyme 2 receptors, the main binding site of the virus. Since the pandemic outbreak, various publications focus on the aggravation of preexisting endocrine diseases by COVID-19 infection or the adverse prognosis of the disease in endocrine patients. However, data on endocrine disorders both during the phase of the infection (early complications) and upon recovery (late complications) are scarce. The aim of this review is to identify and discuss early and late endocrine complications of COVID-19. The majority of the available data refer to glucose dysregulation and its reciprocal effect on COVID-19 infection with the main interest focusing on the presentation of new onset of diabetes mellitus. Thyroid dysfunction with low triiodothyronine, low thyroid stimulating hormone, or subacute thyroiditis has been reported. Adrenal dysregulation and impaired spermatogenesis in affected men have been also reported. Complications of other endocrine glands are still not clear. Considering the recent onset of COVID-19 infection, the available follow-up data are limited, and therefore, long-term studies are required to evaluate certain effects of COVID-19 on the endocrine glands.
Search for other papers by Małgorzata Więcek in
Google Scholar
PubMed
Search for other papers by Jakub Gawlik in
Google Scholar
PubMed
Search for other papers by Zuzanna Nowak in
Google Scholar
PubMed
Search for other papers by Aneta Gawlik in
Google Scholar
PubMed
Loss of fertility is one of the most important concerns facing Turner syndrome (TS) patients as they transition into adult health care. Due to the limited and rapidly decreasing ovarian reserve, many TS patients require fertility preservation (FP) techniques to preserve their reproductive potential until they are ready to pursue procreation. One has to also remember about the additional risks connected with pregnancy in TS patients. In order to determine the optimal time for introducing FP techniques and decrease the chance of an unnecessary intervention, markers and procedures assessing ovarian reserve have been developed. The exposure to potential cardiovascular complications should be determined before FP to avoid unnecessary procedures in patients with potential contraindications to pregnancy. The aim of the present review is to answer the following three questions important for successful preservation of fertility and safe pregnancy in TS: which markers of ovarian reserve should be used as selection criteria for FP? Which methods of FP are the safest and most effective? Are there any cardiovascular contraindications to FP? For each of those questions, separate literature searches have been conducted. A total of 86 articles have been included in this review: 34 for the first question, 35 for the second, and 17 for the third. Ovarian reserve markers and cardiovascular contraindications to pregnancy should be established before FP; hoverer, there are no unambiguous indicators as to which patients should be disqualified from the FP and more evidence is needed in this subject.
Department of Diabetes and Endocrinology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK
Search for other papers by Hamidreza Mani in
Google Scholar
PubMed
Search for other papers by Yogini Chudasama in
Google Scholar
PubMed
Search for other papers by Michelle Hadjiconstantinou in
Google Scholar
PubMed
Search for other papers by Danielle H Bodicoat in
Google Scholar
PubMed
The Leicester Biomedical Research Centre, Leicester and Loughborough, UK
Search for other papers by Charlotte Edwardson in
Google Scholar
PubMed
Search for other papers by Miles J Levy in
Google Scholar
PubMed
Search for other papers by Laura J Gray in
Google Scholar
PubMed
Search for other papers by Janette Barnett in
Google Scholar
PubMed
Search for other papers by Heather Daly in
Google Scholar
PubMed
Search for other papers by Trevor A Howlett in
Google Scholar
PubMed
Search for other papers by Kamlesh Khunti in
Google Scholar
PubMed
Search for other papers by Melanie J Davies in
Google Scholar
PubMed
Objective
To evaluate the effectiveness of a structured education programmes in women with polycystic ovary syndrome (PCOS).
Methods
Single-centre, randomised controlled trial, testing a single exposure to a group-based, face-to-face, structured education programme. Inclusion criteria were women with PCOS, aged 18–49 years inclusive and body mass index ≥23 kg/m2 for black and minority ethnicities or ≥25 kg/m2 for white Europeans. Primary outcome was step-count/day at 12 months. Secondary outcomes included indices of physical activity, cardiovascular risk factors, quality of life (QoL) and illness perception (IP).
Results
161 women were included (78 control, 83 intervention); 69% white; mean age 33.4 (s.d. 7.6) years, of whom 100 (48 intervention; 52 control) attended their 12-month visit (38% attrition). 77% of the intervention arm attended the education programme. No significant change in step-count was observed at 12 months (mean difference: +351 steps/day (95% confidence interval −481, +1183); P = 0.40). No differences were found in biochemical or anthropometric outcomes. The education programme improved participants’ IP in 2 dimensions: understanding their PCOS (P < 0.001) and sense of control (P < 0.01) and improved QoL in 3 dimensions: emotions (P < 0.05), fertility (P < 0.05), weight (P < 0.01) and general mental well-being (P < 0.01).
Discussion
A single exposure to structured education programme did not increase physical activity or improve biochemical markers in overweight and obese women with PCOS. However, providing a structured education in parallel to routine medical treatment can be beneficial for participants’ understanding of their condition, reducing their anxiety and improving their QoL.
Search for other papers by Lukas Plachy in
Google Scholar
PubMed
Search for other papers by Lenka Petruzelkova in
Google Scholar
PubMed
Search for other papers by Petra Dusatkova in
Google Scholar
PubMed
Search for other papers by Klara Maratova in
Google Scholar
PubMed
Search for other papers by Dana Zemkova in
Google Scholar
PubMed
Search for other papers by Lenka Elblova in
Google Scholar
PubMed
Search for other papers by Vit Neuman in
Google Scholar
PubMed
Search for other papers by Stanislava Kolouskova in
Google Scholar
PubMed
Search for other papers by Barbora Obermannova in
Google Scholar
PubMed
Search for other papers by Marta Snajderova in
Google Scholar
PubMed
Search for other papers by Zdenek Sumnik in
Google Scholar
PubMed
Search for other papers by Jan Lebl in
Google Scholar
PubMed
Search for other papers by Stepanka Pruhova in
Google Scholar
PubMed
Familial short stature (FSS) describes vertically transmitted growth disorders. Traditionally, polygenic inheritance is presumed, but monogenic inheritance seems to occur more frequently than expected. Clinical predictors of monogenic FSS have not been elucidated. The aim of the study was to identify the monogenic etiology and its clinical predictors in FSS children. Of 747 patients treated with growth hormone (GH) in our center, 95 with FSS met the inclusion criteria (pretreatment height ≤−2 SD in child and his/her shorter parent); secondary short stature and Turner/Prader–Willi syndrome were excluded criteria. Genetic etiology was known in 11/95 children before the study, remaining 84 were examined by next-generation sequencing. The results were evaluated by American College of Medical Genetics and Genomics (ACMG) guidelines. Nonparametric tests evaluated differences between monogenic and non-monogenic FSS, an ROC curve estimated quantitative cutoffs for the predictors. Monogenic FSS was confirmed in 36/95 (38%) children. Of these, 29 (81%) carried a causative genetic variant affecting the growth plate, 4 (11%) a variant affecting GH–insulin-like growth factor 1 (IGF1) axis and 3 (8%) a variant in miscellaneous genes. Lower shorter parent’s height (P = 0.015) and less delayed bone age (BA) before GH treatment (P = 0.026) predicted monogenic FSS. In children with BA delayed less than 0.4 years and with shorter parent’s heights ≤−2.4 SD, monogenic FSS was revealed in 13/16 (81%) cases. To conclude, in FSS children treated with GH, a monogenic etiology is frequent, and gene variants affecting the growth plate are the most common. Shorter parent’s height and BA are clinical predictors of monogenic FSS.