Search Results

You are looking at 31 - 40 of 477 items for

  • Abstract: adrenarche x
  • Abstract: amenorrhoea x
  • Abstract: fertility x
  • Abstract: Gender x
  • Abstract: Hypogonadism x
  • Abstract: infertility x
  • Abstract: Kallmann x
  • Abstract: Klinefelter x
  • Abstract: menarche x
  • Abstract: menopause x
  • Abstract: puberty x
  • Abstract: testes x
  • Abstract: transsexual x
  • Abstract: Turner x
  • Abstract: ovary x
  • Abstract: follicles x
Clear All Modify Search
Anita Hokken-Koelega Erasmus University Medical Centre, Rotterdam, The Netherlands

Search for other papers by Anita Hokken-Koelega in
Google Scholar
PubMed
Close
,
Aart-Jan van der Lely Erasmus University Medical Centre, Rotterdam, The Netherlands

Search for other papers by Aart-Jan van der Lely in
Google Scholar
PubMed
Close
,
Berthold Hauffa University Children’s Hospital, Essen, Germany

Search for other papers by Berthold Hauffa in
Google Scholar
PubMed
Close
,
Gabriele Häusler Medical University and General Hospital of Vienna, Vienna, Austria

Search for other papers by Gabriele Häusler in
Google Scholar
PubMed
Close
,
Gudmundur Johannsson Sahlgrenska University Hospital, Göteborg, Sweden

Search for other papers by Gudmundur Johannsson in
Google Scholar
PubMed
Close
,
Mohamad Maghnie Istituto Giannina Gaslini, University of Genova, Genova, Italy

Search for other papers by Mohamad Maghnie in
Google Scholar
PubMed
Close
,
Jesús Argente Hospital Infantil Universitario Niño Jesús, Madrid, Spain

Search for other papers by Jesús Argente in
Google Scholar
PubMed
Close
,
Jean DeSchepper University Hospital Brussels, Brussels, Belgium

Search for other papers by Jean DeSchepper in
Google Scholar
PubMed
Close
,
Helena Gleeson Queen Elizabeth Hospital, Birmingham, UK

Search for other papers by Helena Gleeson in
Google Scholar
PubMed
Close
,
John W Gregory Cardiff University School of Medicine, Cardiff, UK

Search for other papers by John W Gregory in
Google Scholar
PubMed
Close
,
Charlotte Höybye Department of Molecular Medicine and Surgery, Karolinska Institute and Department of Endocrinology, Metabolism and Diabetology, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Charlotte Höybye in
Google Scholar
PubMed
Close
,
Fahrettin Keleştimur Department of Endocrinology, School of Medicine, Erciyes University, Kayseri, Turkey

Search for other papers by Fahrettin Keleştimur in
Google Scholar
PubMed
Close
,
Anton Luger Sahlgrenska University Hospital, Göteborg, Sweden

Search for other papers by Anton Luger in
Google Scholar
PubMed
Close
,
Hermann L Müller Department of Pediatrics, Klinikum Oldenburg, Medical Campus University Oldenburg, Oldenburg, Germany

Search for other papers by Hermann L Müller in
Google Scholar
PubMed
Close
,
Sebastian Neggers University Children’s Hospital, Essen, Germany

Search for other papers by Sebastian Neggers in
Google Scholar
PubMed
Close
,
Vera Popovic-Brkic Belgrade University School of Medicine, Belgrade, Serbia

Search for other papers by Vera Popovic-Brkic in
Google Scholar
PubMed
Close
,
Eleonora Porcu University of Bologna, Bologna, Italy

Search for other papers by Eleonora Porcu in
Google Scholar
PubMed
Close
,
Lars Sävendahl Department of Women’s and Children’s Health, Karolinska Institutet, and Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden

Search for other papers by Lars Sävendahl in
Google Scholar
PubMed
Close
,
Stephen Shalet The Christie Hospital, Manchester, UK

Search for other papers by Stephen Shalet in
Google Scholar
PubMed
Close
,
Bessie Spiliotis University of Patras School of Medicine, Patras, Greece

Search for other papers by Bessie Spiliotis in
Google Scholar
PubMed
Close
, and
Maithé Tauber Hôpital des Enfants, Toulouse, France

Search for other papers by Maithé Tauber in
Google Scholar
PubMed
Close

Objective

Seamless transition of endocrine patients from the paediatric to adult setting is still suboptimal, especially in patients with complex disorders, i.e., small for gestational age, Turner or Prader–Willi syndromes; Childhood Cancer Survivors, and those with childhood-onset growth hormone deficiency.

Methods

An expert panel meeting comprised of European paediatric and adult endocrinologists was convened to explore the current gaps in managing the healthcare of patients with endocrine diseases during transition from paediatric to adult care settings.

Results

While a consensus was reached that a team approach is best, discussions revealed that a ‘one size fits all’ model for transition is largely unsuccessful in these patients. They need more tailored care during adolescence to prevent complications like failure to achieve target adult height, reduced bone mineral density, morbid obesity, metabolic perturbations (obesity and body composition), inappropriate/inadequate puberty, compromised fertility, diminished quality of life and failure to adapt to the demands of adult life. Sometimes it is difficult for young people to detach emotionally from their paediatric endocrinologist and/or the abrupt change from an environment of parental responsibility to one of autonomy. Discussions about impending transition and healthcare autonomy should begin in early adolescence and continue throughout young adulthood to ensure seamless continuum of care and optimal treatment outcomes.

Conclusions

Even amongst a group of healthcare professionals with a great interest in improving transition services for patients with endocrine diseases, there is still much work to be done to improve the quality of healthcare for transition patients.

Open access
Wolfgang Koechling Ferring Pharmaceuticals A/S, Copenhagen, Denmark

Search for other papers by Wolfgang Koechling in
Google Scholar
PubMed
Close
,
Daniel Plaksin Bio-Technology General Israel Ltd, Ferring Pharmaceuticals, Kiryat Malachi, Israel

Search for other papers by Daniel Plaksin in
Google Scholar
PubMed
Close
,
Glenn E Croston Croston Consulting, San Diego, California, USA

Search for other papers by Glenn E Croston in
Google Scholar
PubMed
Close
,
Janni V Jeppesen The Laboratory of Reproductive Biology, The Department of Fertility at The Juliane Marie Centre, Rigshospitalet, Copenhagen University Hospital and The University of Copenhagen, Copenhagen, Denmark

Search for other papers by Janni V Jeppesen in
Google Scholar
PubMed
Close
,
Kirsten T Macklon The Laboratory of Reproductive Biology, The Department of Fertility at The Juliane Marie Centre, Rigshospitalet, Copenhagen University Hospital and The University of Copenhagen, Copenhagen, Denmark

Search for other papers by Kirsten T Macklon in
Google Scholar
PubMed
Close
, and
Claus Yding Andersen The Laboratory of Reproductive Biology, The Department of Fertility at The Juliane Marie Centre, Rigshospitalet, Copenhagen University Hospital and The University of Copenhagen, Copenhagen, Denmark

Search for other papers by Claus Yding Andersen in
Google Scholar
PubMed
Close

Recombinant FSH proteins are important therapeutic agents for the treatment of infertility, including follitropin alfa expressed in Chinese Hamster Ovary (CHO) cells and, more recently, follitropin delta expressed in the human cell line PER.C6. These recombinant FSH proteins have distinct glycosylation, and have distinct pharmacokinetic and pharmacodynamic profiles in women. Comparative experiments demonstrated that follitropin delta and follitropin alfa displayed the same in vitro potency at the human FSH receptor, but varied in their pharmacokinetics in mouse and rat. While follitropin delta clearance from serum depended in part on the hepatic asialoglycoprotein receptor (ASGPR), follitropin alfa clearance was unaffected by ASGPR inhibition in rat or genetic ablation in mice. The distinct properties of follitropin delta and follitropin alfa are likely to contribute to the differing pharmacokinetic and pharmacodynamic profiles observed in women and to influence their efficacy in therapeutic protocols for the treatment of infertility.

Open access
Karim Gariani Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Geneva University Hospitals and Geneva University, Geneva, Switzerland

Search for other papers by Karim Gariani in
Google Scholar
PubMed
Close
and
François R Jornayvaz Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Geneva University Hospitals and Geneva University, Geneva, Switzerland
Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland

Search for other papers by François R Jornayvaz in
Google Scholar
PubMed
Close

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the industrialized world. NAFLD encompasses a whole spectrum ranging from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. The latter can lead to hepatocellular carcinoma. Furthermore, NASH is the most rapidly increasing indication for liver transplantation in western countries and therefore represents a global health issue. The pathophysiology of NASH is complex and includes multiple parallel hits. NASH is notably characterized by steatosis as well as evidence of hepatocyte injury and inflammation, with or without fibrosis. NASH is frequently associated with type 2 diabetes and conditions associated with insulin resistance. Moreover, NASH may also be found in many other endocrine diseases such as polycystic ovary syndrome, hypothyroidism, male hypogonadism, growth hormone deficiency or glucocorticoid excess, for example. In this review, we will discuss the pathophysiology of NASH associated with different endocrinopathies.

Open access
Neil R Chappell Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine and Family Fertility Center, Texas Children’s Hospital, Houston, Texas, USA

Search for other papers by Neil R Chappell in
Google Scholar
PubMed
Close
,
Beth Zhou Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine and Family Fertility Center, Texas Children’s Hospital, Houston, Texas, USA

Search for other papers by Beth Zhou in
Google Scholar
PubMed
Close
,
Amy K Schutt Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine and Family Fertility Center, Texas Children’s Hospital, Houston, Texas, USA

Search for other papers by Amy K Schutt in
Google Scholar
PubMed
Close
,
William E Gibbons Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine and Family Fertility Center, Texas Children’s Hospital, Houston, Texas, USA

Search for other papers by William E Gibbons in
Google Scholar
PubMed
Close
, and
Chellakkan S Blesson Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine and Family Fertility Center, Texas Children’s Hospital, Houston, Texas, USA

Search for other papers by Chellakkan S Blesson in
Google Scholar
PubMed
Close

Polycystic ovary syndrome (PCOS) is the most common ovulatory defect in women. Although most PCOS patients are obese, a subset of PCOS women are lean but show similar risks for adverse fertility outcomes. A lean PCOS mouse model was created using prenatal androgen administration. This developmentally programmed mouse model was used for this study. Our objective was to investigate if mitochondrial structure and functions were compromised in oocytes obtained from lean PCOS mouse. The lean PCOS mouse model was validated by performing glucose tolerance test, HbA1c levels, body weight and estrous cycle analyses. Oocytes were isolated and were used to investigate inner mitochondrial membrane potential, oxidative stress, lipid peroxidation, ATP production, mtDNA copy number, transcript abundance and electron microscopy. Our results demonstrate that lean PCOS mice have similar weight to that of the controls but exhibit glucose intolerance and hyperinsulinemia along with dysregulated estrus cycle. Analysis of their oocytes show impaired inner mitochondrial membrane function, elevated reactive oxygen species (ROS) and increased RNA transcript abundance. Electron microscopy of the oocytes showed impaired mitochondrial ultrastructure. In conclusion, the lean PCOS mouse model shows a decreased oocyte quality related to impaired mitochondrial ultrastructure and function.

Open access
Dorte Glintborg Department of Endocrinology and Metabolism, Odense University Hospital, Odense, Denmark

Search for other papers by Dorte Glintborg in
Google Scholar
PubMed
Close
,
Magda Lambaa Altinok Department of Endocrinology and Metabolism, Odense University Hospital, Odense, Denmark

Search for other papers by Magda Lambaa Altinok in
Google Scholar
PubMed
Close
,
Pernille Ravn Department of Gynecology and Obstetrics, Odense University Hospital, Odense, Denmark

Search for other papers by Pernille Ravn in
Google Scholar
PubMed
Close
,
Kurt Bjerregaard Stage Department of Psychiatry, Odense University Hospital, Odense, Denmark

Search for other papers by Kurt Bjerregaard Stage in
Google Scholar
PubMed
Close
,
Kurt Højlund Department of Endocrinology and Metabolism, Odense University Hospital, Odense, Denmark

Search for other papers by Kurt Højlund in
Google Scholar
PubMed
Close
, and
Marianne Andersen Department of Endocrinology and Metabolism, Odense University Hospital, Odense, Denmark

Search for other papers by Marianne Andersen in
Google Scholar
PubMed
Close

Background/aims

Polycystic ovary syndrome (PCOS) is associated with insulin resistance, adrenal hyperactivity and decreased mental health. We aimed to investigate the changes in adrenal activity, metabolic status and mental health in PCOS during treatment with escitalopram or placebo.

Methods

Forty-two overweight premenopausal women with PCOS and no clinical depression were randomized to 12-week SSRI (20 mg escitalopram/day, n = 21) or placebo (n = 21). Patients underwent clinical examination, fasting blood samples, adrenocorticotroph hormone (ACTH) test, 3-h oral glucose tolerance test (OGTT) and filled in questionnaires regarding mental health and health-related quality of life (HRQoL): WHO Well-Being Index (WHO-5), Major Depression Inventory (MDI), Short Form 36 (SF-36) and PCOS questionnaire.

Results

Included women were aged 31 (6) years (mean (s.d.)) and had body mass index (BMI) 35.8 (6.5) kg/m2 and waist 102 (12) cm. Escitalopram was associated with increased waist (median (quartiles) change 1 (0; 3) cm), P = 0.005 vs change during placebo and increased cortisol levels (cortisol 0, cortisol 60, peak cortisol and area under the curve for cortisol during ACTH test), all P< 0.05 vs changes during placebo. Escitalopram had no significant effect on measures of insulin sensitivity, insulin secretion, fasting lipids, mental health or HRQoL.

Conclusion

Waist circumference and cortisol levels increased during treatment with escitalopram in women with PCOS and no clinical depression, whereas metabolic risk markers, mental health and HRQol were unchanged.

Open access
Masatada Watanabe Laboratory of Tissue Regeneration, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa, Tokyo, Japan

Search for other papers by Masatada Watanabe in
Google Scholar
PubMed
Close
,
Shuji Ohno Division of Research for Pharmacy Students Education, Hoshi University, Shinagawa, Tokyo, Japan

Search for other papers by Shuji Ohno in
Google Scholar
PubMed
Close
, and
Hiroshi Wachi Laboratory of Tissue Regeneration, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa, Tokyo, Japan

Search for other papers by Hiroshi Wachi in
Google Scholar
PubMed
Close

Emerging evidence suggests that sex steroids are important for human skin health. In particular, estrogen improves skin thickness, elasticity and moisture of older women. The major source of circulating estrogen is the ovary; however, local estrogen synthesis and secretion have important roles in, for example, bone metabolism and breast cancer development. We hypothesized that infiltrated peripheral monocytes are one of the sources of estrogen in skin tissues. We also hypothesized that, during atopic dermatitis under stress, a decline in the hypothalamus–pituitary–adrenal axis (HPA) and facilitation of the (hypothalamus)–sympathetic–adrenomedullary system (SAM) attenuates estrogen secretion from monocytes. Based on this hypothesis, we tested aromatase expression in the human peripheral monocyte-derived cell line THP-1 in response to the synthetic glucocorticoid dexamethasone (Dex), the synthetic β-agonist isoproterenol (Iso) and the β-antagonist propranolol (Pro). Dex mimics glucocorticoid secreted during excitation of the HPA, and Iso mimics catecholamine secreted during excitation of the SAM. We found that aromatase activity and the CYP19A1 gene transcript were both upregulated in THP-1 cells in the presence of Dex. Addition of Iso induced their downregulation and further addition of Pro rescued aromatase expression. These results may suggest that attenuation of estrogen secretion from peripheral monocytes could be a part of the pathology of stress-caused deterioration of atopic dermatitis. Further examination using an in vitro human skin model including THP-1 cells might be a valuable tool for investigating the therapeutic efficacy and mechanism of estrogen treatment for skin health.

Open access
Luigi Laino Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Luigi Laino in
Google Scholar
PubMed
Close
,
Silvia Majore Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Silvia Majore in
Google Scholar
PubMed
Close
,
Nicoletta Preziosi Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Nicoletta Preziosi in
Google Scholar
PubMed
Close
,
Barbara Grammatico Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Barbara Grammatico in
Google Scholar
PubMed
Close
,
Carmelilia De Bernardo Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Carmelilia De Bernardo in
Google Scholar
PubMed
Close
,
Salvatore Scommegna Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Salvatore Scommegna in
Google Scholar
PubMed
Close
,
Anna Maria Rapone Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Anna Maria Rapone in
Google Scholar
PubMed
Close
,
Giacinto Marrocco Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Giacinto Marrocco in
Google Scholar
PubMed
Close
,
Irene Bottillo Department of Molecular Medicine, Department of Pediatrics and Hematology, Psychology Department, Department of Pediatric Surgery, Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, Italy

Search for other papers by Irene Bottillo in
Google Scholar
PubMed
Close
, and
Paola Grammatico
Search for other papers by Paola Grammatico in
Google Scholar
PubMed
Close

Sex development is a process under genetic control directing both the bi-potential gonads to become either a testis or an ovary, and the consequent differentiation of internal ducts and external genitalia. This complex series of events can be altered by a large number of genetic and non-genetic factors. Disorders of sex development (DSD) are all the medical conditions characterized by an atypical chromosomal, gonadal, or phenotypical sex. Incomplete knowledge of the genetic mechanisms involved in sex development results in a low probability of determining the molecular definition of the genetic defect in many of the patients. In this study, we describe the clinical, cytogenetic, and molecular study of 88 cases with DSD, including 29 patients with 46,XY and disorders in androgen synthesis or action, 18 with 46,XX and disorders in androgen excess, 17 with 46,XY and disorders of gonadal (testicular) development, 11 classified as 46,XX other, eight with 46,XX and disorders of gonadal (ovarian) development, and five with sex chromosome anomalies. In total, we found a genetic variant in 56 out of 88 of them, leading to the clinical classification of every patient, and we outline the different steps required for a coherent genetic testing approach. In conclusion, our results highlight the fact that each category of DSD is related to a large number of different DNA alterations, thus requiring multiple genetic studies to achieve a precise etiological diagnosis for each patient.

Open access
Paraskevi Kazakou Diabetes Centre, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece

Search for other papers by Paraskevi Kazakou in
Google Scholar
PubMed
Close
,
Stavroula A Paschou Endocrine Unit, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece

Search for other papers by Stavroula A Paschou in
Google Scholar
PubMed
Close
,
Theodora Psaltopoulou Unit of Hematology and Oncology, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece

Search for other papers by Theodora Psaltopoulou in
Google Scholar
PubMed
Close
,
Maria Gavriatopoulou Unit of Hematology and Oncology, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece

Search for other papers by Maria Gavriatopoulou in
Google Scholar
PubMed
Close
,
Eleni Korompoki Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece

Search for other papers by Eleni Korompoki in
Google Scholar
PubMed
Close
,
Katerina Stefanaki Endocrine Unit, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece

Search for other papers by Katerina Stefanaki in
Google Scholar
PubMed
Close
,
Fotini Kanouta Department of Endocrinology, Alexandra Hospital, Athens, Greece

Search for other papers by Fotini Kanouta in
Google Scholar
PubMed
Close
,
Georgia N Kassi Department of Endocrinology, Alexandra Hospital, Athens, Greece

Search for other papers by Georgia N Kassi in
Google Scholar
PubMed
Close
,
Meletios-Athanasios Dimopoulos Unit of Hematology and Oncology, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece

Search for other papers by Meletios-Athanasios Dimopoulos in
Google Scholar
PubMed
Close
, and
Asimina Mitrakou Diabetes Centre, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece

Search for other papers by Asimina Mitrakou in
Google Scholar
PubMed
Close

Endocrine system plays a vital role in controlling human homeostasis. Understanding the possible effects of COVID-19 on endocrine glands is crucial to prevent and manage endocrine disorders before and during hospitalization in COVID-19-infected patients as well as to follow them up properly upon recovery. Many endocrine glands such as pancreas, hypothalamus and pituitary, thyroid, adrenal glands, testes, and ovaries have been found to express angiotensin-converting enzyme 2 receptors, the main binding site of the virus. Since the pandemic outbreak, various publications focus on the aggravation of preexisting endocrine diseases by COVID-19 infection or the adverse prognosis of the disease in endocrine patients. However, data on endocrine disorders both during the phase of the infection (early complications) and upon recovery (late complications) are scarce. The aim of this review is to identify and discuss early and late endocrine complications of COVID-19. The majority of the available data refer to glucose dysregulation and its reciprocal effect on COVID-19 infection with the main interest focusing on the presentation of new onset of diabetes mellitus. Thyroid dysfunction with low triiodothyronine, low thyroid stimulating hormone, or subacute thyroiditis has been reported. Adrenal dysregulation and impaired spermatogenesis in affected men have been also reported. Complications of other endocrine glands are still not clear. Considering the recent onset of COVID-19 infection, the available follow-up data are limited, and therefore, long-term studies are required to evaluate certain effects of COVID-19 on the endocrine glands.

Open access
Małgorzata Więcek Department of Pediatrics and Pediatric Endocrinology, Faculty of Medical Sciences, Medical University of Silesia, Katowice, Poland

Search for other papers by Małgorzata Więcek in
Google Scholar
PubMed
Close
,
Jakub Gawlik Student Scientific Society at the Department of Pathophysiology, Jagiellonian University Medical College, Krakow, Poland

Search for other papers by Jakub Gawlik in
Google Scholar
PubMed
Close
,
Zuzanna Nowak Student Scientific Society at the Department of Pathophysiology, Jagiellonian University Medical College, Krakow, Poland

Search for other papers by Zuzanna Nowak in
Google Scholar
PubMed
Close
, and
Aneta Gawlik Department of Pediatrics and Pediatric Endocrinology, Faculty of Medical Sciences, Medical University of Silesia, Katowice, Poland

Search for other papers by Aneta Gawlik in
Google Scholar
PubMed
Close

Loss of fertility is one of the most important concerns facing Turner syndrome (TS) patients as they transition into adult health care. Due to the limited and rapidly decreasing ovarian reserve, many TS patients require fertility preservation (FP) techniques to preserve their reproductive potential until they are ready to pursue procreation. One has to also remember about the additional risks connected with pregnancy in TS patients. In order to determine the optimal time for introducing FP techniques and decrease the chance of an unnecessary intervention, markers and procedures assessing ovarian reserve have been developed. The exposure to potential cardiovascular complications should be determined before FP to avoid unnecessary procedures in patients with potential contraindications to pregnancy. The aim of the present review is to answer the following three questions important for successful preservation of fertility and safe pregnancy in TS: which markers of ovarian reserve should be used as selection criteria for FP? Which methods of FP are the safest and most effective? Are there any cardiovascular contraindications to FP? For each of those questions, separate literature searches have been conducted. A total of 86 articles have been included in this review: 34 for the first question, 35 for the second, and 17 for the third. Ovarian reserve markers and cardiovascular contraindications to pregnancy should be established before FP; hoverer, there are no unambiguous indicators as to which patients should be disqualified from the FP and more evidence is needed in this subject.

Open access
Teresa Vilariño-García Department of Medical Biochemistry, Molecular Biology and Immunology. Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain

Search for other papers by Teresa Vilariño-García in
Google Scholar
PubMed
Close
,
Antonio Pérez-Pérez Department of Medical Biochemistry, Molecular Biology and Immunology. Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain

Search for other papers by Antonio Pérez-Pérez in
Google Scholar
PubMed
Close
,
Esther Santamaría-López Valencian Infertility Institute (IVI), Seville, Spain

Search for other papers by Esther Santamaría-López in
Google Scholar
PubMed
Close
,
Nicolás Prados Valencian Infertility Institute (IVI), Seville, Spain

Search for other papers by Nicolás Prados in
Google Scholar
PubMed
Close
,
Manuel Fernández-Sánchez Valencian Infertility Institute (IVI), Seville, Spain

Search for other papers by Manuel Fernández-Sánchez in
Google Scholar
PubMed
Close
, and
Víctor Sánchez-Margalet Department of Medical Biochemistry, Molecular Biology and Immunology. Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain

Search for other papers by Víctor Sánchez-Margalet in
Google Scholar
PubMed
Close

Introduction

Polycystic ovary syndrome (PCOS) is a complex metabolic disorder associated with ovulatory dysfunction, hyperandrogenism, obesity, and insulin resistance, that leads to subfertility. Sam68 is an RNA-binding protein with signaling functions that is ubiquitously expressed, including gonads. Sam68 is recruited to leptin signaling, mediating different leptin actions.

Objective

We aimed to investigate the role of Sam68 in leptin signaling, mediating the effect on aromatase expression in granulosa cells and the posible implication of Sam68 in the leptin resistance in PCOS.

Materials and methods

Granulosa cells were from healthy donors (n = 25) and women with PCOS (n = 25), within the age range of 20 to 40 years, from Valencian Infertility Institute (IVI), Seville, Spain. Sam68 expression was inhibited by siRNA method and overexpressed by expression vector. Expression level was analysed by qPCR and immunoblot. Statistical significance was assessed by ANOVA followed by different post-hoc tests. A P value of <0.05 was considered statistically significant.

Results

We have found that leptin stimulation increases phosphorylation and expression level of Sam68 and aromatase in granulosa cells from normal donors. Downregulation of Sam68 expression resulted in a lower activation of MAPK and PI3K pathways in response to leptin, whereas overexpression of Sam68 increased leptin stimulation of signaling, enhancing aromatase expression. Granulosa cells from women with PCOS presented lower expression of Sam68 and were resistant to the leptin effect on aromatase expression.

Conclusions

These results suggest the participation of Sam68 in leptin receptor signaling, mediating the leptin effect on aromatase expression in granulosa cells, and point to a new target in leptin resistance in PCOS.

Open access